CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

hunter.cuny.edu/csci
o
Lecture 8

DAy
26 March 2019 1/36

Announcements

o Each lecture includes a survey of computing
research and tech in NYC.

Today: Keith Okrosy
Career Development Services

CSci 127 (Hunter)

Lecture 8

DA

26 March 2019 2 /36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

@ Do | have to take the final?

Yes, you have to pass the final (60 out of 100 points) to the pass the class.

CSci 127 (Hunter) Lecture 8 26 March 2019

3/36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

@ Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.
9 Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

@ Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

9 Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

O To earn a Credit grade, what do | need?

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

@ Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

9 Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

O To earn a Credit grade, what do | need?

» Final can replace missing lecture slips or quizzes. Programs are 30%.

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

@ Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

9 Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

O To earn a Credit grade, what do | need?

» Final can replace missing lecture slips or quizzes. Programs are 30%.
> You need to pass the final, which takes 60 out of 100 points.

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

@ Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.
9 Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.
O To earn a Credit grade, what do | need?
» Final can replace missing lecture slips or quizzes. Programs are 30%.

> You need to pass the final, which takes 60 out of 100 points.
> If final counts 70%, that would be 60% of 70 = 42 points.

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

o Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.
@ Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.
9 Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

O To earn a Credit grade, what do | need?

» Final can replace missing lecture slips or quizzes. Programs are 30%.

> You need to pass the final, which takes 60 out of 100 points.

» If final counts 70%, that would be 60% of 70 = 42 points. Need 70 - 42 =
28 points (of 30) on the programs (or 52 programs).

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

Qo

Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do | need?

v

Final can replace missing lecture slips or quizzes. Programs are 30%.

You need to pass the final, which takes 60 out of 100 points.

If final counts 70%, that would be 60% of 70 = 42 points. Need 70 - 42 =
28 points (of 30) on the programs (or 52 programs).

With higher final score, you need fewer programs: Final: 80, Programs: 27.

vy

\4

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

Qo

Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do | need?

>
>
>

Final can replace missing lecture slips or quizzes. Programs are 30%.

You need to pass the final, which takes 60 out of 100 points.

If final counts 70%, that would be 60% of 70 = 42 points. Need 70 - 42 =
28 points (of 30) on the programs (or 52 programs).

With higher final score, you need fewer programs: Final: 80, Programs: 27.
More lecture slips & quizzes help: 10 lectures slips (5%) and 5 quizzes (10%)
leave 50% for the final. Passing final with 60% would need 46 programs for
credit. 80% on final, need 28 programs...

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Frequently Asked Questions

From lecture slips & recitation sections.

Qo

Can you go through the OpenData challenge from last week?
Yes, we'll start with functions, and then go on to the OpenData challenge.

Do | have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can | take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do | need?

>
>
>

Final can replace missing lecture slips or quizzes. Programs are 30%.

You need to pass the final, which takes 60 out of 100 points.

If final counts 70%, that would be 60% of 70 = 42 points. Need 70 - 42 =
28 points (of 30) on the programs (or 52 programs).

With higher final score, you need fewer programs: Final: 80, Programs: 27.
More lecture slips & quizzes help: 10 lectures slips (5%) and 5 quizzes (10%)
leave 50% for the final. Passing final with 60% would need 46 programs for
credit. 80% on final, need 28 programs...

Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 26 March 2019 3 /36

Today's Topics

o More on Functions

©

Recap: Open Data

(%]

Top Down Design
Github

©

©

CS Survey: Career Services

o

=}) = E DQAC
CSci 127 (Hunter) Lecture 8 26 March 2019 4 /36

Today's Topics

©

More on Functions

©

Recap: Open Data

(%]

Top Down Design
Github

©

©

CS Survey: Career Services

= MPANGg

CSci 127 (Hunter) Lecture 8 26 March 2019 5/ 36

Input Parameters & Return Values

o Functions can have input
parameters.

