CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

hunter.cuny.edu/csci
o
Lecture 7

DAy
19 March 2019 1/43

Announcements

o Guest Lecturer: Dr. Tiziana Ligorio

CSci 127 (Hunter)

Lecture 7

A
19 March 2019

2/43

Today's Topics

o Recap: Slicing & Images

o Introduction to Functions
o NYC Open Data

CSci 127 (Hunter)

Lecture 7

19 March 2019

D

3/43

Today's Topics

o Recap: Slicing & Images
o Introduction to Functions
o NYC Open Data

CSci 127 (Hunter)

Lecture 7

In Pairs or Triples:

Review: predict what the code will do:

motto = "Mihi Cura Futuri" import matplotlib.pyplot as plt
- import numpy as np

1l = 1en(m0tt0) img = plt.imread('csBridge')
L] . plt.imshow(img)

for i in mnge(l?. plt. show()
print(motto[i]) he;g:t = img.;hapE[?]
- . width = img.shape[1

for j in range(l-1,-1,-1): img2 = img[:height//2, :width//2]
p pint(motto [J]) plt.imshow(img2)

plt.show()

=] ﬁl = =) &
CSci 127 (Hunter) Lecture 7 19 March 2019 5/43

Python Tutor

motto = "Mihi Cura Futuri"
1 = len(motto)
for i in range(l): .
print(motto[i]) (Demo Wlth pythonTutor)
for j in range(l-1,-1,-1):
print(motto[j1)

CSci 127 (Hunter) Lecture 7 19 March 2019 6 /43

Images

matplotlib.pyplot plt
numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[@]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()

CSci 127 (Hunter) Lecture 7 19 March 2019 7/43

Challenge: Image

import matplotlib.pyplot as plt
import numpy as np

img = plt.imread('csBridge')
plt.imshow(img)

plt.show()

height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show()

o 9 z = = 9ac

CSci 127 (Hunter) 19 March 2019 8 /43

Lecture 7

Challenge: Image

import matplotlib.pyplot as plt — S
import numpy as np v g

img = plt.imread('csBridge')
plt.imshow(img)

plt.show()

height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show()

=] =) = = £ DA

CSci 127 (Hunter) Lecture 7 19 March 2019 9 /43

Challenge: Image

import matplotlib.pyplot as plt
import numpy as np

img = plt.imread('csBridge')
plt.imshow(img)

plt.show()

height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show()

CSci 127 (Hunter)

width/2

height/2

height

[m] = = =
Lecture 7 19 March 2019

width

= 9ac
10 / 43

Challenge: Image

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2 width

o How would you select the lower left corner?

o 9 z = = 9ac

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43

Challenge: Image

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2 width

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o 9 z = = 9ac

CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43

Challenge: Image

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')

plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2 width

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o How would you select the upper right corner?

o 9 z = = 9ac

CSci 127 (Hunter) 19 March 2019 10 / 43

Lecture 7

Challenge: Image

import matplotlib.pyplot as plt width/2 width
import numpy as np !

img = plt.imread('csBridge')
plt.imshow(img)

plt.show() g
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o How would you select the upper right corner?
img2 = img[:height//2, width//2:]

= = = = E DA
CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43

Challenge: Image

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2 width

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o How would you select the upper right corner?
img2 = img[:height//2, width//2:]

o How would you select the lower right corner?

o 9 z = = 9ac

CSci 127 (Hunter) 19 March 2019 10 / 43

Lecture 7

Challenge: Image

import matplotlib.pyplot as plt
import numpy as np !
img = plt.imread('csBridge')
plt.imshow(img)

plt.show() R
height = img.shape[@]

width = img.shape[1]

img2 = img[:height//2, :width//2]
plt.imshow(img2)

plt.show() height

width/2 width

o How would you select the lower left corner?
img2 = imgl[height//2:, :width//2]

o How would you select the upper right corner?
img2 = img[:height//2, width//2:]

o How would you select the lower right corner?
img2 = img[height//2:, width//2:]

= = = = E DA
CSci 127 (Hunter) Lecture 7 19 March 2019 10 / 43

Today's Topics

o Recap: Slicing & Images

o Introduction to Functions
o NYC Open Data

CSci 127 (Hunter)

