CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

hunter.cuny.edu/csci
o
Lecture 7

DAy
21 March 2018 1/26

Announcements

o Next Week: OpenData Showcase: 28 March,
4:30-6pm (rescheduled due to snow).

o Each lecture includes a survey of computing
research and tech in NYC.

Today: Mitsue Iwata
NYC OpenData Initiative
Mayor’s Office

o F = DA

CSci 127 (Hunter) Lecture 7 21 March 2018 2 /26

Frequently Asked Questions

From lecture slips & recitation sections.

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions

From lecture slips & recitation sections.

Q@ | didn't get the tree-based networks from last time!

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions

From lecture slips & recitation sections.

Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions

From lecture slips & recitation sections.

Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions

From lecture slips & recitation sections.
Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions

From lecture slips & recitation sections.
Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

O Please, more time on circuits/logical expressions/truth tables/decisions!

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions
From lecture slips & recitation sections.
Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

O Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

@ Why is the schedule of classes and quizzes so crazy?

CSci 127 (Hunter) Lecture 7 21 March 2018

3/26

Frequently Asked Questions

From lecture slips & recitation sections.
Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

O Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

@ Why is the schedule of classes and quizzes so crazy?

» Lots of holidays has “our week” now starting on Wednesday.

CSci 127 (Hunter) Lecture 7 21 March 2018

3/26

Frequently Asked Questions
From lecture slips & recitation sections.
Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

O Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

@ Why is the schedule of classes and quizzes so crazy?

» Lots of holidays has “our week” now starting on Wednesday.
» Spring Break is Friday, 30 March to Sunday, 8 April.

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions

From lecture slips & recitation sections.
Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

O Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

@ Why is the schedule of classes and quizzes so crazy?

» Lots of holidays has “our week” now starting on Wednesday.
» Spring Break is Friday, 30 March to Sunday, 8 April.
» Since we'll miss 2 Fridays, 11 April will follow Friday schedule.

CSci 127 (Hunter) Lecture 7 21 March 2018

3/26

Frequently Asked Questions
From lecture slips & recitation sections.
Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

O Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.
@ Why is the schedule of classes and quizzes so crazy?
» Lots of holidays has “our week” now starting on Wednesday.
» Spring Break is Friday, 30 March to Sunday, 8 April.
» Since we'll miss 2 Fridays, 11 April will follow Friday schedule.
» After spring break, “our week” will start on Thursdays.

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions

From lecture slips & recitation sections.

Qo

o

| didn’t get the tree-based networks from last time!
No worries— we'll talk about it first.

Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

Why is the schedule of classes and quizzes so crazy?

» Lots of holidays has “our week” now starting on Wednesday.
> Spring Break is Friday, 30 March to Sunday, 8 April.

» Since we'll miss 2 Fridays, 11 April will follow Friday schedule.
» After spring break, “our week” will start on Thursdays.

I'd like to do more. Any suggestions?

CSci 127 (Hunter) Lecture 7 21 March 2018

3/26

Frequently Asked Questions

From lecture slips & recitation sections.

Qo

o

| didn’t get the tree-based networks from last time!
No worries— we'll talk about it first.

Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

Why is the schedule of classes and quizzes so crazy?

» Lots of holidays has “our week” now starting on Wednesday.
» Spring Break is Friday, 30 March to Sunday, 8 April.
» Since we'll miss 2 Fridays, 11 April will follow Friday schedule.
» After spring break, “our week” will start on Thursdays.

I'd like to do more. Any suggestions?

» Hunter has an ACM Chapter & Women in CS clubs.

CSci 127 (Hunter) Lecture 7 21 March 2018

3/26

Frequently Asked Questions

From lecture slips & recitation sections.

Q@ | didn't get the tree-based networks from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the tree-based one)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

O Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

@ Why is the schedule of classes and quizzes so crazy?

» Lots of holidays has “our week” now starting on Wednesday.
> Spring Break is Friday, 30 March to Sunday, 8 April.

» Since we'll miss 2 Fridays, 11 April will follow Friday schedule.
» After spring break, “our week” will start on Thursdays.

@ I'd like to do more. Any suggestions?

» Hunter has an ACM Chapter & Women in CS clubs.
» Tech Meetups: focused on just about everything tech
(both via CUNY and city-wide).

CSci 127 (Hunter) Lecture 7 21 March 2018 3/26

Frequently Asked Questions

From lecture slips & recitation sections.

Qo

o

| didn’t get the tree-based networks from last time!
No worries— we'll talk about it first.

Why do we have design questions (like the tree-based one)?

The design questions cover two of the course’s learning objectives: exposure to

advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

Why is the schedule of classes and quizzes so crazy?
» Lots of holidays has “our week” now starting on Wednesday.
Spring Break is Friday, 30 March to Sunday, 8 April.

>
» Since we'll miss 2 Fridays, 11 April will follow Friday schedule.
» After spring break, “our week” will start on Thursdays.

I'd like to do more. Any suggestions?

» Hunter has an ACM Chapter & Women in CS clubs.

» Tech Meetups: focused on just about everything tech
(both via CUNY and city-wide).

