
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 11 16 April 2019 1 / 52

Announcements

Spring Break starts Friday!

No CUNY classes:
Friday, 19 April through Sunday, 28 April.

CS Survey: Anna Whitney
Google Storage Infrastructure Team

CSci 127 (Hunter) Lecture 11 16 April 2019 2 / 52

Announcements

Spring Break starts Friday!

No CUNY classes:
Friday, 19 April through Sunday, 28 April.

CS Survey: Anna Whitney
Google Storage Infrastructure Team

CSci 127 (Hunter) Lecture 11 16 April 2019 2 / 52

Announcements

Spring Break starts Friday!

No CUNY classes:
Friday, 19 April through Sunday, 28 April.

CS Survey: Anna Whitney
Google Storage Infrastructure Team

CSci 127 (Hunter) Lecture 11 16 April 2019 2 / 52

Today’s Topics

Python Recap

Machine Language

Machine Language: Jumps & Loops

Design Patterns: Searching

CS Survey

CSci 127 (Hunter) Lecture 11 16 April 2019 3 / 52

Today’s Topics

Python Recap

Machine Language

Machine Language: Jumps & Loops

Design Patterns: Searching

CS Survey

CSci 127 (Hunter) Lecture 11 16 April 2019 4 / 52

Python & Circuits Review: 10 Weeks in 10 Minutes

A whirlwind tour of the semester, so far...

CSci 127 (Hunter) Lecture 11 16 April 2019 5 / 52

Week 1: print(), loops, comments, & turtles

Introduced comments & print():

#Name: Thomas Hunter ← These lines are comments

#Date: September 1, 2017 ← (for us, not computer to read)

#This program prints: Hello, World! ← (this one also)

print("Hello, World!") ← Prints the string ”Hello, World!” to the screen

As well as definite loops & the turtle package:

CSci 127 (Hunter) Lecture 11 16 April 2019 6 / 52

Week 1: print(), loops, comments, & turtles

Introduced comments & print():

#Name: Thomas Hunter ← These lines are comments

#Date: September 1, 2017 ← (for us, not computer to read)

#This program prints: Hello, World! ← (this one also)

print("Hello, World!") ← Prints the string ”Hello, World!” to the screen

As well as definite loops & the turtle package:

CSci 127 (Hunter) Lecture 11 16 April 2019 6 / 52

Week 1: print(), loops, comments, & turtles

Introduced comments & print():

#Name: Thomas Hunter ← These lines are comments

#Date: September 1, 2017 ← (for us, not computer to read)

#This program prints: Hello, World! ← (this one also)

print("Hello, World!") ← Prints the string ”Hello, World!” to the screen

As well as definite loops & the turtle package:

CSci 127 (Hunter) Lecture 11 16 April 2019 6 / 52

Week 2: variables, data types, more on loops & range()

A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.

Different kinds, or types, of values need different amounts of space:
I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers

I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers

I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters

I list: a sequence of items
e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]

I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]

I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 16 April 2019 7 / 52

Week 3: colors, hex, slices, numpy & images

CSci 127 (Hunter) Lecture 11 16 April 2019 8 / 52

Week 3: colors, hex, slices, numpy & images

CSci 127 (Hunter) Lecture 11 16 April 2019 8 / 52

Week 3: colors, hex, slices, numpy & images

CSci 127 (Hunter) Lecture 11 16 April 2019 8 / 52

Week 4: design problem (cropping images) & decisions

First: specify inputs/outputs. Input file name, output file name,
upper, lower, left, right (“bounding box”)

Next: write pseudocode.
1 Import numpy and pyplot.
2 Ask user for file names and dimensions for cropping.
3 Save input file to an array.
4 Copy the cropped portion to a new array.
5 Save the new array to the output file.

Next: translate to Python.

CSci 127 (Hunter) Lecture 11 16 April 2019 9 / 52

Week 4: design problem (cropping images) & decisions

First: specify inputs/outputs. Input file name, output file name,
upper, lower, left, right (“bounding box”)

Next: write pseudocode.
1 Import numpy and pyplot.
2 Ask user for file names and dimensions for cropping.
3 Save input file to an array.
4 Copy the cropped portion to a new array.
5 Save the new array to the output file.

Next: translate to Python.

