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Announcements

o Next Week: OpenData Showcase: 28 March,
4:30-6pm (rescheduled due to snow).

o Each lecture includes a survey of computing
research and tech in NYC.

Today: Mitsue Iwata
NYC OpenData Initiative
Mayor’s Office

o F = DA
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From lecture slips & recitation sections.
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Frequently Asked Questions

From lecture slips & recitation sections.

Qo

o

| didn’t get the tree-based networks from last time!
No worries— we'll talk about it first.

Why do we have design questions (like the tree-based one)?

The design questions cover two of the course’s learning objectives: exposure to

advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

Why is the schedule of classes and quizzes so crazy?
» Lots of holidays has “our week” now starting on Wednesday.
Spring Break is Friday, 30 March to Sunday, 8 April.

>
» Since we'll miss 2 Fridays, 11 April will follow Friday schedule.
» After spring break, “our week” will start on Thursdays.

I'd like to do more. Any suggestions?

» Hunter has an ACM Chapter & Women in CS clubs.

» Tech Meetups: focused on just about everything tech
(both via CUNY and city-wide).

» Internships: https://jobs.lever.co/cunyinternships
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Today's Topics

0 Recap: Tree-based Networks
o Introduction to Functions
o NYC Open Data
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Recap: Tree-Based Networks

L

Haekel List et al., 2013 Network Highlighted Tree

o Evolutionary history can be represented by a tree.
o Events like hybridization can cause non-tree-like networks.

o Is there a tree on which the network is based?
That is, can you start with a tree and only add lines between the

original tree edges.
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Tree-based Networks: Lecture Slip
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Tree-based Networks: Lecture Slip

List et al., 2013

When is the network just a tree with edges joining its branches?
Input: A network.

Output: True if the network is tree-based, and false otherwise.

© © o0 o

Design:

» Need paths that connect the “root” to the leaves (with no cycles).
» Start by highlighting all edges that must be part of the tree.

» Then figure out which edges can't be there and mark those.

» What's left: a bunch of choices on which edge to include in the tree
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Tree-based Networks: Lecture Slip

List et al., 2013

When is the network just a tree with edges joining its branches?
Input: A network.

Output: True if the network is tree-based, and false otherwise.

© © o0 o

Design:

Need paths that connect the “root” to the leaves (with no cycles).
Start by highlighting all edges that must be part of the tree.

Then figure out which edges can’t be there and mark those.

What's left: a bunch of choices on which edge to include in the tree
Becomes a logic puzzle: a logical expression that can be solved.

vy vy vy VvYyy
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Example: Tree-Based Networks

o First, highlight what must/must
not be there.
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Example: Tree-Based Networks

o First, highlight what must/must
not be there.

o Then, what's left: can have edge
x if edge y isn't there (and vice
versa):

>
e

Q>
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Example: Tree-Based Networks

o First, highlight what must/must
not be there.

o Then, what's left: can have edge
x if edge y isn't there (and vice
versa):

(x and not y) or (not x and y)

>
e

] = = = DQAC
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Example: Tree-Based Networks

o First, highlight what must/must
not be there.

o Then, what's left: can have edge
x if edge y isn't there (and vice
versa):

(x and not y) or (not x and y)

o Solve the resulting logical puzzle.

>
e

] = = = DQAC
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Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here

#Date: October 2017
#This program, uses functions,

# says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)
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“Hello, World!" with Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

# says hello to the world!
def main(Q):
print("Hello, World!™)
if __name__ == "__main__":
main()
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Python Tutor

#Name: your name here
#Date: October 2017
#This program, uses functions,

# says hello to the world!

def mainQ): (Demo with pythonTutor)
print("Hello, World!™)

if __name__ == "__main__":
main()

o & = =
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In Pairs or Triples:

1. Predict what the code will do: 2. Fill in the missing code:

def monthString(monthNum):

Takes as input a number, monthNum, and
returns the corresponding month name as a string.

