Exam 1
CSc 75010: Theoretical Computer Science
Graduate Center of CUNY
4 October 2002
(Yellow version)

Do five of the following six problems. Write each answer on a separate piece of paper.

1. Define the following terms:
(a) finite state automaton
(b) regular language
(c) Given a finite set Σ, define Σ^{*}
(d) Given a string s, define $|s|$
(e) Given string s_{1}, s_{2}, define $s_{1} \circ s_{2}$
2. Find the error in the following proof that $2=1$.

Consider the equation $a=b$. Multiply both sides by a to obtain $a^{2}=a b$. Subtract b^{2} from both sides to get $a^{2}-b^{2}=a b-b^{2}$. Now factor each side, $(a+b)(a-b)=b(a-b)$, and divide each side by $(a-b)$, to get $a+b=b$. Finally, let a and b equal 1 , which shows $2=1$.
3. Give the state diagrams of NFAs recognizing the following languages. In all cases the alphabet is $\Sigma=\{a, b, c, d, \ldots, x, y, z\}$, the 26 lowercase letters.
(a) $\{w \mid w$ contains the substring yellow $\}$
(b) $\{w \mid w$ is of even length or ends with the substring bye $\}$
4. Prove that the class of regular languages is closed under the star operator.
5. Let $\Sigma=\{0,1,+,=\}$. Prove that the following language is not regular:

$$
A D D=\{x=y+z \mid x, y, z \text { are binary integers, and } \mathrm{x} \text { is the sum of } \mathrm{y} \text { and } \mathrm{z}\}
$$

6. Give context-free grammars generating the following languages. The language is $\Sigma=\{a, b\}$.
(a) $\{w \mid w$ starts and ends with the same symbol $\}$
(b) the complement of the language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$