CSci 127 (Hunter) Lecture 11 16 April 2019 9 / 52

Week 4: design problem (cropping images) & decisions

First: specify inputs/outputs. Input file name, output file name,
upper, lower, left, right (“bounding box”)

Next: write pseudocode.
1 Import numpy and pyplot.
2 Ask user for file names and dimensions for cropping.
3 Save input file to an array.
4 Copy the cropped portion to a new array.
5 Save the new array to the output file.

Next: translate to Python.

CSci 127 (Hunter) Lecture 11 16 April 2019 9 / 52

Week 4: design problem (cropping images) & decisions

First: specify inputs/outputs. Input file name, output file name,
upper, lower, left, right (“bounding box”)

Next: write pseudocode.
1 Import numpy and pyplot.
2 Ask user for file names and dimensions for cropping.
3 Save input file to an array.
4 Copy the cropped portion to a new array.
5 Save the new array to the output file.

Next: translate to Python.

CSci 127 (Hunter) Lecture 11 16 April 2019 9 / 52

Week 4: design problem (cropping images) & decisions

CSci 127 (Hunter) Lecture 11 16 April 2019 10 / 52

Week 5: logical operators, truth tables & logical circuits

in1 in2 returns:

False and False False
False and True False
True and False False
True and True True

CSci 127 (Hunter) Lecture 11 16 April 2019 11 / 52

Week 5: logical operators, truth tables & logical circuits

in1 in2 returns:

False and False False
False and True False
True and False False
True and True True

CSci 127 (Hunter) Lecture 11 16 April 2019 11 / 52

Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 16 April 2019 12 / 52

Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 16 April 2019 12 / 52

Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 16 April 2019 12 / 52

Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 16 April 2019 12 / 52

Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 16 April 2019 12 / 52

Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 16 April 2019 13 / 52

Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 16 April 2019 13 / 52

Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 16 April 2019 13 / 52

Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 16 April 2019 13 / 52

Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 16 April 2019 13 / 52

Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 16 April 2019 13 / 52

Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 16 April 2019 13 / 52

Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 16 April 2019 14 / 52

Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 16 April 2019 14 / 52

Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 16 April 2019 14 / 52

Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 16 April 2019 14 / 52

Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 16 April 2019 14 / 52

Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 16 April 2019 15 / 52

Week 9: top-down design, folium, loops, and random()

CSci 127 (Hunter) Lecture 11 16 April 2019 16 / 52

Week 10: more on loops, max design pattern, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

The max design pattern provides a
template for finding maximum value
from a list.

CSci 127 (Hunter) Lecture 11 16 April 2019 17 / 52

Week 10: more on loops, max design pattern, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

The max design pattern provides a
template for finding maximum value
from a list.

CSci 127 (Hunter) Lecture 11 16 April 2019 17 / 52

Week 10: more on loops, max design pattern, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

The max design pattern provides a
template for finding maximum value
from a list.

CSci 127 (Hunter) Lecture 11 16 April 2019 17 / 52

Week 10: more on loops, max design pattern, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

The max design pattern provides a
template for finding maximum value
from a list.

CSci 127 (Hunter) Lecture 11 16 April 2019 17 / 52

Week 10: more on loops, max design pattern, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

The max design pattern provides a
template for finding maximum value
from a list.

CSci 127 (Hunter) Lecture 11 16 April 2019 17 / 52

Python & Circuits Review: 10 Weeks in 10 Minutes

Input/Output (I/O): input() and print();
pandas for CSV files

Types:

I Primitive: int, float, bool, string;
I Container: lists (but not dictionaries/hashes

or tuples)

Objects: turtles (used but did not design our own)

Loops: definite & indefinite

Conditionals: if-elif-else

Logical Expressions & Circuits

Functions: parameters & returns

Packages:

I Built-in: turtle, math, random
I Popular: numpy, matplotlib, pandas, folium

CSci 127 (Hunter) Lecture 11 16 April 2019 18 / 52

Today’s Topics

Python Recap

Machine Language

Machine Language: Jumps & Loops

Design Patterns: Searching

CS Survey

CSci 127 (Hunter) Lecture 11 16 April 2019 19 / 52

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.

Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 16 April 2019 20 / 52

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages

(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 16 April 2019 20 / 52

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).

Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 16 April 2019 20 / 52

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.

Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 16 April 2019 20 / 52

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 16 April 2019 20 / 52

Machine Language

(Ruth Gordon & Ester Gerston programming the ENIAC, UPenn)

CSci 127 (Hunter) Lecture 11 16 April 2019 21 / 52

Machine Language

(wiki)

CSci 127 (Hunter) Lecture 11 16 April 2019 22 / 52

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 11 16 April 2019 23 / 52

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 11 16 April 2019 23 / 52

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 11 16 April 2019 23 / 52

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 11 16 April 2019 23 / 52

“Hello World!” in Simplified Machine Language

(WeMIPS)

CSci 127 (Hunter) Lecture 11 16 April 2019 24 / 52

WeMIPS

(Demo with WeMIPS)

CSci 127 (Hunter) Lecture 11 16 April 2019 25 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed.

Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:

add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3

(Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.

addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100

(Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.

j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done

(Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 11 16 April 2019 26 / 52

In Pairs or Triples:

Write a program that prints out the alphabet: a b c d ... x y z

CSci 127 (Hunter) Lecture 11 16 April 2019 27 / 52

WeMIPS

(Demo with WeMIPS)

CSci 127 (Hunter) Lecture 11 16 April 2019 28 / 52

Today’s Topics

Python Recap

Machine Language

Machine Language: Jumps & Loops

Design Patterns: Searching

CS Survey

CSci 127 (Hunter) Lecture 11 16 April 2019 29 / 52

Loops & Jumps in Machine Language

Instead of built-in looping structures like for

and while, you create your own loops by
“jumping” to the location in the program.

Can indicate locations by writing labels at the
beginning of a line.

Then give a command to jump to that
location.

Different kinds of jumps:
I Unconditional: j Done will jump to the

address with label Done.
I Branch if Equal: beq $s0 $s1 DoAgain

will jump to the address with label DoAgain
if the registers $s0 and $s1 contain the same
value.

I See reading for more variations.

CSci 127 (Hunter) Lecture 11 16 April 2019 30 / 52

Loops & Jumps in Machine Language

Instead of built-in looping structures like for

and while, you create your own loops by
“jumping” to the location in the program.

Can indicate locations by writing labels at the
beginning of a line.

Then give a command to jump to that
location.

Different kinds of jumps:
I Unconditional: j Done will jump to the

address with label Done.
I Branch if Equal: beq $s0 $s1 DoAgain

will jump to the address with label DoAgain
if the registers $s0 and $s1 contain the same
value.

I See reading for more variations.

CSci 127 (Hunter) Lecture 11 16 April 2019 30 / 52

Loops & Jumps in Machine Language

Instead of built-in looping structures like for

and while, you create your own loops by
“jumping” to the location in the program.

Can indicate locations by writing labels at the
beginning of a line.

Then give a command to jump to that
location.

Different kinds of jumps:
I Unconditional: j Done will jump to the

address with label Done.
I Branch if Equal: beq $s0 $s1 DoAgain

will jump to the address with label DoAgain
if the registers $s0 and $s1 contain the same
value.

I See reading for more variations.

CSci 127 (Hunter) Lecture 11 16 April 2019 30 / 52

Loops & Jumps in Machine Language

Instead of built-in looping structures like for

and while, you create your own loops by
“jumping” to the location in the program.

Can indicate locations by writing labels at the
beginning of a line.

Then give a command to jump to that
location.

Different kinds of jumps:

I Unconditional: j Done will jump to the
address with label Done.

I Branch if Equal: beq $s0 $s1 DoAgain

will jump to the address with label DoAgain
if the registers $s0 and $s1 contain the same
value.

I See reading for more variations.

CSci 127 (Hunter) Lecture 11 16 April 2019 30 / 52

Loops & Jumps in Machine Language

Instead of built-in looping structures like for

and while, you create your own loops by
“jumping” to the location in the program.

Can indicate locations by writing labels at the
beginning of a line.

Then give a command to jump to that
location.

Different kinds of jumps:
I Unconditional: j Done will jump to the

address with label Done.

I Branch if Equal: beq $s0 $s1 DoAgain

will jump to the address with label DoAgain
if the registers $s0 and $s1 contain the same
value.

I See reading for more variations.

CSci 127 (Hunter) Lecture 11 16 April 2019 30 / 52

Loops & Jumps in Machine Language

Instead of built-in looping structures like for

and while, you create your own loops by
“jumping” to the location in the program.

Can indicate locations by writing labels at the
beginning of a line.

Then give a command to jump to that
location.

Different kinds of jumps:
I Unconditional: j Done will jump to the

address with label Done.
I Branch if Equal: beq $s0 $s1 DoAgain

will jump to the address with label DoAgain
if the registers $s0 and $s1 contain the same
value.

I See reading for more variations.