Lecture 7

DA
19 March 2019 11 / 43

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here

#Date: October 2017
#This program, uses functions,

says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R

#This program, uses functions, organlzed with functions.

says hello to the world!

def mainQ):

print("Hello, World!™)

if __name__ == "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here O Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
def mainQ):
print("Hello, World!™)

if __name__ == "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here O Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
The opening function is often called main()

def mainQ):

print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:

mainQ)

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
The opening function is often called main()

def mainQ):

print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:

main© Example: print("Hello", "World")

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
F mainQ:
print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:
main© Example: print("Hello", "World")

@ Can write, or define your own functions,

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
F mainQ:
print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:
main© Example: print("Hello", "World")

@ Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 19 March 2019 12 / 43

“Hello, World!" with Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

says hello to the world!
def main(Q):
print("Hello, World!™)
if __name__ == "__main__":
main()

CSci 127 (Hunter) Lecture 7 19 March 2019

z 9ace

13 /43

Python Tutor

#Name: your name here
#Date: October 2017
#This program, uses functions,

says hello to the world!

def mainQ): (Demo with pythonTutor)
print("Hello, World!™)

if __name__ == "__main__":
main()

o & = =
Lecture 7 19 March 2019 14 / 43

CSci 127 (Hunter)

In Pairs or Triples:

Predict what the code will do:

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: "))
dTip = float{input('Enter dinner tip:")
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

Q>

=}) = E DQAC
CSci 127 (Hunter) Lecture 7 19 March 2019 15 / 43

Python Tutor

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: ')) .
1Tip = float(input('Enter lunch tip:')) D h
1Total - totalWithTax(lunch, 1Tip) (emo wit PYthonTUtor
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: ')
dTip = float(input('Enter dinner tip:')
dTotal - totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 19 March 2019 16 / 43

Input Parameters & Return Values

o Functions can have input
parameters.

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))

1Tip = float(input("Enter lunch tip:"))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total:
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

2

o Functions can have input
parameters.

o Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

Lecture 7 19 March 2019

17 / 43

Input Parameters & Return Values

o Functions can have input

parameters.
o Surrounded by parentheses,
O i epTaxCFood, kipd: both in the function definition,
tax - 0.0875 . .
total ~ food + food * tax and in the function call
total = total + tip
return(total) (invocation).
%unch :F{louz(inpué('Enterllun;h totul;)')) “ "o.
Tip = t t("Ent tip:"'
e ooy e b o The “placeholders™ in the

print('Lunch total is', 1Total)

function definition: formal
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:')) parameters

dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 19 March 2019 17 / 43

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Lecture 7 19 March 2019

17 / 43

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

o Functions can have input

parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

Lecture 7 19 March 2019

17 / 43

def tntaIWithTa

total = @
tax - 0.0875 Formal Parameters

total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Ente ach tip:'))
1Total = totalWithTax P
print('Lunch total is', otd
Actual Parameters
dinner= float(input('Enter dmner to{al)}
dTip = float(input('Enter.d tip:'))
dTotal = totalWithTax
print('Dinner total is', @

CSci 127 (Hunter)

Input Parameters & Return Values

o Functions can have input

parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

Lecture 7 19 March 2019

18 / 43

In Pairs or Triples:

Circle the actual parameters and underline the formal parameters:

def

def

def

prob4 () :

verse = "jam tomorrow and jam yesterday,"

print("The rule is,")

¢ = mystery(verse)

W = enigma(verse,c)

print(c,w)

mystery(v):

print(v)

c = v.count("jam"}

return{c)

enigma(v,c):

print("but never", v[-1])

for i in range(c):
print("jam")

return("day.")

prob4 ()

CSci 127 (Hunter) Lecture 7

19 March 2019

19 /43

In Pairs or Triples:

Circle the actual parameters and underline the formal parameters:

def

def

prob4():
vers "jam tomorrow and jam yesterday,"
pring("The rule is,")

return{c)
enigma(v,c):
print("but never", v[-1])
for i in range(c):
print("jam")
return("day.")

