CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

イロト イポト イヨト イヨト

CSci 127 (Hunter)

Lecture 3

19 February 2019 1 / 47

3

Announcements

CSci 127 Lab Schedule, Spring 2019				
М	т	W	Th	F
				1/25 L1*
1/28 L1	1/29 L1 Lecture 1	1/30 L1	1/31 L1	2/1 L1
2/4 L2	2/5 L2 Lecture 2	2/6 L2	2/7 L2	2/8 L2
2/11 L3	No class	2/13 L3	2/14 L3	2/15 L3
No class	2/19 L3 Lecture 3	2/20 L4	2/21 L4	2/22 L4
2/25 L4	2/26 L4 Lecture 4	2/27 L5	2/28 L5	3/1 L5
3/4 L5	3/5 L5 Lecture 5	3/6 L6	3/7 L6	3/8 L6
3/11 L6	3/12 L6 Lecture 6	3/13 L7	3/14 L7	3/15 L7
3/18 L7	3/19 L7 Lecture 7	3/20 L8	3/21 L8	3/22 L8
3/25 L8	3/26 L8 Lecture 8	3/27 L9	3/28 L9	3/29 L9
4/1 L9	4/2 L9 Lecture 9	4/3 L10	4/4 L10	4/5 L10
4/8 L10	4/9 L10 Lecture 10	4/10 L11	4/11 L11	4/12 L11
4/15 L11	4/16 L11 Lecture 11	4/17 L12	4/18 L12	No class
No class	No class	No class	No class	No class
4/29 L12	4/30 L12 Lecture 12	5/1 L13	5/2 L13	5/3 L12
5/6 L13	5/7 L13 Lecture 13	5/8 L14	5/9 L14	5/10 L13/L14*
5/13 L14	5/14 L14 Lecture 14	Reading Day		

• Welcome Back!

CSci 127 (Hunter)

19 February 2019 2 / 47

Announcements

CSci 127 Lab Schedule, Spring 2019				
м	т	w	Th	F
IVI		vv		1/25 1*
1/28 L1	1/29 L1 Lecture 1	1/30 L1	1/31 L1	2/1 L1
2/4 L2	2/5 L2 Lecture 2	2/6 L2	2/7 L2	2/8 L2
2/11 L3	No class	2/13 L3	2/14 L3	2/15 L3
No class	2/19 L3 Lecture 3	2/20 L4	2/21 L4	2/22 L4
2/25 L4	2/26 L4 Lecture 4	2/27 L5	2/28 L5	3/1 L5
3/4 L5	3/5 L5 Lecture 5	3/6 L6	3/7 L6	3/8 L6
3/11 L6	3/12 L6 Lecture 6	3/13 L7	3/14 L7	3/15 L7
3/18 L7	3/19 L7 Lecture 7	3/20 L8	3/21 L8	3/22 L8
3/25 L8	3/26 L8 Lecture 8	3/27 L9	3/28 L9	3/29 L9
4/1 L9	4/2 L9 Lecture 9	4/3 L10	4/4 L10	4/5 L10
4/8 L10	4/9 L10 Lecture 10	4/10 L11	4/11 L11	4/12 L11
4/15 L11	4/16 L11 Lecture 11	4/17 L12	4/18 L12	No class
No class	No class	No class	No class	No class
4/29 L12	4/30 L12 Lecture 12	5/1 L13	5/2 L13	5/3 L12
5/6 L13	5/7 L13 Lecture 13	5/8 L14	5/9 L14	5/10 L13/L14*
5/13 L14	5/14 L14 Lecture 14	Reading Day		

- Welcome Back!
- There's no more holidays until April.

