
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 9 10 April 2018 1 / 29



Announcements

Welcome back!

Classes on Wednesday, 11 April 2018 follows
Friday schedule.

End of lecture: quiz/final exam review.

CSci 127 (Hunter) Lecture 9 10 April 2018 2 / 29



Announcements

Welcome back!

Classes on Wednesday, 11 April 2018 follows
Friday schedule.

End of lecture: quiz/final exam review.

CSci 127 (Hunter) Lecture 9 10 April 2018 2 / 29



Announcements

Welcome back!

Classes on Wednesday, 11 April 2018 follows
Friday schedule.

End of lecture: quiz/final exam review.

CSci 127 (Hunter) Lecture 9 10 April 2018 2 / 29



Today’s Topics

Recap: Parameters & Functions

Top-down Design

Mapping GIS Data

Code Reuse

Final Exam Overview

CSci 127 (Hunter) Lecture 9 10 April 2018 3 / 29



Recap: Input Parameters & Return Values

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 9 10 April 2018 4 / 29



Recap: Input Parameters & Return Values

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 9 10 April 2018 4 / 29



Recap: Input Parameters & Return Values

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 9 10 April 2018 4 / 29



Recap: Input Parameters & Return Values

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 9 10 April 2018 4 / 29



Recap: Input Parameters & Return Values

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 9 10 April 2018 4 / 29



In Pairs or Triples:

What are the formal parameters? What is returned?

CSci 127 (Hunter) Lecture 9 10 April 2018 5 / 29



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 9 10 April 2018 6 / 29



In Pairs or Triples:

Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 10 April 2018 7 / 29



Group Work: Fill in Missing Pieces

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 10 April 2018 8 / 29



Group Work: Fill in Missing Pieces

1 Write import statements.

import turtle

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 10 April 2018 9 / 29



Third Part: Fill in Missing Pieces

1 Write import statements.

2 Write down new function names and inputs.

import turtle

def setUp():

#FILL IN

def getInput():

#FILL IN

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 10 April 2018 10 / 29



Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

import turtle

def setUp():

#FILL IN

return(newTurtle)

def getInput():

#FILL IN

return(x,y)

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 10 April 2018 11 / 29



Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

4 Fill in body of functions.

import turtle

def setUp():

newTurtle = turtle.Turtle()
newTurtle.penup()
return(newTurtle)

def getInput():

x = int(input(’Enter x: ’))
y = int(input(’Enter y: ’))
return(x,y)

def markLocation(t,x,y):

t.goto(x,y)
t.stamp()

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.CSci 127 (Hunter) Lecture 9 10 April 2018 12 / 29



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 10 April 2018 13 / 29



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 10 April 2018 13 / 29



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 10 April 2018 13 / 29



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 10 April 2018 13 / 29



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 10 April 2018 13 / 29



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 10 April 2018 13 / 29



In Pairs or Triples:

http://koalastothemax.com

Top-down design puzzle:

I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 9 10 April 2018 14 / 29



Demo

CSci 127 (Hunter) Lecture 9 10 April 2018 15 / 29



Demo

CSci 127 (Hunter) Lecture 9 10 April 2018 15 / 29



Demo

CSci 127 (Hunter) Lecture 9 10 April 2018 15 / 29



Demo

CSci 127 (Hunter) Lecture 9 10 April 2018 16 / 29



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each region.
I Set each region to its average.

(Demo program from github.)

CSci 127 (Hunter) Lecture 9 10 April 2018 17 / 29



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each region.
I Set each region to its average.

(Demo program from github.)

CSci 127 (Hunter) Lecture 9 10 April 2018 17 / 29



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:

I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each region.
I Set each region to its average.

(Demo program from github.)

CSci 127 (Hunter) Lecture 9 10 April 2018 17 / 29



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,

I Divide the region into 4 quarters.
I Average the color of each region.
I Set each region to its average.

(Demo program from github.)

CSci 127 (Hunter) Lecture 9 10 April 2018 17 / 29



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.

I Average the color of each region.
I Set each region to its average.

(Demo program from github.)

CSci 127 (Hunter) Lecture 9 10 April 2018 17 / 29



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each region.

I Set each region to its average.

(Demo program from github.)

CSci 127 (Hunter) Lecture 9 10 April 2018 17 / 29



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each region.
I Set each region to its average.

(Demo program from github.)

CSci 127 (Hunter) Lecture 9 10 April 2018 17 / 29



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each region.
I Set each region to its average.

(Demo program from github.)

CSci 127 (Hunter) Lecture 9 10 April 2018 17 / 29



Folium

CSci 127 (Hunter) Lecture 9 10 April 2018 18 / 29



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 10 April 2018 19 / 29



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 10 April 2018 19 / 29



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 10 April 2018 19 / 29



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 10 April 2018 19 / 29



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 10 April 2018 19 / 29



Demo

(Map created by Folium.)