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 8 26 March 2019 6 /36

Input Parameters & Return Values

o Functions can have input

parameters.
def totalWithTax(food, tip): o Surrounded by parentheses,
total = @ - . e
ton . 2.0875 both in the function definition,
1 = food + food * . .
ol = el e s and in the function call
return(total)

(invocation).
lunch = float(input('Enter lunch total: "))

1Tip = float(input('Enter lunch tip:'))

1Total = totalWithTax(lunch, 1Tip)

print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 8 26 March 2019 6 /36

Input Parameters & Return Values

o Functions can have input

parameters.
def totalWithTax(food, tip): o Surrounded by parentheses,
total = @ - . e
ton . 2.0875 both in the function definition,
1 = food + food * . .
ol = el e s and in the function call
return(total)

(invocation).
lunch = float(input('Enter lunch total: "))

1Tip = float(input('Enter lunch tip:')) " "

1Total = totalWithTax(lunch, 1Tip) © The placeh0|ders n the
print('Lunch total is’, 1Total) function definition: formal
dinner= float(input('Enter dinner total: ')) parameters

dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 8 26 March 2019 6 /36

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

Lecture 8

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

26 March 2019 6 /36

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

Lecture 8

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

26 March 2019 6 /36

def totalW"LthTa

total = @
tax — 0.0875 Formal Parameters

total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Entg ach tip:'))
1Total = totalWithTax p
print('Lunch total is', otd
Actual Parameters
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter.digper tip:'))
dTotal = totalWithTax
print('Dinner total is', @

CSci 127 (Hunter)

Lecture 8

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both

in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

26 March 2019

7/36

In Pairs or Triples:

o What are the formal parameters? What is returned?

def enigmal(x,y,z):
if x == len(y):
return(z)
elif x < len(y):
return(y[0:x])

def contl(st):
—
for i in range(len(st)-1,-1,-1):

r =1 + st[i]

return(r)
else:

s = contl(z)

return(s+y)
a) enigmal(7,"caramel","dulce de leche") ‘ ‘
() e Return:
b) enigmal(3,"cupcake","vanilla") ‘ ‘
(b) & P Return:
¢) enigmal(10,"pie","nomel") ‘ ‘
(c) & P Return:

=} = = E
Lecture 8 26 March 2019 8 /36

CSci 127 (Hunter)

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 26 March 2019 9 /36

Input Parameters

o When called, the actual
parameter values are copied to
def totalWithTaTaod, EipTD the formal parameters.

total = @
tax - 0.0875 Formal Parameters

total = food + food * tax
total = total + tip

return(total)
lunch = float(input('Enter lunch total: '))
1Tip = float(input('Entg ach _tip:')
1Total = totalWithTax p

print('Lunch total is', ota
Actual Parameters
dinner= float(input('Enter dmner‘ total D))
dTip = float(input('Entep.d p:")N

dTotal = totalWithTax
print('Dinner total is',

[m] = = =
CSci 127 (Hunter) Lecture 8 26 March 2019 10 / 36

Input Parameters

o When called, the actual
parameter values are copied to

def totalWithTaTaod, EipTD the formal parameters.

total = @
tax - 0.0875 Formal Parameters

o OB i tox o All the commands inside the

total = total + tip H

retarnCtotal) function are performed on the
lunch = float(input('Enter lunch total: ')) C0p|e5-
1Tip = float(input('Entg ach _tip:')
1Total = totalWithTax p

print('Lunch total is', ota
Actual Parameters
dinner= float(input('Enter dmner‘ total: "))
dTip = float(input('Enter.din tip:"))

dTotal = totalWithTax
print('Dinner total is', @

=} = = E DAG
CSci 127 (Hunter) Lecture 8 26 March 2019 10 / 36

Input Parameters

o When called, the actual
parameter values are copied to

def totalWithTaTaod, EipTD the formal parameters.

total = @
tax - 0.0875 Formal Parameters

o OB i tox o All the commands inside the

total = total + tip H

ety function are performed on the
lunch = float(input('Enter lunch total: ')) C0p|e5-
1Tip = float(input('Entg ach _tip:')
1Total = totalWithTax p o The actual parameters do not

print('Lunch total is', ota
Actual Parameters Cha nge
dinner= float(input('Enter dmner total: ")) '
dTip = float(input('Enter.din tip:"))