イロト イロト イヨト イヨト

CSci 127 (Hunter)

19 February 2019 2 / 47

1

Announcements

CSci 127 Lat	Schedule, S			
	-		-	-
м	Т	W	Th	F
				1/25 L1*
1/28 L1	1/29 L1 Lecture 1	1/30 L1	1/31 L1	2/1 L1
2/4 L2	2/5 L2 Lecture 2	2/6 L2	2/7 L2	2/8 L2
2/11 L3	No class	2/13 L3	2/14 L3	2/15 L3
No class	2/19 L3 Lecture 3	2/20 L4	2/21 L4	2/22 L4
2/25 L4	2/26 L4 Lecture 4	2/27 L5	2/28 L5	3/1 L5
3/4 L5	3/5 L5 Lecture 5	3/6 L6	3/7 L6	3/8 L6
3/11 L6	3/12 L6 Lecture 6	3/13 L7	3/14 L7	3/15 L7
3/18 L7	3/19 L7 Lecture 7	3/20 L8	3/21 L8	3/22 L8
3/25 L8	3/26 L8 Lecture 8	3/27 L9	3/28 L9	3/29 L9
4/1 L9	4/2 L9 Lecture 9	4/3 L10	4/4 L10	4/5 L10
4/8 L10	4/9 L10 Lecture 10	4/10 L11	4/11 L11	4/12 L11
4/15 L11	4/16 L11 Lecture 11	4/17 L12	4/18 L12	No class
No class	No class	No class	No class	No class
4/29 L12	4/30 L12 Lecture 12	5/1 L13	5/2 L13	5/3 L12
5/6 L13	5/7 L13 Lecture 13	5/8 L14	5/9 L14	5/10 L13/L14*
5/13 L14	5/14 L14 Lecture 14	Reading Day		

- Welcome Back!
- There's no more holidays until April.
- Guest Lecturer: Katherine Howitt

3

996

From lecture slips & recitation sections.

From lecture slips & recitation sections.

• Can I get a copy of the lecture slides and programs from lecture?

From lecture slips & recitation sections.

• Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs?

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs?

Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.

200

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why?

Sac

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.

200

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets?

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? *Parenthesis are for functions:*

200

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!")

200

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!") or tori.left(90)

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!") or tori.left(90) Brackets are for accessing part of a list or string:

200

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!") or tori.left(90) Brackets are for accessing part of a list or string: words[1]

Sac

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!") or tori.left(90) Brackets are for accessing part of a list or string: words[1] or mess[3:6].

200

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!") or tori.left(90) Brackets are for accessing part of a list or string: words[1] or mess[3:6].
- Could you explain more about arithmetic (especially modulo!) in Python?

CSci 127 (Hunter)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

19 February 2019

3 / 47

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!") or tori.left(90) Brackets are for accessing part of a list or string: words[1] or mess[3:6].
- Could you explain more about arithmetic (especially modulo!) in Python? *Yes, will do!*

CSci 127 (Hunter)

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!") or tori.left(90) Brackets are for accessing part of a list or string: words[1] or mess[3:6].
- Could you explain more about arithmetic (especially modulo!) in Python? *Yes, will do!*
- One more time on all the range() options?

CSci 127 (Hunter)

From lecture slips & recitation sections.

- Can I get a copy of the lecture slides and programs from lecture? Yes, the slides are posted on the class website.
- Can I work ahead on programs? Yes, you'll get the most out of lecture and lab if you're 5 or so programs ahead. We give an extra 7-10 days on deadlines from when material is presented.
- I'm sure I did Problem 9 correctly, but Gradescope disagrees. Why? Some of the grading scripts are really finicky about spacing and new lines. Let us know- some we can fix, some have to match exactly.
- What's the difference between the parenthesis and the brackets? Parenthesis are for functions: print("Hi!") or tori.left(90) Brackets are for accessing part of a list or string: words[1] or mess[3:6].
- Could you explain more about arithmetic (especially modulo!) in Python? *Yes, will do!*
- One more time on all the range() options?
 We'll have some in group work and a quick review.

CSci 127 (Hunter)

Today's Topics

- Arithmetic
- Indexing and Slicing Lists
- Colors & Hexadecimal Notation
- 2D Arrays & Image Files
- Design Challenge: Planes

3

Today's Topics

Arithmetic

- Indexing and Slicing Lists
- Colors & Hexadecimal Notation
- 2D Arrays & Image Files
- Design Challenge: Planes

3

Sar

Some arithmetic operators in Python:

• Addition:

900

Some arithmetic operators in Python:

• Addition: sum = sum + 3

996

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction:

996

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item

996

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication:

996

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w

9990

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w
- Division:

996

イロト 不得 トイヨト イヨト 二日

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w
- Division: ave = total / n

