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Announcements

Guest Lecturer: Dr. Tiziana Ligorio
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Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data
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In Pairs or Triples:

Review: predict what the code will do:
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Python Tutor

(Demo with pythonTutor)
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Images
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Challenge: Image
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Challenge: Image
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Challenge: Image

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]
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Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data
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Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



“Hello, World!” with Functions
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Python Tutor

(Demo with pythonTutor)
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In Pairs or Triples:

Predict what the code will do:
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Python Tutor

(Demo with pythonTutor)
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Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 18 / 43



In Pairs or Triples:
Circle the actual parameters and underline the formal parameters:
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In Pairs or Triples:
Circle the actual parameters and underline the formal parameters:
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In Pairs or Triples:
Predict what the code will do:
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Python Tutor

(Demo with pythonTutor)
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In Pairs or Triples:

Predict what the code will do:
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Python Tutor

(Demo with pythonTutor)
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In Pairs or Triples:

Fill in the missing code:
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IDLE

(Demo with IDLE)
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Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.
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Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data
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Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.
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Accessing Structured Data: NYC Open Data

(Demo OpenData movie.)
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Example: OpenData Film Permits

CSci 127 (Hunter) Lecture 7 19 March 2019 31 / 43



Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?
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Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:
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Example: OpenData Film Permits

Can approach the other questions in the same way:

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?
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Design Question

Design an algorithm that finds the closest collision.
(Sample NYC OpenData collision data file on back of lecture slip.)
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.
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Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.
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Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.
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Writing Boards

Return writing boards as you leave...
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