dTotal = totalWithTax
print('Dinner total is', @

[=] = = = - A
CSci 127 (Hunter) Lecture 8 26 March 2019 10 / 36

Input Parameters

©

When called, the actual
parameter values are copied to

def totalWithTaTaod, EipTD the formal parameters.
:gial ; 3875 Formal Parameters P ..
OO i e o All the commands inside the
total = total + tip H
e aCtorey function are performed on the
lunch = float(input('Enter lunch total: ')) C0p|e5-
1Tip = float(input('Entg ach _tip:')
1Total = total¥ithTad p o The actual parameters do not

print('Lunch total is', ota
Actual Parameters Cha nge
dinner= float(input('Enter dmner total: ")) '
dTip = float(input('Enter.din tip:"))

dTotal = totalWithTax
print('Dinner total is', @

o The copies are discarded when
the function is done.

CSci 127 (Hunter) Lecture 8 26 March 2019 10 / 36

Input Parameters

def totalWithTaxCFood, tip)D

total = @
tax - 0.0875 Formal Parameters

total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: '))
1Tip = float(input('Entg b tip:')
1Total = totalWithTax p
print('Lunch total is', ota
Actual Parameters
dinner= float(input('Enter dmner total: "))
dTip = float(input('Enter.din tip:"))
dTotal = totalWithTax
print('Dinner total is', @

CSci 127 (Hunter)

©

Lecture 8

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

26 March 2019 10 / 36

Input Parameters: What about Lists?

@ When called, the actual parameter values
4ot 2013 Final Bran. 5 are copied to the formal parameters.

def kuwae(inlst):
tot = 1
for item in inLst:
tot = tot * item
return tot

def foo(inlst):
if (inlst[-1] > inLst[@]):
return kuwae(inLst)
else:
return -

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 26 March 2019 11 /36

Input Parameters: What about Lists?

@ When called, the actual parameter values

et 2013 it o, 3 are copied to the formal parameters.
def kuwae(inlst):

ot = 1

for tten in fnLst: o What is copied with a list?

tot = tot * item
return tot

def foo(inlst):
if (inlst[-1] > inLst[@]):
return kuwae(inLst)
else:
return -

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 26 March 2019 11 /36

Input Parameters: What about Lists?

@ When called, the actual parameter values

#FalL 2013 Final Exan, 3 are copied to the formal parameters.
def kuwae(inLst):
tot = 1
for iten in intst: o What is copied with a list?
tot = tot * item
return tot

o font tnist o The address of the list, but not the
if (inlst[-1] > inLst[0]): |nd|V|dUa| elements

return kuwae(inLst)
else:
return -1

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 26 March 2019 11 /36

Input Parameters: What about Lists?

@ When called, the actual parameter values
are copied to the formal parameters.

#Fall 2013 Final Exam, 5

def kuwae(inlst):
tot =1
for iten in intst: o What is copied with a list?
tot = tot * item
return tot

def foo(inlst):

o The address of the list, but not the
o owaed sty individual elements.

else:
return -1

o The actual parameters do not change, but
the inside elements might.

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 26 March 2019 11 /36

Input Parameters: What about Lists?

@ When called, the actual parameter values

et 2013 it o, 3 are copied to the formal parameters.
def kuwae(inlst):

ot = 1

for tten in fnLst: o What is copied with a list?

tot = tot * item
return tot

def foo(inlst):

o The address of the list, but not the
o owaed sty individual elements.

else:
return -

o The actual parameters do not change, but
the inside elements might.

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

o Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 26 March 2019 11 /36

Python Tutor

#Fall 2013 Final Exam, 5

def kuwae(inLst):
tot =1
for item in dinlst:
tot = tot * item
return tot

def foo(inlst): (Demo with pythonTutor)

if (inlst[-1] > inLst[@]):
return kuwae(inlst)
else:
return -1

foo([2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter) Lecture 8 26 March 2019 12 / 36

In Pairs or Triples:

def bar(n):
if n <= 8:
return 1
else:
return O

def foo(1):
n = bar(1[-1])
return 1[n]

o What are the formal parameters for the functions?

o What is the output of:
r = foo([1,2,3,4])
print ("Return: ", r)
o What is the output of:

r = foo([1024,512,256,128])
print ("Return: ", r)

CSci 127 (Hunter) Lecture 8 26 March 2019 13 /36

Python Tutor

def bar(n):
if n <= 8:
return 1
else:
return 0 (Demo with pythonTutor)
def foo(1):
n = bar(1[-11)
return 1[n]