200

イロト 不得 トイヨト イヨト 二日

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w
- Division: ave = total / n
- Floor or Integer Division:

SOC

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w
- Division: ave = total / n
- Floor or Integer Division: weeks = totalDays // 7

Sac

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w
- Division: ave = total / n
- Floor or Integer Division: weeks = totalDays // 7
- Remainder or Modulus:

996

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w
- Oivision: ave = total / n
- Floor or Integer Division: weeks = totalDays // 7
- Remainder or Modulus: days = totalDays % 7

Sac

Arithmetic

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w
- Division: ave = total / n
- Floor or Integer Division: weeks = totalDays // 7
- Remainder or Modulus: days = totalDays % 7
- Exponentiaion:

200

イロト 不得 トイヨト イヨト 二日

Arithmetic

Some arithmetic operators in Python:

- Addition: sum = sum + 3
- Subtraction: deb = deb item
- Multiplication: area = h * w
- Division: ave = total / n
- Floor or Integer Division: weeks = totalDays // 7
- Remainder or Modulus: days = totalDays % 7
- Exponentiaion: pop = 2**time

990

イロト 不得 トイヨト イヨト 二日

What does this code do?

```
#Mystery code for lecture 3
```

```
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
```

print('Your event starts at', startTime, "o'clock.")

endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

• If the user enters, 9 and 2.

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

- If the user enters, 9 and 2.
- If the user enters, 12 and 4.

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

- If the user enters, 9 and 2.
- If the user enters, 12 and 4.
- If the user enters, 8 and 20.

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

- If the user enters, 9 and 2.
- If the user enters, 12 and 4.
- If the user enters, 8 and 20.
- If the user enters, 11 and 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

• If the user enters, 9 and 2.

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

```
    If the user enters, 9 and 2.
    Enter starting time: 9
    Enter how long: 2
    Your event starts at 9 o'clock.
    Your event ends at 11 o'clock.
```

CSci 127 (Hunter)

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

• If the user enters, 12 and 4.

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

```
    If the user enters, 12 and 4.
    Enter starting time: 12
    Enter how long: 4
    Your event starts at 12 o'clock.
    Your event ends at 4 o'clock.
```

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

19 February 2019

9 / 47

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

• If the user enters, 8 and 20.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

```
    If the user enters, 8 and 20.
Enter starting time: 8
    Enter how long: 20
    Your event starts at 8 o'clock.
    Your event ends at 4 o'clock.
```

CSci 127 (Hunter)

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

• If the user enters, 11 and 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

What does this code do?

```
#Mystery code for lecture 3
startTime = int(input('Enter starting time: '))
duration = int(input('Enter how long: '))
print('Your event starts at', startTime, "o'clock.")
endTime = (startTime+duration)%12
print('Your event ends at', endTime, "o'clock.")
```

In particular, what is printed...

```
    If the user enters, 11 and 1.
    Enter starting time: 11
    Enter how long: 1
    Your event starts at 11 o'clock.
    Your event ends at 0 o'clock.
```

CSci 127 (Hunter)

Today's Topics

- Arithmetic
- Indexing and Slicing Lists
- Colors & Hexadecimal Notation
- 2D Arrays & Image Files
- Design Challenge: Planes

3

Sac

Mostly review:

```
1 for d in range(10, 0, -1):
 2
        print(d)
 3
   print("Blast off!")
 4
 5
   for num in range(5,8):
 6
       print(num, 2*num)
 7
 8
   s = "City University of New York"
 9
   print(s[3], s[0:3], s[:3])
10 print(s[5:8], s[-1])
11
12
   names = ["Eleanor", "Anna", "Alice", "Edith"]
13 for n in names:
14
        print(n)
```

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Python Tutor

(Demo with pythonTutor)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ - のの⊙

The three versions:

=

990

The three versions:
 range(stop)

3

996

<ロト <回ト < 回ト < 回ト

The three versions:

- range(stop)
- range(start, stop)

3

996

The three versions:

- range(stop)
- range(start, stop)
- range(start, stop, step)

3

500

 Similar to range(), you can take portions or slices of lists and strings:

3

Sac

Similar to range(), you can take portions or slices of lists and strings:

s[5:8]