Formal
Parameters

prob4 ()

CSci 127 (Hunter) Lecture 7 19 March 2019

D

20 / 43

In Pairs or Triples:
Predict what the code will do:

def

def

def

prob4():

verse = "jam tomorrow and jam yesterday,"

print("The rule is,")

C mystery(verse)

W = enigma(verse,c)

print{c,w)

mystery(v):

print(v)

¢ = v.count("jam")

return{c)

enigma(v,c):

print{"but never", v[-1])

for i in range(c):
print("jam")

return("day.")

prob4 ()

CSci 127 (Hunter)

Lecture 7 19 March 2019

21/ 43

Python Tutor

def probd():
verse = "jam tomorrow and jam yesterday,
print("The rule is,")
© = mystery(verse)
w = enigma(verse,c)
print(c,w)
g Bl
print(v) -
N oty (Demo with pythonTutor)
return(c)
def enigma(v,c):
print("but never", v[-1])
for i in range(c):
print("jam")
return("day.")
proba()

CSci 127 (Hunter) Lecture 7 19 March 2019 22 /43

In Pairs or Triples:

Predict what the code will do:

#Greet loop example

def greetlLoop(person):
print("Greetings")
for i in range(5):

print("Helle", person)

greetLoop("Thomas")

CSci 127 (Hunter)

From "Teaching with Python" by John Zelle

def

def

happy () :
print("Happy Birthday to you!")

sing(P):
happy (O
happy ()
print("Happy Birthday dear " + P + "I")
happy ()

sing("Fred")
sing("Thomas")
sing("Hunter")

Lecture 7

19 March 2019

23 /43

Python Tutor

#Greet loop example

def greetlLoop(person):

print("Greetings")

for i in range(5):
print("Hello", person)

greetLoop("Thomas")

From "Teaching with Python” by John Zelle (Demo Wlth pythOnTut Or)

def happy () :
print("Happy Birthday to you!")

def sing(P):
happy ()
happy ()
print("Happy Birthday dear " + P + "!")
happy ()

sing("Fred")
sing("Thomas")
sing("Hunter")

CSci 127 (Hunter) Lecture 7 19 March 2019 24 / 43

In Pairs or Triples:

Fill in the missing code:

def monthString(monthNum):

Takes as input a number, monthNum, and

returns the corresponding month name as a string.
Example: monthString(1l) returns "January".

Assumes that input is an integer ranging from 1 to 12

monthString =

FILL IN YOUR CODE HERE

Other than your name above,

this is the only section

you change in this program.

it
i
it
HH#

return(monthString)

def mainQ):

n = int(input('Enter the number of the month: "))

mString = monthString(n)
print('The month is', mString)

CSci 127 (Hunter)

Lecture 7

19 March 2019

DA
25 / 43

IDLE

def monthString(nonthNum):

Takes as input a number, monthium, and

Feturns the corresponding nonth name as a string
Exanple: monthString(1) returns “January

Assunes that input is an integer ranging from 1 to 12

ronthString =

o (Demo with IDLE)
s

def main():
n = intCinput('Enter the number of the month: '))

mString = ronthString(n)
printC'The ronth is', mString)

DA

CSci 127 (Hunter) 19 March 2019 26 / 43

Lecture 7

Recap: Functions

@ Functions are a way to break code into pieces,
#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
printC"Hello, World!™) Example: print("Hello", "World")
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
printC"Hello, World!™) Example: print("Hello", "World")
if __name__ == "__main__": . . .
mainGy @ Can write, or define your own functions,

CSci 127 (Hunter) Lecture 7 19 March 2019 27 / 43

Recap: Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

#

if

says hello to the world!

F mainQ:

print("Hello, World!™)

__name__ == "__main__":
main()

CSci 127 (Hunter)

@ Functions are a way to break code into pieces,
that can be easily reused.

@ You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

@ Can write, or define your own functions,
which are stored, until invoked or called.

Lecture 7 19 March 2019 27 / 43

Today's Topics

o Recap: Slicing & Images
o Introduction to Functions

o NYC Open Data

CSci 127 (Hunter)

Lecture 7

DA
19 March 2019 28 /43

Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

.
"(;‘V*

o Freely available source of data

CSci 127 (Hunter)

Lecture 7

A
19 March 2019

20 / 43

Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

/=i..y
aQ -
Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.

