
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 7 19 March 2019 1 / 43



Announcements

Guest Lecturer: Dr. Tiziana Ligorio

CSci 127 (Hunter) Lecture 7 19 March 2019 2 / 43



Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 19 March 2019 3 / 43



Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 19 March 2019 4 / 43



In Pairs or Triples:

Review: predict what the code will do:

CSci 127 (Hunter) Lecture 7 19 March 2019 5 / 43



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 19 March 2019 6 / 43



Images

CSci 127 (Hunter) Lecture 7 19 March 2019 7 / 43



Challenge: Image

CSci 127 (Hunter) Lecture 7 19 March 2019 8 / 43



Challenge: Image

0 width

height

width/2
0

height/2

CSci 127 (Hunter) Lecture 7 19 March 2019 9 / 43



Challenge: Image

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43



Challenge: Image

0 width

height

width/2
0

height/2

How would you select the lower left corner?

img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43



Challenge: Image

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43



Challenge: Image

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?

img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43



Challenge: Image

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43



Challenge: Image

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?

img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43



Challenge: Image

0 width

height

width/2
0

height/2

How would you select the lower left corner?
img2 = img[height//2:, :width//2]

How would you select the upper right corner?
img2 = img[:height//2, width//2:]

How would you select the lower right corner?
img2 = img[height//2:, width//2:]

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43



Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 19 March 2019 11 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43



“Hello, World!” with Functions

CSci 127 (Hunter) Lecture 7 19 March 2019 13 / 43



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 19 March 2019 14 / 43



In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 7 19 March 2019 15 / 43



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 19 March 2019 16 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 19 March 2019 18 / 43



In Pairs or Triples:
Circle the actual parameters and underline the formal parameters:

CSci 127 (Hunter) Lecture 7 19 March 2019 19 / 43



In Pairs or Triples:
Circle the actual parameters and underline the formal parameters:

CSci 127 (Hunter) Lecture 7 19 March 2019 20 / 43



In Pairs or Triples:
Predict what the code will do:

CSci 127 (Hunter) Lecture 7 19 March 2019 21 / 43



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 19 March 2019 22 / 43



In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 7 19 March 2019 23 / 43



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 19 March 2019 24 / 43



In Pairs or Triples:

Fill in the missing code:

CSci 127 (Hunter) Lecture 7 19 March 2019 25 / 43



IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 7 19 March 2019 26 / 43



Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43



Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43



Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43



Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43



Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43



Today’s Topics

Recap: Slicing & Images

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 19 March 2019 28 / 43



Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 19 March 2019 29 / 43



Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 19 March 2019 29 / 43



Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 19 March 2019 29 / 43



Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 19 March 2019 29 / 43



Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 19 March 2019 29 / 43



Accessing Structured Data: NYC Open Data

(Demo OpenData movie.)

CSci 127 (Hunter) Lecture 7 19 March 2019 30 / 43



Example: OpenData Film Permits

CSci 127 (Hunter) Lecture 7 19 March 2019 31 / 43



Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

CSci 127 (Hunter) Lecture 7 19 March 2019 32 / 43



Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

CSci 127 (Hunter) Lecture 7 19 March 2019 32 / 43



Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

CSci 127 (Hunter) Lecture 7 19 March 2019 32 / 43



Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 19 March 2019 33 / 43



Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 19 March 2019 33 / 43



Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 19 March 2019 34 / 43



Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 19 March 2019 35 / 43



Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 19 March 2019 36 / 43



Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

CSci 127 (Hunter) Lecture 7 19 March 2019 37 / 43



Example: OpenData Film Permits

Can approach the other questions in the same way:

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

CSci 127 (Hunter) Lecture 7 19 March 2019 38 / 43



Design Question

Design an algorithm that finds the closest collision.
(Sample NYC OpenData collision data file on back of lecture slip.)

CSci 127 (Hunter) Lecture 7 19 March 2019 39 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).

2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.

3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.

4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.

5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43



Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 19 March 2019 41 / 43



Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 19 March 2019 41 / 43



Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 19 March 2019 41 / 43



Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 19 March 2019 41 / 43



Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 19 March 2019 41 / 43



Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 19 March 2019 41 / 43



Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 19 March 2019 41 / 43



Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 19 March 2019 41 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43



Writing Boards

Return writing boards as you leave...

CSci 127 (Hunter) Lecture 7 19 March 2019 43 / 43