1 for d in rome(10, 0, -1): print(*Elast off!) 5 for uni rome(5,8): 6 print(rum, 2*num) 8 s = "City University of New York" 9 print(53, 0,603, 3,613) 10 print(53, 1, 0,603, 3,613) 11 print(s (53, 1, 1)) 12 nomes = ["Elavoro", "Anna", "Alice", "Edith"] 13 print(s)

gives: "Uni"

200

イロト 不得 トイヨト イヨト 二日

Similar to range(), you can take portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

CSci 127 (Hunter)

= nar

```
    Similar to range(), you can take
portions or slices of lists and strings:
```

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

= nar

```
    Similar to range(), you can take
portions or slices of lists and strings:
```

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

```
    Similar to range(), you can take
portions or slices of lists and strings:
```

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

 Python also lets you "count backwards": last element has index: -1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

Today's Topics

- Arithmetic
- Indexing and Slicing Lists
- Colors & Hexadecimal Notation
- 2D Arrays & Image Files
- Design Challenge: Planes

3

Sac

Color Name	HEX	Color
Black	<u>#000000</u>	
<u>Navy</u>	<u>#000080</u>	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

• Can specify by name.

Ξ

996

Color Name	HEX	Color
Black	<u>#000000</u>	
<u>Navy</u>	#000080	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

- Can specify by name.
- Can specify by numbers:

Э

590

<ロト <回ト < 回ト < 回ト

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	#000080	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

- Can specify by name.
- Can specify by numbers:
 - ► Amount of Red, Green, and Blue (RGB).

CSci 127 (Hunter)

900

イロト 不得 トイヨト イヨト 二日

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	#000080	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

- Can specify by name.
- Can specify by numbers:
 - ► Amount of Red, Green, and Blue (RGB).
 - Adding light, not paint:

CSci 127 (Hunter)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	<u>#000080</u>	
DarkBlue	<u>#00008B</u>	
MediumBlue	<u>#0000CD</u>	
Blue	#0000FF	

- Can specify by name.
- Can specify by numbers:
 - ► Amount of Red, Green, and Blue (RGB).
 - Adding light, not paint:
 - ★ Black: 0% red, 0% green, 0% blue

CSci 127 (Hunter)

E Sac

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	<u>#000080</u>	
DarkBlue	<u>#00008B</u>	
MediumBlue	<u>#0000CD</u>	
Blue	#0000FF	

- Can specify by name.
- Can specify by numbers:
 - Amount of Red, Green, and Blue (RGB).
 - Adding light, not paint:
 - ★ Black: 0% red, 0% green, 0% blue
 - ★ White: 100% red, 100% green, 100% blue

CSci 127 (Hunter)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	#000080	
DarkBlue	<u>#00008B</u>	
MediumBlue	<u>#0000CD</u>	
Blue	#0000FF	

• Can specify by numbers (RGB):

Color Name	HEX	Color
Black	<u>#000000</u>	
<u>Navy</u>	<u>#000080</u>	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

- Can specify by numbers (RGB):
 - ► Fractions of each:

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	<u>#000080</u>	
DarkBlue	<u>#00008B</u>	
MediumBlue	<u>#0000CD</u>	
Blue	#0000FF	

• Can specify by numbers (RGB):

► Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.

イロト 不良 トイヨト イヨト ヨー のくや

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	<u>#000080</u>	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

• Can specify by numbers (RGB):

- ► Fractions of each:
 - e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
- ▶ 8-bit colors: numbers from 0 to 255:

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ - のの⊙

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	<u>#000080</u>	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

• Can specify by numbers (RGB):

- Fractions of each:
 - e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
- ▶ 8-bit colors: numbers from 0 to 255:
 e.g. (0, 255, 0) is no red, 100% green, and no blue.

CSci 127 (Hunter)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Color Name	HEX	Color
Black	<u>#000000</u>	
Navy	<u>#000080</u>	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

• Can specify by numbers (RGB):

Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.

- ▶ 8-bit colors: numbers from 0 to 255:
 e.g. (0, 255, 0) is no red, 100% green, and no blue.
- Hexcodes (base-16 numbers)...