CSci 127 (Hunter) Lecture 8 26 March 2019 14 / 36

In Pairs or Triples:

Predict what the code will do:

#(CSci 127 Teaching Staff
#Triangles two ways...
import turtle

def setUp(t, dist, col):
t.penup(Q)
t.forward(dist)
t.pendown()
t.color(col)

def nestedTriangle(t, side):
if side > 10:
for i in range(3):
t.forward(side)
t.left(120)
nestedTriangle(t, side/2)

def fractalTriangle(t, side):
if side > 10:
for i in range(3):
t.forward(side)
t.left(120)

fractalTriangle(t, side/2)

CSci 127 (Hunter)

[def main():

t

if _

Lecture 8

nessa = turtle.Turtle()
setUp(nessa, 100, "violet")
nestedTriangle(nessa, 160)

frank = turtle.Turtle()
setUp(frank, -100, "red")
fractalTriangle(frank, 160)

_name__ == "__main__":

main()

26 March 2019

15/ 36

IDLE

#CSci 127 Teaching Staff
#Triangles two ways. ..
import turtle

def setUp(t, dist, col):
t.penup()
t. forward(dist)
t.pendown()
t.color(col)

def nestedTriangle(t, side): .
if side > 10:
220 e (Demo with IDLE)
t.forward(side)
t.1eft(120)
nestedTriangle(t, side/2)

def fractalTriangle(t, side):
f side > 10:
for i in range(3):
t. forward(side)
t.1eft(120)

fractalTriangleCt, side/2)

] = =
CSci 127 (Hunter) Lecture 8

26 March 2019 16 / 36

Today's Topics

More on Functions

©

©

Recap: Open Data

(%]

Top Down Design
Github

©

©

CS Survey: Career Services

o = = = T 9ace

CSci 127 (Hunter) Lecture 8 26 March 2019 17 / 36

OpenData Design Question

e

Q e
. Q q
Q ¢

et

v

Design an algorithm that finds the closest collision.

(Sample NYC OpenData collision data file on back of lecture sli%)
CSci 127 (Hunter)

¢

Qe

Lecture 8

DAy
26 March 2019 18 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

(]

Create a “To Do" list of what your program has to accomplish.

©

Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

(]

Create a “To Do" list of what your program has to accomplish.

©

Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

@ Find data set (great place to look: NYC OpenData).

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

(]

Create a “To Do" list of what your program has to accomplish.

©

Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

(]

Create a “To Do" list of what your program has to accomplish.

©

Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.
@ Open up the CSV file.

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

(]

Create a “To Do" list of what your program has to accomplish.

©

Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

(]

Create a “To Do" list of what your program has to accomplish.

©

Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

©

Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

® Print the location with the smallest distance.

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:
@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.
@ Open up the CSV file.
@ Check distance to each to user’s location.
® Print the location with the smallest distance.
o Let’s use function names as placeholders for the ones we're unsure...

CSci 127 (Hunter) Lecture 8 26 March 2019 19 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

CSci 127 (Hunter) Lecture 8 26 March 2019 20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

import pandas as pd
inF = input(’Enter CSV file name:’)

CSci 127 (Hunter) Lecture 8 26 March 2019 20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes

the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

CSci 127 (Hunter) Lecture 8 26 March 2019

20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes

the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

CSci 127 (Hunter) Lecture 8 26 March 2019

20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes

the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

CSci 127 (Hunter) Lecture 8 26 March 2019

20 / 36

OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

CSci 127 (Hunter) Lecture 8 26 March 2019 20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes

the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

CSci 127 (Hunter) Lecture 8 26 March 2019

20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

closestLat, closestLon = findClosest(collisions, lat, lon)

CSci 127 (Hunter) Lecture 8 26 March 2019 20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).

import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

closestLat, closestLon = findClosest(collisions, lat, lon)

® Print the location with the smallest distance.