def totalWithTax(food,tip): Example: monthString(1) returns "January".
? ) Assumes that input is an integer ranging from 1 to

total = @

tax = 0.0875

total = food + food * tax monthString = ""
total = total + tip

return(total)

### FILL IN YOUR CODE HERE #i#
### Other than your name above, ###
### this is the only section #i#
### you change in this program. ###

lunch = float(input('Enter lunch total: '))
1Tip = float(input('Enter lunch tip:' ))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

return(monthString)
dinner= float(input('Enter dinner total: ')) )
dTip = float(input('Enter dinner tip:' )) def mainQy:
dTotal - tutalWithTax(dinner‘, dT'i.p) n = int(input('Enter the number of the month: '))

. . A mString = monthString(n)
print('Dinner total is', dTotal) print('The month is', mString)

o F = = DA
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Python Tutor

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: ')) .
1Tip = float(input('Enter lunch tip:' )) D h
1Total - totalWithTax(lunch, 1Tip) ( emo wit PYthonTUtor
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: ')
dTip = float(input('Enter dinner tip:' )
dTotal - totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
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IDLE

def monthString(nonthNum):

Takes as input a number, monthium, and

Feturns the corresponding nonth name as a string
Exanple: monthString(1) returns “January

Assunes that input is an integer ranging from 1 to 12

ronthString =

o (Demo with IDLE)
s

def main():
n = intCinput('Enter the number of the month: '))

mString = ronthString(n)
printC'The ronth is', mString)

DA
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In Pairs or Triples:

Predict what the code will do:

#(CSci 127 Teaching Staff
#Triangles two ways...
import turtle

def setUp(t, dist, col):
t.penup(Q)
t.forward(dist)
t.pendown()
t.color(col)

def nestedTriangle(t, side):
if side > 10:
for i in range(3):
t.forward(side)
t.left(120)
nestedTriangle(t, side/2)

def fractalTriangle(t, side):
if side > 10:
for i in range(3):
t.forward(side)
t.left(120)

fractalTriangle(t, side/2)

CSci 127 (Hunter)

[def main():

t

if _

Lecture 7

nessa = turtle.Turtle()
setUp(nessa, 100, "violet")
nestedTriangle(nessa, 160)

frank = turtle.Turtle()
setUp(frank, -100, "red")
fractalTriangle(frank, 160)

_name__ == "__main__":

main()
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IDLE

#CSci 127 Teaching Staff
#Triangles two ways. ..
import turtle

def setUp(t, dist, col):
t.penup()
t. forward(dist)
t.pendown()
t.color(col)

def nestedTriangle(t, side): .
if side > 10:
220 e (Demo with IDLE)
t.forward(side)
t.1eft(120)
nestedTriangle(t, side/2)

def fractalTriangle(t, side):
f side > 10:
for i in range(3):
t. forward(side)
t.1eft(120)

fractalTriangleCt, side/2)

] = =
CSci 127 (Hunter) Lecture 7
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Recap: Functions

@ Functions are a way to break code into pieces,
#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
# says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)
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Recap: Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

#

if

says hello to the world!

F mainQ:

print("Hello, World!™)

__name__ == "__main__":
main()

CSci 127 (Hunter)

@ Functions are a way to break code into pieces,
that can be easily reused.

@ You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

@ Can write, or define your own functions,
which are stored, until invoked or called.

Lecture 7 21 March 2018 16 / 26



In Pairs or Triples:

Predict what the code will do:

import matplotlib.pyplot as plt

import numpy as np

img = plt.imread('csBridge.png")
' plt.imshow(img)

plt.show()

height = img.shape[@]

width = img.shape[1]

motto = "Mihi Cura Futuri'
1 = len(motto)
for 1 in range(l):

print(motto[i]) img2 = img[:height/2, :width/2]
for j in range(l-1,-1,-1): plt. imshow(img2)
print(motto[j]) )

plt.show()

CSci 127 (Hunter) Lecture 7 21 March 2018 17 /26



Python Tutor

motto = "Mihi Cura Futuri"
1 = len(motto)
for i in range(l): .
print(motto[i]) (Demo Wlth pythonTutor)
for j in range(l-1,-1,-1):
print(motto[j1)
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Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

.
"(;‘V*

o Freely available source of data
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Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers
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Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.
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o Maintained by the NYC data analytics team.
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Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers
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Accessing Structured Data: NYC Open Data

Open Data for Qa .