CSci 127 (Hunter)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Decimal & Hexadecimal Numbers

Counting with 10 digits:

(from i-programmer.info)

3

Sac

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

(from i-programmer.info)

CSci 127 (Hunter)

Lecture 3

= 19 February 2019 21 / 47

990

(from i-programmer.info)

CSci 127 (Hunter)

Lecture 3

19 February 2019 21 / 47

3

990

(from i-programmer.info)

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

 20
 21
 22
 23
 24
 25
 26
 27
 28
 29

3

900

(from i-programmer.info)

- 00 01 02 03 04 05 06 07 08 09
- 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
- 30 31 32 33 34 35 36 37 38 39

イロト イポト イヨト イヨト

3

Sar

(from i-programmer.info)

- 00 01 02 03 04 05 06 07 08 09
- 10 11 12 13 14 15 16 17 18 19
- 20 21 22 23 24 25 26 27 28 29
- 30 31 32 33 34 35 36 37 38 39
- 40 41 42 43 44 45 46 47 48 49

イロト イポト イヨト イヨト

3

200

(from i-programmer.info)

00	01	02	03	04	05	06	07	80	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59

(from i-programmer.info)

00	01	02	03	04	05	06	07	80	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69

(from i-programmer.info)

00	01	02	03	04	05	06	07	08	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79

CSci 127 (Hunter)

Lecture 3

19 February 2019 21 / 47

(from i-programmer.info)

00	01	02	03	04	05	06	07	80	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89

(from i-programmer.info)

00	01	02	03	04	05	06	07	80	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

19 February 2019 21 / 47

Decimal & Hexadecimal Numbers

Counting with 16 digits:

(from i-programmer.info)

Э

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

(from i-programmer.info)

00	01	02	03	04	05	06	07	08	09	OA	0B	0C	0D	0E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F

(from i-programmer.info)

<ロト < 部 ト < 注 ト < 注 ト 三 三 の < ()</p>

00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F

(from i-programmer.info)

<ロト < 部 ト < 注 ト < 注 ト 三 三 の < ()</p>

00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F
30	31	32	33	34	35	36	37	38	39	ЗA	3B	3C	3D	3E	3F

(from i-programmer.info)

00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F
30	31	32	33	34	35	36	37	38	39	ЗA	ЗB	ЗC	3D	ЗE	ЗF
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

(from i-programmer.info)

<ロト < 部 ト < 注 ト < 注 ト 三 三 の < ()</p>

(from i-programmer.info)

= 990

(from i-programmer.info)

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 08
 0C
 0D
 0E
 0F
 01
 11
 12
 13
 14
 15
 16
 17
 18
 19
 1A
 1B
 1C
 1D
 1E
 1F

 20
 21
 22
 24
 25
 26
 27
 28
 20
 20
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 22
 34
 36
 33
 38
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 33
 34
 35
 36
 36
 36
 36</

CSci 127 (Hunter)

Lecture 3

19 February 2019 23 / 47

3

596

<ロト <回ト < 回ト < 回ト

(from i-programmer.info)

3

Sac

(from i-programmer.info)

3

(from i-programmer.info)

Э

(from i-programmer.info)

(from i-programmer.info)

(from i-programmer.info)

19 February 2019 23 / 47

(from i-programmer.info)

19 February 2019 23 / 47

19 February 2019 23 / 47

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

19 February 2019 23 / 47

Color Name	HEX	Color
Black	<u>#000000</u>	
<u>Navy</u>	#000080	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

• Can specify by numbers (RGB):

- ► Fractions of each:
 - e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
- ▶ 8-bit colors: numbers from 0 to 255: e.g. (0, 255, 0) is no red, 100% green, and no blue.
- Hexcodes (base-16 numbers):

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Color Name	HEX	Color
Black	<u>#000000</u>	
<u>Navy</u>	#000080	
DarkBlue	<u>#00008B</u>	
MediumBlue	#0000CD	
Blue	#0000FF	

• Can specify by numbers (RGB):

- ► Fractions of each:
 - e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
- ▶ 8-bit colors: numbers from 0 to 255: e.g. (0, 255, 0) is no red, 100% green, and no blue.
- Hexcodes (base-16 numbers):
 e.g. #0000FF is no red, no green, and 100% blue.