CSci 127 (Hunter) Lecture 8 26 March 2019 20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

closestLat, closestLon = findClosest(collisions, lat, lon)

® Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 26 March 2019 20 / 36

OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

@ Find data set (great place to look: NYC OpenData).
import pandas as pd
inF = input(’Enter CSV file name:’)

@ Ask user for current location.

lat = float(input(’Enter latitude:’))
lon = float(input(’Enter longitude:’))

@ Open up the CSV file.

collisions = pd.read_csv(inF)

@ Check distance to each to user's location.

closestLat, closestLon = findClosest(collisions, lat, lon)

® Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 26 March 2019 21/ 36

Today's Topics

More on Functions

©

©

Recap: Open Data

(%]

Top Down Design
Github

©

©

CS Survey: Career Services

o = = = T 9Dace

CSci 127 (Hunter) Lecture 8 26 March 2019 22 /36

Top-Down Design

CSci 127 (Hunter)

o The last example demonstrates

top-down design: breaking into
subproblems, and implementing each
part separately.

F = = £ DA

Lecture 8 26 March 2019 23 /36

Top-Down Design

CSci 127 (Hunter)

o The last example demonstrates

top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do" list.

F = = £ DA

Lecture 8 26 March 2019 23 /36

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a

“To Do" list.
» Translate list into function names &
inputs/returns.
=] = = = = a

CSci 127 (Hunter) Lecture 8 26 March 2019 23 /36

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do" list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

=] =) = = £ DA

CSci 127 (Hunter) Lecture 8 26 March 2019 23 /36

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do” list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

o Excellent approach since you can then
test each part separately before adding
it to a large program.

o) = E 9ace
CSci 127 (Hunter) Lecture 8 26 March 2019 23 /36

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do” list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

o Excellent approach since you can then
test each part separately before adding
it to a large program.

o Very common when working with a
team: each has their own functions to
implement and maintain.

o F = = £ DA

CSci 127 (Hunter) Lecture 8 26 March 2019 23 /36

In Pairs or Triples:

http://koalastothemax.com
o Top-down design puzzle:

» What does koalastomax do?

» What does each circle represent?

o Write a high-level design for it.

o Translate into code with function calls.
CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 24 / 36

Demo

CSci 127 (Hunter)

Lecture 8

Ha
26 March 2019

25/ 36

Demo

2 ! byl

CSci 127 (Hunter)

Lecture 8

Ha
26 March 2019

25/ 36

Demo

CSci 127 (Hunter)

Lecture 8

Ha
26 March 2019

25/ 36

Demo

< [im] koalastothemax.com] ul [}

Amazon.com:

Paul Ford: Wh... | Bloomberg ~ Google for Education:

Made with love by Vadim Ogievetsky for Annie Albagl / Powered by D3

= =) E E DA
CSci 127 (Hunter) Lecture 8 26 March 2019 26 / 36

Design: Koalas to the Max

o Input: Image & mouse movements

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 27 / 36

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 27 / 36

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 27 / 36

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

» Every mouse movement,

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 27 / 36

Design:

Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

» Every mouse movement,
»>

Divide the region into 4 quarters.

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 27 / 36

Design: Koalas to the Max

o Input: Image & mouse movements

o Output: Completed image
o Design:

» Every mouse movement,
»>
»>

Divide the region into 4 quarters.
Average the color of each region.

CSci 127 (Hunter)

Lecture 8

D
26 March 2019 27 / 36

Design: Koalas to the Max

o Input: Image & mouse movements
o Output: Completed image
o Design:
» Every mouse movement,
> Divide the region into 4 quarters.

> Average the color of each region.
> Set each region to its average.

o F = = £ DA

CSci 127 (Hunter) Lecture 8 26 March 2019 27 / 36

Design: Koalas to the Max

o Input: Image & mouse movements
o Output: Completed image
o Design:
» Every mouse movement,
> Divide the region into 4 quarters.

> Average the color of each region.
> Set each region to its average.

(Demo program from github.)

o F = = £ DA

CSci 127 (Hunter) Lecture 8 26 March 2019 27 / 36

Today's Topics

More on Functions

©

©

Recap: Open Data

(%]

Top Down Design
Github

©

©

CS Survey: Career Services

o

=}) = E DQAC
CSci 127 (Hunter) Lecture 8 26 March 2019 28 / 36

Github

o Like Google docs for code...