CSci 127 (Hunter) Lecture 9 10 April 2018 20 / 29



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 10 April 2018 21 / 29



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 10 April 2018 21 / 29



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 10 April 2018 21 / 29



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 10 April 2018 21 / 29



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 10 April 2018 21 / 29



Demo

(Python program using Folium.)

CSci 127 (Hunter) Lecture 9 10 April 2018 22 / 29



In Pairs of Triples

Predict which each line of code does:

(example from Folium documentation)

CSci 127 (Hunter) Lecture 9 10 April 2018 23 / 29



In Pairs or Triples:

(Python Tutor)

CSci 127 (Hunter) Lecture 9 10 April 2018 24 / 29



In Pairs or Triples:

(Python Tutor)

CSci 127 (Hunter) Lecture 9 10 April 2018 24 / 29



Code Reuse

Goal: design your code to be reused.

Example: code to make maps of CUNY locations from CSV files.

I Same idea can be used for mapping traffic collisions data.
I Or recycling bins, or wifi locations, or 311 calls,...
I Small wrinkle: some call the columns “Latitude”, while others use

“LATITUDE”, “latitude”, or “lat”.
I Solution: ask user for column names and pass as parameters.

CSci 127 (Hunter) Lecture 9 10 April 2018 25 / 29



Code Reuse

Goal: design your code to be reused.

Example: code to make maps of CUNY locations from CSV files.

I Same idea can be used for mapping traffic collisions data.
I Or recycling bins, or wifi locations, or 311 calls,...
I Small wrinkle: some call the columns “Latitude”, while others use

“LATITUDE”, “latitude”, or “lat”.
I Solution: ask user for column names and pass as parameters.

CSci 127 (Hunter) Lecture 9 10 April 2018 25 / 29



Code Reuse

Goal: design your code to be reused.

Example: code to make maps of CUNY locations from CSV files.

I Same idea can be used for mapping traffic collisions data.

I Or recycling bins, or wifi locations, or 311 calls,...
I Small wrinkle: some call the columns “Latitude”, while others use

“LATITUDE”, “latitude”, or “lat”.
I Solution: ask user for column names and pass as parameters.

CSci 127 (Hunter) Lecture 9 10 April 2018 25 / 29



Code Reuse

Goal: design your code to be reused.

Example: code to make maps of CUNY locations from CSV files.

I Same idea can be used for mapping traffic collisions data.
I Or recycling bins, or wifi locations, or 311 calls,...

I Small wrinkle: some call the columns “Latitude”, while others use
“LATITUDE”, “latitude”, or “lat”.

I Solution: ask user for column names and pass as parameters.

CSci 127 (Hunter) Lecture 9 10 April 2018 25 / 29



Code Reuse

Goal: design your code to be reused.

Example: code to make maps of CUNY locations from CSV files.

I Same idea can be used for mapping traffic collisions data.
I Or recycling bins, or wifi locations, or 311 calls,...
I Small wrinkle: some call the columns “Latitude”, while others use

“LATITUDE”, “latitude”, or “lat”.

I Solution: ask user for column names and pass as parameters.

CSci 127 (Hunter) Lecture 9 10 April 2018 25 / 29



Code Reuse

Goal: design your code to be reused.

Example: code to make maps of CUNY locations from CSV files.

I Same idea can be used for mapping traffic collisions data.
I Or recycling bins, or wifi locations, or 311 calls,...
I Small wrinkle: some call the columns “Latitude”, while others use

“LATITUDE”, “latitude”, or “lat”.
I Solution: ask user for column names and pass as parameters.

CSci 127 (Hunter) Lecture 9 10 April 2018 25 / 29



Code Reuse

CSci 127 (Hunter) Lecture 9 10 April 2018 26 / 29



In Pairs or Triples:

What does this code do?

CSci 127 (Hunter) Lecture 9 10 April 2018 27 / 29



Recap: Top-down Design & Folium

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

CSci 127 (Hunter) Lecture 9 10 April 2018 28 / 29



Recap: Top-down Design & Folium

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

CSci 127 (Hunter) Lecture 9 10 April 2018 28 / 29



Recap: Top-down Design & Folium

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

CSci 127 (Hunter) Lecture 9 10 April 2018 28 / 29



Recap: Top-down Design & Folium

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

CSci 127 (Hunter) Lecture 9 10 April 2018 28 / 29



Recap: Top-down Design & Folium

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

CSci 127 (Hunter) Lecture 9 10 April 2018 28 / 29



Practice Quiz & Final Questions

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 9 10 April 2018 29 / 29



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 9 10 April 2018 29 / 29



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 9 10 April 2018 29 / 29



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 9 10 April 2018 29 / 29



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 9 10 April 2018 29 / 29