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

In Pairs or Triples...

Some review and some novel challenges:

```
import turtle
1
 2
    teddy = turtle.Turtle()
 3
4
    names = ["violet", "purple", "indigo", "lavender"]
 5 -
    for c in names:
6
      teddy.color(c)
 7
      teddy.left(60)
8
      teddy.forward(40)
9
      teddy.dot(10)
10
11
    teddy.penup()
12
    teddy.forward(100)
13
    teddy.pendown()
14
    hexNames = ["#FF00FF", "#990099", "#550055", "#111111"]
15
16 -
    for c in hexNames:
17
      teddy.color(c)
18
      teddy.left(60)
      teddy.forward(40)
19
20
      teddy.dot(10)
 CSci 127 (Hunter)
                              Lecture 3
```

Sar

Trinkets

```
1 import turtle
 2 teddy = turtle.Turtle()
4 names = ["violet", "purple", "indigo", "lavender"]
 5 - for c in names:
 6
     teddy.color(c)
 7
     teddy.left(60)
8
     teddy.forward(40)
9
     teddy.dot(10)
10
11 teddy.penup()
12 teddy.forward(100)
13 teddy.pendown()
14
15 hexNames = ["#FF00FF", "#990099", "#550055", "#111111"]
16 - for c in hexNames:
17
     teddy.color(c)
18
     teddy.left(60)
19
    teddy.forward(40)
20
    teddy.dot(10)
```

(Demo with trinkets)

Sac

Today's Topics

- Arithmetic
- Indexing and Slicing Lists
- Colors & Hexadecimal Notation
- 2D Arrays & Image Files
- Design Challenge: Planes

3

590

• We will use the standard portable network graphics (PNG) file format.

CSci 127 (Hunter)

Lecture 3

Э

590

We will use the standard portable network graphics (PNG) file format.
Saves every picture element (or 'pixel')-

CSci 127 (Hunter)

Sac

We will use the standard portable network graphics (PNG) file format.
Saves every picture element (or 'pixel')- often called a lossless format.

CSci 127 (Hunter)

- We will use the standard portable network graphics (PNG) file format.
- Saves every picture element (or 'pixel')- often called a lossless format.
- Keeps track of the amount of red, blue, and green of each pixel.

CSci 127 (Hunter)

CSci 127 (Hunter)

19 February 2019 29 / 47

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

© www.scratchapixel.com

CSci 127 (Hunter)

Lecture 3

19 February 2019 30 / 47

19 February 2019 30 / 47

CSci 127 (Hunter)

19 February 2019 30 / 47

• We will use 2 useful packages for images:

3

990

< □ > < □ > < □ > < Ξ > < Ξ >

- We will use 2 useful packages for images:
 - numpy: numerical analysis package

3

- We will use 2 useful packages for images:
 - numpy: numerical analysis package

イロト イポト イヨト イヨト

 pyplot: part of matplotlib for making graphs and plots

- We will use 2 useful packages for images:
 - numpy: numerical analysis package

- pyplot: part of matplotlib for making graphs and plots
- See lab notes for installing on your home machine.

Images with pyplot and numpy

```
#Import the packages for images and arrays:
import matplotlib.pvplot as plt
import numpy as np
ima = plt.imread('csBridge.png')
                                   #Read in image from csBridge.png
plt.imshow(ima)
                                   #Load image into pyplot
plt.show()
                                   #Show the image (waits until close
img2 = img.copy()
                         #make a copy of our image
img2[:,:,1] = 0
                         #Set the green channel to 0
img2[:,:,2] = 0
                         #Set the blue channel to 0
plt.imshow(img2)
                         #Load our new image into pyplot
plt.show()
                         #Show the image (waits until closed to conti
plt.imsave('reds.png', img2) #Save the image we created to the file:
```

0 www.scratchapiani.co

SQ C

To create an image from scratch:

E 990

To create an image from scratch:

Import the libraries.