"(;‘V*

o Maintained by the NYC data analytics team.

CSci 127 (Hunter)

Lecture 7

A
19 March 2019

20 / 43

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.

o Maintained by the NYC data analytics team.

o We will use several different ones for this class

CSci 127 (Hunter)

Lecture 7

DAy
19 March 2019 29 /43

Accessing Structured Data: NYC Open Data

Open Data for Qa .

®
All New Yorkers S

i
#

Search Open Data for things like 311, Buildings, Crime¢ ' l ;‘ N7_ ‘

o Freely available source of data.
o Maintained by the NYC data analytics team.
o We will use several different ones for this class.

o Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

= = = = E DA
CSci 127 (Hunter) Lecture 7 19 March 2019 29 /43

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

Freely available source of data.
Maintained by the NYC data analytics team.
We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

©

Lab 7 covers accessing and downloading NYC OpenData datasets.
=} (=) = E E DA
CSci 127 (Hunter) Lecture 7 19 March 2019 29 / 43

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

(Demo OpenData movie.)

CSci 127 (Hunter)

Lecture 7

DAy
19 March 2019 30/ 43

Example: OpenData Film Permits

N¥YE OpenData

Film Permits
Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a 3
street, or a park. See http://www1.nyc.gov/site/mome/permits/when-permit-required.page

EventiD

455063

454967

454941

454920

454914

454909

454905

EventType
Shooting Permit
Shooting Permit
Shooting Permit
Shooting Permit
Shooting Permit
Shooting Permit

Shooting Permit

CSci 127 (Hunter)

StartDateTi...

12/06/2018 07:00...

12/06/2018 07:00...

12/06/2018 07:00...

12/06/2018 10:00...

12/06/2018 08:00...

12/05/2018 08:00...

12/06/2018 07:00...

EndDateTime :
12/06/2018 09:00...
12/06/2018 05:00...
12/06/2018 07:00...
12/06/2018 11:59...
12/06/2018 11:00...
12/05/2018 06:00...

12/06/2018 10:00...

Lecture 7

EnteredOr ¢ :

12/05/2018 12:36...

12/04/2018 09:11...

12/04/2018 05:44...

12/04/2018 03:28...

12/04/2018 03:05...

12/04/2018 02:45...

12/04/2018 02:17...

Home Data About v

EventAg...

Mayor's Offic...
Mayor's Offic...
Mayor's Offic...
Mayor's Offic...
Mayor's Offic...
Mayor's Offic...

Mayor's Offic...

ParkingHeld

STARR AVENUE b...
EAGLE STREET be...
SOUTH OXFORD ...
13 AVENUE betw...
ELDERT STREET b...
ELDERT STREET b...

35 STREET betwe...

19 March 2019

Learn

Borou..

Queens
Brooklyn
Brooklyn
Queens
Brooklyn
Brooklyn

Queens

DA
31/ 43

Example: OpenData Film Permits

mopenData Home Data About. Leam. Alrts ContactUs Blog = Q

Film Permits L

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a &

sireet, or a park p s P quired.page More iews | itter | visuaize | export | Discuss | embed | About

Eventis | Eventlype | StartDateTL. i EndDateTime i EnteredOr i i EventAg. : ParkingHeld Borou. | Com.. i Police. ! Categ. | SubC. i Count Zipco..
as5063 p p 120052018 1236.. MayorsOffic.. STARRAVENUED.. Queens 2 108 Televsion Episodics.. United Sa... 11101
454967 p ' 1200420180911, MayorsOffic. EAGLESTREETbe.. Brookyn 1 % Television Episodics.. UnitedSta.. 11222
asasar Mayors Offic. Brookyn 2.6 76,88 St Photo... Not Applic... United Sta.. 1121711
454520 ShootingPermit 1210672018 10:00.. 12/06/2018 11:59... 12/0420180328.. MayorsOffic.. 13AVENUEbetw.. Queens 1,37 109,790 Fim Feawre UniedSta.. 1000211
454914 ShootingPermit 12/06/20180800.. 12062018 110... 12/0420180305.. MayorsOffic.. ELDERTSTREETb.. Brookyn 4,5 104,75,83 Televison Episodics.. UnitedSta.. 11207, 11
454909 MayorsOffic. ELDERTSTREETb.. Brookyn & 8 Televison Episodics.. UnitedSta.. 11237
454905 1 s 1200420180217.. MayorsOffic.. 3SSTREETbewe. Queens 1 8 Television Cable-epis.. United Sta.. 11101, 11

o What's the most popular street for filming?