CSci 127 (Hunter) Lecture 11 16 April 2019 30 / 52

Loops & Jumps in Machine Language

Instead of built-in looping structures like for

and while, you create your own loops by
“jumping” to the location in the program.

Can indicate locations by writing labels at the
beginning of a line.

Then give a command to jump to that
location.

Different kinds of jumps:
I Unconditional: j Done will jump to the

address with label Done.
I Branch if Equal: beq $s0 $s1 DoAgain

will jump to the address with label DoAgain
if the registers $s0 and $s1 contain the same
value.

I See reading for more variations.

CSci 127 (Hunter) Lecture 11 16 April 2019 30 / 52

Jump Demo

(Demo with WeMIPS)

CSci 127 (Hunter) Lecture 11 16 April 2019 31 / 52

Today’s Topics

Python Recap

Machine Language

Machine Language: Jumps & Loops

Design Patterns: Searching

CS Survey

CSci 127 (Hunter) Lecture 11 16 April 2019 32 / 52

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 11 16 April 2019 33 / 52

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 11 16 April 2019 34 / 52

Design Pattern: Linear Search

Example of linear search.

Start at the beginning of the list.

Look at each item, one-by-one.

Stopping, when found, or the end of
list is reached.

CSci 127 (Hunter) Lecture 11 16 April 2019 35 / 52

Design Pattern: Linear Search

Example of linear search.

Start at the beginning of the list.

Look at each item, one-by-one.

Stopping, when found, or the end of
list is reached.

CSci 127 (Hunter) Lecture 11 16 April 2019 35 / 52

Design Pattern: Linear Search

Example of linear search.

Start at the beginning of the list.

Look at each item, one-by-one.

Stopping, when found, or the end of
list is reached.

CSci 127 (Hunter) Lecture 11 16 April 2019 35 / 52

Design Pattern: Linear Search

Example of linear search.

Start at the beginning of the list.

Look at each item, one-by-one.

Stopping, when found, or the end of
list is reached.

CSci 127 (Hunter) Lecture 11 16 April 2019 35 / 52

Today’s Topics

Python Recap

Machine Language

Machine Language: Jumps & Loops

Design Patterns: Searching

CS Survey

CSci 127 (Hunter) Lecture 11 16 April 2019 36 / 52

CS Survey Talk

careers.google.com

Anna Whitney
(Google)

CSci 127 (Hunter) Lecture 11 16 April 2019 37 / 52

Design Challenge

CSci 127 (Hunter) Lecture 11 16 April 2019 38 / 52

Design Challenge

Possible solutions:

I 7 orders of mixed fruit, or
I 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.

Input: List of items with prices and amount to be spent.

Output: An order that totals to the amount or empty list if none.

Possible algorithms: For each item on the list, divide total by price. If no
remainder, return a list of that item. Repeat with two items, trying 1 of the
first, 2 of the first, etc. Repeat with three items, etc.

“NP-Complete” problem: possible answers can be checked quickly, but not
known how to compute quickly.

CSci 127 (Hunter) Lecture 11 16 April 2019 39 / 52

Design Challenge

Possible solutions:
I 7 orders of mixed fruit, or

I 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.

Input: List of items with prices and amount to be spent.

Output: An order that totals to the amount or empty list if none.

Possible algorithms: For each item on the list, divide total by price. If no
remainder, return a list of that item. Repeat with two items, trying 1 of the
first, 2 of the first, etc. Repeat with three items, etc.

“NP-Complete” problem: possible answers can be checked quickly, but not
known how to compute quickly.

CSci 127 (Hunter) Lecture 11 16 April 2019 39 / 52

Design Challenge

Possible solutions:
I 7 orders of mixed fruit, or
I 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.

Input: List of items with prices and amount to be spent.

Output: An order that totals to the amount or empty list if none.

Possible algorithms: For each item on the list, divide total by price. If no
remainder, return a list of that item. Repeat with two items, trying 1 of the
first, 2 of the first, etc. Repeat with three items, etc.

“NP-Complete” problem: possible answers can be checked quickly, but not
known how to compute quickly.

CSci 127 (Hunter) Lecture 11 16 April 2019 39 / 52

Design Challenge

Possible solutions:
I 7 orders of mixed fruit, or
I 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.

Input: List of items with prices and amount to be spent.

Output: An order that totals to the amount or empty list if none.

Possible algorithms: For each item on the list, divide total by price. If no
remainder, return a list of that item. Repeat with two items, trying 1 of the
first, 2 of the first, etc. Repeat with three items, etc.