Э

999

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

= 990

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

② Create the image- easy to set all color

= nar

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

2 Create the image- easy to set all color
 1 to 0% (black):

3

Sac

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

2 Create the image- easy to set all color

```
1 to 0% (black):
```

img = np.zeros((num,num,3))

3

Sac

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

② Create the image- easy to set all color

```
1 to 0% (black):
```

```
img = np.zeros((num,num,3))
```

```
2 to 100% (white):
```


3

Sac

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

② Create the image- easy to set all color


```
img = np.ones((num,num,3))
```


Sac

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

② Create the image- easy to set all color

```
to 0% (black):
```

```
img = np.zeros((num,num,3))
```

2 to 100% (white):

img = np.ones((num,num,3))

3 Do stuff to the pixels to make your image

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

② Create the image- easy to set all color

```
1 to 0% (black):
```

```
img = np.zeros((num,num,3))
```

2 to 100% (white):

img = np.ones((num,num,3))

- 3 Do stuff to the pixels to make your image
- ④ You can display your image:

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

② Create the image- easy to set all color

```
1 to 0% (black):
```

```
img = np.zeros((num,num,3))
```

```
2 to 100% (white):
```

img = np.ones((num,num,3))

3 Do stuff to the pixels to make your image

④ You can display your image:

```
plt.imshow(img)
plt.show()
```


Sac

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

② Create the image- easy to set all color

```
1 to 0% (black):
```

```
img = np.zeros((num,num,3))
```

```
2 to 100% (white):
```

img = np.ones((num,num,3))

③ Do stuff to the pixels to make your image

④ You can display your image:

plt.imshow(img)
plt.show()

5 And save your image:

Sac

To create an image from scratch:

Import the libraries.

import matplotlib.pyplot as plt import numpy as np

② Create the image- easy to set all color

```
    to 0% (black):
```

```
img = np.zeros((num,num,3))
```

```
2 to 100% (white):
```

```
img = np.ones((num,num,3))
```

3 Do stuff to the pixels to make your image

④ You can display your image:

plt.imshow(img)
plt.show()

And save your image:

plt.imsave('myImage.png', img)

Sac

More on numpy arrays

```
>>> a[0,3:5]
array([3,4])
>>> a[4:,4:]
array([[44, 45],
       [54, 55]])
>>> a[:,2]
array([2,12,22,32,42,52])
>>> a[2::2,::2]
array([[20,22,24]
       [40.42.44]
```


CSci 127 (Hunter)

Lecture 3

• Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:
 - img = np.zeros((10,10,3))
 img[0:10,0:5,0:1] = 1

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへ⊙

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

CSci 127 (Hunter)

Sac

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
num = 10
img = np.zeros( (num,num,3) )
img[0:2,:,2:3] = 1.0
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Slicing & Image Examples

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
▶ num = 10
```

```
img = np.zeros( (num,num,3) )
img[0:2,:,2:3] = 1.0
```


Slicing & Image Examples

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
num = int(input('Enter size'))
img = np.zeros( (num,num,3) )
img[:,::2,1] = 1.0
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Slicing & Image Examples

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
num = int(input('Enter size'))
img = np.zeros( (num,num,3) )
img[:,::2,1] = 1.0
```


CSci 127 (Hunter)

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
▶ img = np.ones( (10,10,3) )
img[0:10,0:5,0:2] = 0
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
▶ img = np.ones( (10,10,3) )
img[0:10,0:5,0:2] = 0
```

```
num = int(input('Enter size '))
img = np.ones( (num,num,3) )
img[::2,:,1:] = 0
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
▶ img = np.ones( (10,10,3) )
img[0:10,0:5,0:2] = 0
```

```
num = int(input('Enter size '))
img = np.ones( (num,num,3) )
img[::2,:,1:] = 0
```

```
img = np.zeros((8,8,3))
img[::2,::2,0] = 1
```

CSci 127 (Hunter)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

19 February 2019

38 / 47

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:
 - img = np.ones((10,10,3))
 img[0:10,0:5,0:2] = 0

▲ロト ▲圖ト ▲画ト ▲画ト 二直 - のへ⊙

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

img = np.ones((10,10,3))

CSci 127 (Hunter)

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
num = int(input('Enter size '))
img = np.ones( (num,num,3) )
img[::2,:,1:] = 0
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