DA
CSci 127 (Hunter) Lecture 7 19 March 2019 32/43

Example: OpenData Film Permits

mopenData Home Data About. Leam. Alrts ContactUs Blog = Q

Film Permits
Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a £

Eventic | | EventType StartDateTL. i EndDateTime i Enteredor 4 i EventAg. ParkingHeld i Borou. | Com. i Police. i Categ. ! SubC. i Count Zipco.
as5063 p p 120052018 1236.. MayorsOffic.. STARRAVENUED.. Queens 2 108 Television pisodics.. United Sta.. 11101
454967 p ' 1200420180911, MayorsOffic. EAGLESTREETbe.. Brookyn 1 % Television Episodics.. United Sta.. 11222
asasar Mayors Offc. Brookyn 2.6 76,88 StllPhoto... NotApplic.. United Sta.. 11217, 11
454920 ShootingPermit 120672018 1000.. 120062018 11:59.. 12/0420180328.. MayorsOffic.. 13AVENUEbew.. Queens 1,37 109,7,9 Fim Fewre UnitedSta.. 1000211
454914 ShootingPermit 12/06/20180800.. 12062018 110... 12/0420180305.. MayorsOffic.. ELDERTSTREETb.. Brookyn 4,5 104,75,83 Televison Episodics.. UnitedSta.. 11207, 11
454909 MayorsOffic. ELDERTSTREETb.. Brookyn & 8 Televison Episodics.. UnitedSta.. 11237
454905 ShootingPermit 12/0620180700.. 120062018 1000... 12/0420180217.. MayorsOffic. 3SSTREETbewe. Queens 1 8 Televison Cale-epis.. United Sta... 11101,11

o What's the most popular street for filming?
o What's the most popular borough?

DA
CSci 127 (Hunter) Lecture 7 19 March 2019 32/43

Example: OpenData Film Permits

NV¥E OpenData

Film Permits

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a £

Home Data About v

street, or a park. See http://www1.nyc.gov/site/mome/permits/when-permit.required.page

EventiD

455063

454967

4549

454920

asagta

454909

454905

EventType
Shooting Permit

Shooting Permit

StartDateTi.

12/0672018 07:00.

12/0672018 07:00.

EndDateTime

12/0672018 09:0.

12/0672018 05:00.

Enteredor 4

12/05/2018 1236

12/0472018 09:11

Eventag.
Mayor's Offic.

Mayor's Offc

ParkingHeld
STARR AVENUE b,

EAGLE STREET be.

ing Permit
Shooting Permit

Shooting Permit

12/0672018 10:0.

12/06/2018 08:90.

12/0672018 11:59.

12/06/2018 11:00.

12/0472018 0328.

12/0472018 0395,

12/0672018 07:00.

12/0672018 10:00.

12/0472018 02:17.

Mayor's Offic.

Mayor's Offic

Mayor's Offic
Mayor's Offc.

Mayor's Offic.

13 AVENUE betw.

ELDERT STREET b.

ELDERT STREET b.

35 STREET betwe.

Leam

Borou
Queens

Brookiyn
Brookyn
Queens

Brookiyn
Brookiyn

Queens

Nerts

o What's the most popular street for filming?

o What's the most popular borough?

o How many TV episodes were filmed?

CSci 127 (Hunter)

Lecture 7

M

ContactUs Blog | Q

orevews | iter [vsvatze | expor

Oisuss [emoed | Aot

Count. i ZipCo.
United Sta.. 11101
United Sta.. 1222
United Sta.. 1121711,
United Sta.. 10002, 11,
United Sta.. 11207,11.
United Sta.. 11237

United Sta... 11101, 11,

19 March 2019

DA
32/ 43

Example: OpenData Film Permits

NYE OpenData N s |

o Download the data as a CSV file and store on your computer.