Octocat

CSci 127 (Hunter) Lecture 8 26 March 2019 29 / 36

Github

o Like Google docs for code...

o Used to share code, documents, etc.

Octocat

CSci 127 (Hunter) Lecture 8 26 March 2019 29 / 36

Github

o Like Google docs for code...
o Used to share code, documents, etc.

o More formally: git is a version
control protocol for tracking changes
and versions of documents.

Octocat

CSci 127 (Hunter) Lecture 8 26 March 2019 29 / 36

Github

o Like Google docs for code...
o Used to share code, documents, etc.

o More formally: git is a version
control protocol for tracking changes
and versions of documents.

o Github provides hosting for
repositories (‘repos’) of code.

Octocat

CSci 127 (Hunter) Lecture 8 26 March 2019 29 / 36

Github

o Like Google docs for code...
o Used to share code, documents, etc.

o More formally: git is a version
control protocol for tracking changes
and versions of documents.

o Github provides hosting for
repositories (‘repos’) of code.

o Also convenient place to host websites
(i.e. stjohn.github.io).

Octocat

CSci 127 (Hunter) Lecture 8 26 March 2019 29 / 36

Github

Octocat

CSci 127 (Hunter)

Like Google docs for code...

Used to share code, documents, etc.
More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

Lecture 8 26 March 2019 29 / 36

Today's Topics

More on Functions

©

©

Recap: Open Data

(%]

Top Down Design
Github

©

©

CS Survey: Career Services

Q>

=}) = E DQAC
CSci 127 (Hunter) Lecture 8 26 March 2019 30/ 36

CS Survey Talk

N
CAREER DEVELOPMENT SERVICES

Keith Okrosy

Career Development Services

CSci 127 (Hunter)

Lecture 8

26 March 2019 31/36

Design Challenge

m OpenData Home Data About~ Leam~ Alerts ContactUs Blog |
NYC Jobs 8|5
This dataset contains current job postings available on the City of New Vorks official jobs site » IMB“age I More Views I Filter I Visualiz
JobiD i | Agency i PostingType i | #OfPositions i BusinessTitle i CivilService Title i TitleCodeNo : | Level i | JobC:
2899%0 DEPARTMENT OF TRANSPORTATION Intemal 1 Asst Highway Transportation Specialst ASSISTANT HIGHWAY TRANSPORTATI 22305 0 Engine
2899%0 DEPARTMENT OF TRANSPORTATION xternal 1 Asst Highway Transportation Specialst ASSISTANT HIGHWAY TRANSPORTATI 22305 0 Engine
358750 DEPT OF HEALTH/MENTAL HYGIENE External 1 Buprenorphine Project Coordinator, Bureau of Alcoho... CITY RESEARCH SCIENTIST 21724 1 Health
358788 DEPT OF ENVIRONMENT PROTECTION External 1 Mechanical Engineering Intern MECHANICAL ENGINEERING INTERN 20403 0 Engine
358788 DEPT OF ENVIRONMENT PROTECTION Intemal 1 Mechanical Engineering Intern MECHANICAL ENGINEERING INTERN 20403 0 Engine
357626 DEPT OF ENVIRONMENT PROTECTION Intemal 1 Project Manager PROJECT MANAGER 22426 0 Engine
357626 DEPT OF ENVIRONMENT PROTECTION External 1 Project Manager PROJECT MANAGER 22426 0 Engine
358769 DEPT OF ENVIRONMENT PROTECTION External 1 Assistant Chemical Engineer /ASSISTANT CHEMICAL ENGINEER (C 20510 0 Engine
357769 DEPT OF HEALTH/MENTAL HYGIENE Internal 1 Net Developer, Bureau of IT Strategy and Project Man. (COMPUTER SPECIALIST (SOFTWARE) 13632 3 Techn
357769 DEPT OF HEALTH/MENTAL HYGIENE External 1 Net Developer, Bureau of IT Strategy and Project Man... COMPUTER SPECIALIST (SOFTWARE) 13632 3 Techn

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

=] (=) = E £ DA

CSci 127 (Hunter) Lecture 8 26 March 2019 32/36

Design Challenge

IN¥E€ OpenData

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

o Input: CSV file from NYC OpenData.