```
num = int(input('Enter size '))
img = np.ones( (num,num,3) )
img[::2,:,1:] = 0
```


CSci 127 (Hunter)

イロト イポト イヨト イヨト

19 February 2019

40 / 47

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:
 - img = np.zeros((8,8,3))
 img[::2,1::2,0] = 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Basic pattern: *img[rows, columns, channels]* with: *start:stop:step*.
- Assuming the libraries are imported, what do the following code fragments produce:

Today's Topics

- Arithmetic
- Indexing and Slicing Lists
- Colors & Hexadecimal Notation
- 2D Arrays & Image Files
- Design Challenge: Planes

3

Sac

Design Challenge: Planes

CSci 127 (Hunter)

Lecture 3

19 February 2019 43 / 47

• A classic write-an-algorithm challenge for introductory programming.

3

590

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist:

3

9990

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs

3

Sac

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.

3

Sar

4 E b

Image: A match a ma

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.
 - Exchange with another team.

E 1 4 E 1

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.
 - Exchange with another team.
 - They build an airplane to your design (test plane) without consulting you.

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.
 - Exchange with another team.
 - They build an airplane to your design (test plane) without consulting you.
 - You exchange test planes, and revise your algorithm.

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.
 - Exchange with another team.
 - They build an airplane to your design (test plane) without consulting you.
 - ► You exchange test planes, and revise your algorithm.
 - The build team makes 3 copies of your paper airplane,

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.
 - Exchange with another team.
 - They build an airplane to your design (test plane) without consulting you.
 - You exchange test planes, and revise your algorithm.
 - The build team makes 3 copies of your paper airplane, and flies it from the balcony (must be behind first row of seats).

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.
 - Exchange with another team.
 - They build an airplane to your design (test plane) without consulting you.
 - ► You exchange test planes, and revise your algorithm.
 - The build team makes 3 copies of your paper airplane, and flies it from the balcony (must be behind first row of seats).
 - Will be judged on closeness to the stage.

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.
 - Exchange with another team.
 - They build an airplane to your design (test plane) without consulting you.
 - ► You exchange test planes, and revise your algorithm.
 - The build team makes 3 copies of your paper airplane, and flies it from the balcony (must be behind first row of seats).
 - Will be judged on closeness to the stage.
 - Winning design/build team gets chocolate.

- A classic write-an-algorithm challenge for introductory programming.
- With a slight twist: refining designs
 - As a team, write down your design.
 - Exchange with another team.
 - They build an airplane to your design (test plane) without consulting you.
 - ► You exchange test planes, and revise your algorithm.
 - The build team makes 3 copies of your paper airplane, and flies it from the balcony (must be behind first row of seats).
 - Will be judged on closeness to the stage.
 - Winning design/build team gets chocolate.
- Remember to pick up all your airplanes!

• On lecture slip, write down a topic you wish we had spent more time (and why).

Э

590

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:

∃ \$\\$<</p>\$\\$

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - ► Indexing and Slicing Lists

3

Sac

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - Indexing and Slicing Lists
 - Colors

= nar

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - Indexing and Slicing Lists
 - Colors
 - Hexadecimal Notation

3

9990

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - Indexing and Slicing Lists
 - Colors
 - Hexadecimal Notation
 - 2D Arrays & Image Files

3

Sac

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - Indexing and Slicing Lists
 - Colors
 - Hexadecimal Notation
 - 2D Arrays & Image Files
- Pass your lecture slips to the end of the rows for the UTA's to collect.

3

Sac

• Since you must pass the final exam to pass the course, we end every lecture with final exam review.

< 🗇 ▶

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).

< 🗇 ▶

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:

< 🗇 🕨 <

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;

< □ > <

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and

< □ > <

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - ▶ repeat.

∃ ≥ < ∃</p>

< 🗇 🕨 <

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - repeat.
- Past exams are on the webpage (under Final Exam Information).

CSci 127 (Hunter)

- 4 同 ト - 4 三 ト - 4 三

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - repeat.
- Past exams are on the webpage (under Final Exam Information).
- We're starting with Fall 2017, Version 2.

CSci 127 (Hunter)

Writing Boards

• Return writing boards as you leave...

CSci 127 (Hunter)

Lecture 3

19 February 2019 47 / 47

Э

990

<ロト <回ト < 回ト < 回ト