®
All New Yorkers S

i
#

Search Open Data for things like 311, Buildings, Crime¢ ' l ;‘ N7_ ‘

o Freely available source of data.
o Maintained by the NYC data analytics team.
o We will use several different ones for this class.

o Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.
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Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

Freely available source of data.
Maintained by the NYC data analytics team.
We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

©

Lab 7 covers accessing and downloading NYC OpenData datasets.
=} (=) = E E DA
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Structured Data

pandas
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o Common to have data structured in a spread sheet
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o Common to have data structured in a spread sheet.

o The text file version is called CSV for comma separated values.
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o Common to have data structured in a spread sheet.

o The text file version is called CSV for comma separated values.

o Each row is a line; columns are separated by commas.
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Structured Data

pandas

) e

e

o Common to have data structured in a spread sheet.

o The text file version is called CSV for comma separated values.
o Each row is a line; columns are separated by commas.
o We will use the popular Python Data Analysis Library (Pandas).
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Structured Data

© © o o

©

pandas

) e

e

Common to have data structured in a spread sheet.

The text file version is called CSV for comma separated values.
Each row is a line; columns are separated by commas.

We will use the popular Python Data Analysis Library (Pandas).
To use, add to the top of your file:

import pandas as pd
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Structured Data

© © o o

©

panda

) e [

e

Common to have data structured in a spread sheet.

The text file version is called CSV for comma separated values.
Each row is a line; columns are separated by commas.

We will use the popular Python Data Analysis Library (Pandas).
To use, add to the top of your file:

import pandas as pd

To read in a CSV file:
myVar = pd.read_csv("myFile.csv")
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Example: Reading in CSV Files

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111
Tirol Canens afior the consoiidntion of the'tive boressterrsir

‘{c«:x,Munhuun,Brwwklyn.Vuwn:,szunx,ﬂubcn Toland,Total

27,49447

1890, 1441216, 838547, 87050, 88908, 51693, 2507414
1900, 1850093, 1166583, 152959, 200507 7021, 3437202

1500, 1428285, 2830936, 1091375, 168972, xsil:x Toniess
1990, 1497536, 2300664, 1951598, 1203789, 3709777322564
2010, 1585873, 2504700, 2230772, 1365109, 468730, 8175133
2015, 1644510, 2636735, 2339150, 1455444, 474556, 8550405

nycHistPop.csv

In Lab 6
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Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

Firol Canens afior the consoiidntion of the'Tive boresdherrs

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111

Teax, Hanhattan, Brooklyn, Quoens, Bronx, Staten Tsland,Total
el T

179033131, 4549, 6155 ,1701, 3827 49447
s ses1s srie, tsu nss et

90 scsrsae aso0sedriasison,aosTes 37800y Tszases

2070,1383873, 2504700, 2230722, 1385109, 468730, 0175133
D06, 1e4as10, 2636758, 2390150, 1455404, 474538, 8550408

nycHistPop.csv

In Lab 6
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Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111
fior the consoiantion of the'Eive boressherrrr s

Teax, Hanhattan, Brooklyn, Quoens, Bronx, Staten Tsland,Total
1698,4937,2017,,,727, 7651

2010,1585873, 2504700, 2230722, 1365109, &
T0is,Seass1a, 2656798, 1939150, 45841, 74558, 8550108

nycHistPop.csv

In Lab 6
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Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

Sourca: neeps://on.wixipedia.org/uiki /Denogeaphice_of Now_York
nous aftor the consolidation of the Eive boroughe,,,...

s e pl t.show ()

pop.plot(x="Year")

nycHistPop.csv

In Lab 6
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Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

n-iipeats-org/uixi/pemopcaphicn of_tow York cio
Firol Canens aftor the consoiidation of the'five boresshe.