CSci 127 (Hunter) Lecture 7 19 March 2019 33 /43

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#CSci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe

=] ﬁl = =) &
CSci 127 (Hunter) Lecture 7 19 March 2019 33 /43

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#(Sci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe
print(tickets) #Print out the dataframe

=} = = E PENE
CSci 127 (Hunter) Lecture 7 19 March 2019 34 /43

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#CSci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe
print(tickets) #Print out the dataframe
print(tickets["ParkingHeld"]) #Print out streets (multiple times)

=} = = E DQAC
CSci 127 (Hunter) Lecture 7 19 March 2019 35 /43

it
<

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#CSci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe

print(tickets) #Print out the dataframe

print(tickets["ParkingHeld"]) #Print out streets (multiple times)
print(tickets["ParkingHeld"].value_counts()) #Print out streets & number of times used

=} = = E DQAC
CSci 127 (Hunter) Lecture 7 19 March 2019 36 /43

it
<

Example: OpenData Film Permits

N¥E OpenData Womo Osia Moot Leam Mets Cotaails Sy | Q| [sow]

o Download the data as a CSV file and store on your computer.

o Python program:

#(CSci 127 Teaching Staff
#March 2019
#0penData Film Permits

#Import pandas for reading and analyzing CSV data:

import pandas as pd

csvFile = "filmPermits.csv" #Name of the CSV file

tickets = pd.read_csv(csvFile)#Read in the file to a dataframe

print(tickets) #Print out the dataframe

print(tickets["ParkingHeld"]) #Print out streets (multiple times)
print(tickets["ParkingHeld"].value_counts()) #Print out streets & number of times used
print(tickets["ParkingHeld"].value_counts(Q[:1@]) #Print 10 most popular

=} = = E D
CSci 127 (Hunter) Lecture 7 19 March 2019 37 /43

it
<

Example: OpenData Film Permits

mopenData Home Data About. Leam. Aletts ContactUs Blog = Q

Film Permits B B o

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a £

street, or a park. See http:/ nyc.govisite/mome/permits/when-permit-required.page More Views | Fiter | visuaize | export | piscuss | embed | About

Eventic | | EventType StartDateT. EndDateTime : | Enteredor 4 : EventAg. ParkingHeld Borou Com.. : | Police Categ. i SubC. : Count. i ZipCo,
455063 ShootigPermit 12/06/20180700.. 1200620180900... 120520181236 MayorsOffic.. STARRAVENUED.. Queens 2 108 Television Episodics.. UnitedSta.. 11101
454967 ShootingPermit 12/06/201807:00... 1210 1200420180911... MayorsOffic.. EAGLESTREETbe.. Brookyn 1 % Televsion Episodics.. United Sta.. 11222
asasar Mayor's Ofic. Brookyn 2.6 76,88 SulPhoto.. NotApplc.. United Sta.. 1121711
454920 Shooting Permit 12/06/2018 1030 1200420180328, MayorsOffic.. 13AVENUEbetw.. Queens 1,37 109,290 Fim Feawre UniedSta.. 1000211
454914 Shoot o800 1210472018 0305, sOffic. ELDERTS Bookyn 45 10,7583 Television Episodics.. UnitedSta.. 11207, 11
454309 18 0800, 1200472018 0245, sOffic.. ELDERTS Brookyn 4 & Television Episodics.. United Sta.. 11237
454305 ShootigPermit 12/06201807:00.. 120062018 1000.. 12/0420180217.. MayorsOffic.. 3SSTREETbewe.. Queens 1 18 Television Cable-epis... United Sta... 11101, 11

Can approach the other questions in the same way:
o What's the most popular street for filming?
o What's the most popular borough?

o How many TV episodes were filmed?

] = = E A C
CSci 127 (Hunter) Lecture 7 19 March 2019 38 /43

Design Question

e

s
_i1e »

- 9 A
v Q

et

v

Design an algorithm that finds the closest collision.