CSci 127 (Hunter)

Lecture 8

2ENE
26 March 2019

Design Challenge

N¥E OpenData

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

o Input: CSV file from NYC OpenData.

o Output: A list of internships offered by the city.

CSci 127 (Hunter)

Lecture 8

26 March 2019 33 /36

Design Challenge

N¥E OpenData

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

o Input: CSV file from NYC OpenData.

o Output: A list of internships offered by the city.
o Process:

CSci 127 (Hunter)

Lecture 8

26 March 2019 33 /36

Design Challenge

N¥E OpenData

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

o Input: CSV file from NYC OpenData.

o Output: A list of internships offered by the city.
o Process:

@ Open the file.

CSci 127 (Hunter)

Lecture 8

26 March 2019 33 /36

Design Challenge

N¥E OpenData

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

o Input: CSV file from NYC OpenData.

o Output: A list of internships offered by the city.
o Process:

@ Open the file.

@ Select the rows that have “intern” in the business title.

CSci 127 (Hunter)

Lecture 8

26 March 2019 33/36

Design Challenge

N¥E OpenData

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

o Input: CSV file from NYC OpenData.

o Output: A list of internships offered by the city.
o Process:

@ Open the file.
@ Select the rows that have “intern” in the business title.
® Print out those rows.

CSci 127 (Hunter)

Lecture 8

26 March 2019 33/36

Recap

o On lecture slip, write down a topic you wish we
had spent more time (and why).

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

def mainQ):
print("Hello, World!™)

if __name__ == "__main__":
main()
o) = E E 9
CSci 127 (Hunter)

Lecture 8 26 March 2019 34 /36

Recap

o On lecture slip, write down a topic you wish we
had spent more time (and why).

o Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ:
print("Hello, World!")

if __name__ == "__main__":
mainQ)

CSci 127 (Hunter) Lecture 8 26 March 2019 34 /36

Recap

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ:
print("Hello, World!")

__name__ == "__main__":
mainQ)

CSci 127 (Hunter)

o On lecture slip, write down a topic you wish we

had spent more time (and why).

o Functions are a way to break code into pieces,

that can be easily reused.

o Functions can have input parameters that

bring information into the function,

Lecture 8

26 March 2019

34 /36

Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ):
print("Hello, World!")

__name__ == "__main__":
mainQ)

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Lecture 8 26 March 2019

34 /36

Recap

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ):
print("Hello, World!")

—-name__ == "__main__":
main()

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Lecture 8 26 March 2019

34 /36

Recap

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ):
print("Hello, World!")

—-name__ == "__main__":
main()

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Lecture 8 26 March 2019 34 /36

Recap

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ):
print("Hello, World!")

__name__ == "__main__":
main()

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Lecture 8 26 March 2019 34 /36

Recap

#Name: your name here
#Date: October 2017

#This program, uses functions,
says hello to the world!

mainQ):
print("Hello, World!")

__name__ == "__main__":
main()

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

Lecture 8 26 March 2019

34 /36

Practice Quiz & Final Questions

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 35/ 36

Practice Quiz & Final Questions

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in).

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 35/ 36

Practice Quiz & Final Questions

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in).
o Lightning rounds:

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 35/ 36

Practice Quiz & Final Questions

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in)
o Lightning rounds:

» write as much you can for 60 seconds;

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 35/ 36

Practice Quiz & Final Questions

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in)
o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and

CSci 127 (Hunter)

Lecture 8

DAy
26 March 2019 35/ 36

Practice Quiz & Final Questions

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in).
o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

o) = E 9ace
CSci 127 (Hunter) Lecture 8 26 March 2019 35/ 36

Practice Quiz & Final Questions

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in).
o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

o Past exams are on the webpage (under Final Exam Information).
CSci 127 (Hunter)

&
Lecture 8

DAy
26 March 2019 35/ 36

Practice Quiz & Final Questions

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in).
o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

CSci 127 (Hunter)

o Past exams are on the webpage (under Final Exam Information).
o Theme: Functions! Starting with S18, V1, #4 and #7.
] = =

Lecture 8

DAy
26 March 2019 35/ 36

Writing Boards

o Return writing boards as you leave...

CSci 127 (Hunter)

Lecture 8

E DA
26 March 2019

36 / 36