&éuil«,n::ﬁ Brockiym.Quoens Brons, Staten Toland,Toiel plt .show ( )

pop.plot(x="Year")

9000000
:3:3 1123532 Bus«z o, — Manhattan
8000000 —— Brooklyn
— Queens
Bronx y
7000000 Staten Island
~—— Total
2010, 1585873, 2504700, 2230722, 1385108, 468730, 8175133 6000000
015, Leeis Lo, 2606735, 2033130, 458A0S 47455 0350008
5000000
nycHistPop.csv 4000000
In Lab 6 3000000 /
2000000
1000000
0 —
1698 1820 1870 1920 1970 2015

Year

[m] = = =
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Series in Pandas

o Series can store a column or row of a
DataFrame.
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Series in Pandas

o Series can store a column or row of a
DataFrame.

o Example: pop["Manhattan"] is the Series
corresponding to the column of Manhattan
data.
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Series in Pandas

o Series can store a column or row of a
DataFrame.

o Example: pop["Manhattan"] is the Series
corresponding to the column of Manhattan
data.

o Example:
print ("The largest number living in
the Bronx is", pop["Bronx"].max())
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CS Survey: Mitsue lwata, Data Analytics

Open Data for

All New Yorkers

©

Search Open Data for things like 311, Buildings, Crime¢

' 1} W *
o Project Manager, NYC Mayor’'s Office of Data Analytics

CSci 127 (Hunter)

Lecture 7

A
21 March 2018

23 / 26



CS Survey: Mitsue lwata, Data Analytics

Open Data for
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CS Survey: Mitsue lwata, Data Analytics

Open Data for

All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

o Project Manager, NYC Mayor’'s Office of Data Analytics
o Hunter College, Class of 2014.

o MS, Computational Analysis & Public Policy,
University of Chicago, 2016.
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Design Question
e

@ ©
o, G q
; 9

@

Q & o Q

Qe Q

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
(Design only the pseudocode.)
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
How to approach this:

o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26



Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.

o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

® Save the location with the smallest distance.
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Recap

@ On lecture slip, write down a topic you
wish we had spent more time (and why)
Open Data for
All New Yorkers
e " -
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U
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Recap

@ On lecture slip, write down a topic you
wish we had spent more time (and why).

Open Data for
All New Yorkers

o Functions are a way to break code into
pieces, that can be easily reused.

e " :
v
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Recap

@ On lecture slip, write down a topic you
wish we had spent more time (and why).

Open Data for
All New Yorkers

o Functions are a way to break code into
pieces, that can be easily reused.

@ You call or invoke a function by typing
its name, followed by any inputs,
surrounded by parenthesis:

= =) E E E 9ace
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Recap

@ On lecture slip, write down a topic you
wish we had spent more time (and why).

Open Data for
All New Yorkers

o Functions are a way to break code into
pieces, that can be easily reused.

@ You call or invoke a function by typing
its name, followed by any inputs,
surrounded by parenthesis:

Example: print("Hello", "World")

= =) E E E 9ace
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Recap

o On lecture slip, write down a topic you

wish we had spent more time (and why).
Open Data for = . .
All New Yorkers I o Functions are a way to break code into

pieces, that can be easily reused.

@ You call or invoke a function by typing

Qe " its name, followed by any inputs,
¢ e © surrounded by parenthesis:
¢ e Example: print("Hello", "World")
Q 99 e 99 @ o Can write, or define your own functions,
% :

= =) E E E 9ace
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Recap

o On lecture slip, write down a topic you
wish we had spent more time (and why).

Open Data for (S T . .

All New Yorkers @ 2. o Functions are a way to break code into

e pieces, that can be easily reused.

"

A

@ You call or invoke a function by typing

Qe " its name, followed by any inputs,
¢ e © surrounded by parenthesis:
Q & Example: print("Hello", "World")
Q % e 99 @ o Can write, or define your own functions,
A Q which are stored, until invoked or called.
Q >

o Accessing Formatted Data: NYC
OpenData

= =) E E E 9ace
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