(Sample NYC OpenData collision data file on back of lecture sli%)
CSci 127 (Hunter)

¢

Qe

Lecture 7

DAy
19 March 2019 39 /43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
How to approach this:

o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.

o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

® Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 19 March 2019 40 / 43

Recap

Open Data for
All New Yorkers

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

CSci 127 (Hunter)

Lecture 7

DAy
19 March 2019 41 /43

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

=] 5 = = £ DA
CSci 127 (Hunter) Lecture 7 19 March 2019 41 /43

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

=] 5 = = £ DA
CSci 127 (Hunter) Lecture 7 19 March 2019 41 /43

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

L % Example: print("Hello", "World")

o F = = £ DA

CSci 127 (Hunter) Lecture 7 19 March 2019 41 /43

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Q
s @ o Can write, or define your own functions,
)

o F = = £ DA

CSci 127 (Hunter) Lecture 7 19 March 2019 41 /43

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

99" i Example: print("Hello", "World")
9
oD J & o Can write, or define your own functions,
99 Ve which are stored, until invoked or called.
]
o «F = = = 9ac

CSci 127 (Hunter) Lecture 7 19 March 2019 41 /43

Recap

Open Data for
All New Yorkers

CSci 127 (Hunter)

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Lecture 7 19 March 2019 41 /43

Recap

Open Data for
All New Yorkers

CSci 127 (Hunter)

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

o = = = T 9ace

Lecture 7 19 March 2019 41 /43

Practice Quiz & Final Questions

#Name: your name here def totalithTanEoed, T oot prabag)
: total - 0 Versef “jam tomorron and jam yesterday,”
Formal Par o on yestercay,
#Date: October 2017 oo ol Fames pringerne rote 15,0y
; . total - food + food * tax A R
#This program, uses functions, ot ~ total + t1p o ivim'\
says hello to the world! returnCtotal) pring(c.m Al
o i armeses
Haneh = FostComueC e Lnch total: 13 i fu /
P ITip - floatCinput('En ") WD
def mainQ): 1Total = totalWithT) @ return(e) n
inten | rintCLunch total 1=", TTORT et enignagu.
print("Hello, World!") o T el Parameters deT entoma(e,s): = parncer
dioner FlostCioputC v dove total; 1) o i angetert
. FloatCinpue(Ents » ot - fon
if __name__ == "__main__": roral | tntalW\thTu retuencany
mainQ printC*Dinmer total © srovir

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

[m] = = =
CSci 127 (Hunter) Lecture 7 19 March 2019 42 /43

Practice Quiz & Final Questions

#ame: your nane here ST T ot oy
el P versefe *jam ton d jon yesterday
#Date: October 2017 ooy ‘: o.v:nz ot Formal Parameters pringkeThe rute 15,
N . total - food + food * tax © = fystery @TID
#This program, uses functions, total - total + tip by Zm
says hello to the world! returntotal) o A 1P
et = FlonCinputCiter Lunh totelz 1) v /
R 1Tip - Float(input("En) G

def main(): Total - totalWithTad D & o

print("Hello, World!") print('Lunch total is', B Farameter

“Actdal Parameters
dimar FlostCinputCEnter dimar total: °3)

— drip - floatCinputC Ent Gy L e
f —nane_ = *_nain__ R e
main() print('Dinner total i:

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in).

=] 5 = = <
CSci 127 (Hunter) Lecture 7 19 March 2019 42 /43

Practice Quiz & Final Questions

#Name: your name here def totalithTanEoed, T oot probag)
el Par. versefe *jan tosorrow and jan yesterday.”
#Date: October 2017 o ; M:NZ food Formal Parameters pringC"The rule is.")
. total - food + food * tax © = fystery @TID
#This program, uses functions, total - total + tip we 1,;!
says hello to the world! returntotal) < e
lunch = float(input('Enter lunch total: ')) /
R ip - Floak(inputCn o: %) G
def mainQ): 1Total - totalHithTe @ & .
int(" I rintC*Lunch total is’ -
print("Hello, World!") priniC S s

dioner- FloatCinput(tEnter dner total: 13)
o dTip - FlootCinput(Ent Lip:t)
—-name__ = "__nain__": T TR
main() print(’Dinner total i

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).

o Lightning rounds:

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43

Practice Quiz & Final Questions

#Name: your name here def totalHTox(Food, FP> det provagy;
el Par. versefe *jan tosorrow and jan yesterday.”
#Date: October 2017 o oow Formal Parameters pringche rute 1.
. total - food + food * tax © = fystery @TID
#This program, uses functions, total - total + tip we 1,;!
says hello to the world! returntotal) ring(cow e
lunch = float(input('Enter lunch total: ')) /
. 1Tip = Float(input("n)
def mainQ): p
1Total - totalHithTe @ e
Parameter

print(*Lunch total is"

print("Hello, World!")