“NP-Complete” problem: possible answers can be checked quickly, but not
known how to compute quickly.

CSci 127 (Hunter) Lecture 11 16 April 2019 39 / 52

Design Challenge

Possible solutions:
I 7 orders of mixed fruit, or
I 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.

Input: List of items with prices and amount to be spent.

Output: An order that totals to the amount or empty list if none.

Possible algorithms: For each item on the list, divide total by price. If no
remainder, return a list of that item. Repeat with two items, trying 1 of the
first, 2 of the first, etc. Repeat with three items, etc.

“NP-Complete” problem: possible answers can be checked quickly, but not
known how to compute quickly.

CSci 127 (Hunter) Lecture 11 16 April 2019 39 / 52

Design Challenge

Possible solutions:
I 7 orders of mixed fruit, or
I 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.

Input: List of items with prices and amount to be spent.

Output: An order that totals to the amount or empty list if none.

Possible algorithms: For each item on the list, divide total by price. If no
remainder, return a list of that item. Repeat with two items, trying 1 of the
first, 2 of the first, etc. Repeat with three items, etc.

“NP-Complete” problem: possible answers can be checked quickly, but not
known how to compute quickly.

CSci 127 (Hunter) Lecture 11 16 April 2019 39 / 52

Design Challenge

Possible solutions:
I 7 orders of mixed fruit, or
I 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.

Input: List of items with prices and amount to be spent.

Output: An order that totals to the amount or empty list if none.

Possible algorithms: For each item on the list, divide total by price. If no
remainder, return a list of that item. Repeat with two items, trying 1 of the
first, 2 of the first, etc. Repeat with three items, etc.

“NP-Complete” problem: possible answers can be checked quickly, but not
known how to compute quickly.
CSci 127 (Hunter) Lecture 11 16 April 2019 39 / 52

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 11 16 April 2019 40 / 52

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 11 16 April 2019 40 / 52

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 11 16 April 2019 40 / 52

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 11 16 April 2019 40 / 52

Final Overview: Top-Down Design & APIs
For each question, write only the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

Write a function that takes a string and returns its length.

Write a function that, given a DataFrame, returns the minimal value
in the first column.

Write a function that takes a whole number and returns the
corresponding binary number as a string.

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

(Hint: highlight key words, make list of inputs, list of outputs, then put
together.)

CSci 127 (Hunter) Lecture 11 16 April 2019 41 / 52

Final Overview: Top-Down Design & APIs
For each question, write only the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

Write a function that takes a string and returns its length.

Write a function that, given a DataFrame, returns the minimal value
in the first column.

Write a function that takes a whole number and returns the
corresponding binary number as a string.

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

(Hint: highlight key words, make list of inputs, list of outputs, then put
together.)

CSci 127 (Hunter) Lecture 11 16 April 2019 41 / 52

Final Overview: Top-Down Design & APIs
For each question, write only the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

Write a function that takes a string and returns its length.

Write a function that, given a DataFrame, returns the minimal value
in the first column.

Write a function that takes a whole number and returns the
corresponding binary number as a string.

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

(Hint: highlight key words, make list of inputs, list of outputs, then put
together.)

CSci 127 (Hunter) Lecture 11 16 April 2019 41 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 11 16 April 2019 42 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 11 16 April 2019 42 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg)

lbs = kg * 2.2

return(lbs)

CSci 127 (Hunter) Lecture 11 16 April 2019 43 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 11 16 April 2019 44 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 11 16 April 2019 44 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

length = len(str)

return(length)

CSci 127 (Hunter) Lecture 11 16 April 2019 45 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 11 16 April 2019 46 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 11 16 April 2019 46 / 52

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

min = df[’Manhattan’].min()

return(min)

CSci 127 (Hunter) Lecture 11 16 April 2019 47 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 11 16 April 2019 48 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 11 16 April 2019 48 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

binStr = ""

while (num > 0):

#Divide by 2, and add the remainder to the string

r = num %2

binString = str(r) + binStr

num = num / 2

return(binStr)

CSci 127 (Hunter) Lecture 11 16 April 2019 49 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 11 16 April 2019 50 / 52

Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 11 16 April 2019 50 / 52

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

(Some formula for payment)

return(payment)

CSci 127 (Hunter) Lecture 11 16 April 2019 51 / 52

Writing Boards

Return writing boards as you leave...

CSci 127 (Hunter) Lecture 11 16 April 2019 52 / 52