“Actiial Parameters
dioner- FloatCinput(tEnter dner total: 13)
o dip FloatCirputEnts tpi)
main() printC'Dinner. total 1

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).

o Lightning rounds:
» write as much you can for 60 seconds;

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43

Practice Quiz & Final Questions

#Name: your name here def totalHTox(Food, FP> det provagy;
el Par. versefe *jan tosorrow and jan yesterday.”
#Date: October 2017 o oow Formal Parameters pringche rute 1.
. total - food + food * tax © = fystery @TID
#This program, uses functions, total - total + tip we 1,;!
says hello to the world! returntotal) ring(cow e
lunch = float(input('Enter lunch total: ')) /
. 1Tip = Float(input("n)
def mainQ): p
1Total - totalHithTe @ e
Parameter

print(*Lunch total is"

print("Hello, World!")

“Actiial Parameters
dimner- float(input("Enter dinmer total: ')
— dTip - float(input('Ents tpi)
—-name__ == "__main__-: Mot - ma\w‘mx
main() print(’Dinner total i

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).

o Lightning rounds:
» write as much you can for 60 seconds;
» followed by answer; and

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43

Practice Quiz & Final Questions

#Name: your name here def totaliithTag Get probag);
Formal Parameters verseft “jan tosorrou and jon yesterday.”
#Date: October 2017 tux ; o.v:ni food prind(*The rule 1s.")
. total - food + food * tax o stery 3
#This program, uses functions, total - total + tip we i,im*@
says hello to the world! returnCtotal) o ‘\muu

Lunch = FloatCinputC1Entar. lunch total; 1)
1Tip - float(input(En p:') p

def main(): Total - totalWithTad

‘/

int(" e rint(’Lunch total is’
print("Hello, orld!"> e
dirner- FlootCinput(*Enter dimer total: ')
o drip - floatCinputC Ent Lip:t)
—-name__ = "__nain__": T
main() print(’Dinner total i

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).
o Lightning rounds:
» write as much you can for 60 seconds;

» followed by answer; and
> repeat.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43

Practice Quiz & Final Questions

#Name: your name here def totali T RE,TED

#Date: October 2017 total -0 Formal Parameters
#This program, uses functions,
says hello to the world!

main():
print("Hello, World!")

__name__ == "__main__":
main()

©

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

©

Pull out something to write on (not to be turned in).
Lightning rounds:

(]

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

©

Past exams are on the webpage (under Final Exam Information).

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43

Practice Quiz & Final Questions

#Name: your name here def totali T RE,TED
#Date: October 2017 total -0 Formal Parameters
#This program, uses functions,
says hello to the world!

main():
print("Hello, World!")

__name__ == "__main__":
main()

©

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

©

Pull out something to write on (not to be turned in).

(]

Lightning rounds:
» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

©

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

©

CSci 127 (Hunter) Lecture 7 19 March 2019 42 / 43

Practice Quiz & Final Questions

#Name: your name here def totali T RE,TED
#Date: October 2017 total -0 Formal Parameters
#This program, uses functions,
says hello to the world!

main():
print("Hello, World!")

__name__ == "__main__":
main()

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
Pull out something to write on (not to be turned in).
Lightning rounds:
» write as much you can for 60 seconds;

» followed by answer; and
> repeat.

o Past exams are on the webpage (under Final Exam Information).

o Theme: Functions!
Starting with Summer 18, #4.

CSci 127 (Hunter) Lecture 7 19 March 2019 42 /43

Writing Boards

o Return writing boards as you leave...

CSci 127 (Hunter)

Lecture 7

E DA
19 March 2019

43 /43