» Internships: https://jobs.lever.co/cunyinternships

CSci 127 (Hunter) Lecture 7 21 March 2018

3/26

Today's Topics

0 Recap: Tree-based Networks
o Introduction to Functions
o NYC Open Data

CSci 127 (Hunter)

Lecture 7

D
21 March 2018 4 /26

Recap: Tree-Based Networks

Haekel

List et al., 2013

Network

Highlighted Tree

CSci 127 (Hunter) Lecture 7

21 March 2018

5/ 26

Recap: Tree-Based Networks

Haekel

List et al., 2013

Network
o Evolutionary history can be represented by a tree.

Highlighted Tree

CSci 127 (Hunter)

Lecture 7

21 March 2018

5/ 26

Recap: Tree-Based Networks

Haekel

List et al., 2013

Network
o Evolutionary history can be represented by a tree.

Highlighted Tree
o Events like hybridization can cause non-tree-like networks.
CSci 127 (Hunter)

Lecture 7

21 March 2018

5/ 26

Recap: Tree-Based Networks

L

Haekel List et al., 2013 Network Highlighted Tree

o Evolutionary history can be represented by a tree.
o Events like hybridization can cause non-tree-like networks.

o Is there a tree on which the network is based?
That is, can you start with a tree and only add lines between the

original tree edges.

CSci 127 (Hunter) Lecture 7 21 March 2018 5/26

Tree-based Networks: Lecture Slip

List et al., 2013

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Tree-based Networks: Lecture Slip

List et al., 2013

o When is the network just a tree with edges joining its branches?

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Tree-based Networks: Lecture Slip

List et al., 2013

o When is the network just a tree with edges joining its branches?

o Input: A network.

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Tree-based Networks: Lecture Slip

List et al., 2013

o When is the network just a tree with edges joining its branches?
o Input: A network.

o Qutput: True if the network is tree-based, and false otherwise.

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Tree-based Networks: Lecture Slip

List et al., 2013

o When is the network just a tree with edges joining its branches?
o Input: A network.
o Qutput: True if the network is tree-based, and false otherwise.

o Design:

» Need paths that connect the “root” to the leaves (with no cycles).

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Tree-based Networks: Lecture Slip

List et al., 2013

o When is the network just a tree with edges joining its branches?
o Input: A network.
o Qutput: True if the network is tree-based, and false otherwise.

o Design:

» Need paths that connect the “root” to the leaves (with no cycles).
» Start by highlighting all edges that must be part of the tree.

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Tree-based Networks: Lecture Slip

List et al., 2013

o When is the network just a tree with edges joining its branches?
o Input: A network.

o Qutput: True if the network is tree-based, and false otherwise.
o Design:

» Need paths that connect the “root” to the leaves (with no cycles).
» Start by highlighting all edges that must be part of the tree.
» Then figure out which edges can't be there and mark those.

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Tree-based Networks: Lecture Slip

List et al., 2013

When is the network just a tree with edges joining its branches?
Input: A network.

Output: True if the network is tree-based, and false otherwise.

© © o0 o

Design:

» Need paths that connect the “root” to the leaves (with no cycles).
» Start by highlighting all edges that must be part of the tree.

» Then figure out which edges can't be there and mark those.

» What's left: a bunch of choices on which edge to include in the tree

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Tree-based Networks: Lecture Slip

List et al., 2013

When is the network just a tree with edges joining its branches?
Input: A network.

Output: True if the network is tree-based, and false otherwise.

© © o0 o

Design:

Need paths that connect the “root” to the leaves (with no cycles).
Start by highlighting all edges that must be part of the tree.

Then figure out which edges can’t be there and mark those.

What's left: a bunch of choices on which edge to include in the tree
Becomes a logic puzzle: a logical expression that can be solved.

vy vy vy VvYyy

CSci 127 (Hunter) Lecture 7 21 March 2018 6 /26

Example: Tree-Based Networks

CSci 127 (Hunter) Lecture 7 21 March 2018 7 /26

Example: Tree-Based Networks

CSci 127 (Hunter) Lecture 7 21 March 2018 7 /26

Example: Tree-Based Networks

CSci 127 (Hunter) Lecture 7 21 March 2018 7 /26

Example: Tree-Based Networks

CSci 127 (Hunter)

Lecture 7

21 March 2018

7/26

Example: Tree-Based Networks

A
A\

e

CSci 127 (Hunter)

Lecture 7

Example: Tree-Based Networks

e
e

CSci 127 (Hunter)

Lecture 7

21 March 2018

D

7/26

Example: Tree-Based Networks

>
=>>2>

CSci 127 (Hunter)

Lecture 7

21 March 2018

D

7/26

Example: Tree-Based Networks

o First, highlight what must/must
not be there.

>
=>>2>

CSci 127 (Hunter)

] = =
Lecture 7

21 March 2018

D

7/26

Example: Tree-Based Networks

o First, highlight what must/must
not be there.

o Then, what's left: can have edge
x if edge y isn't there (and vice
versa):

>
e

Q>

=}) = E DQAC
CSci 127 (Hunter) Lecture 7 21 March 2018 7 /26

Example: Tree-Based Networks

o First, highlight what must/must
not be there.

o Then, what's left: can have edge
x if edge y isn't there (and vice
versa):

(x and not y) or (not x and y)

>
e

] = = = DQAC
CSci 127 (Hunter) Lecture 7 21 March 2018 7 /26

Example: Tree-Based Networks

o First, highlight what must/must
not be there.

o Then, what's left: can have edge
x if edge y isn't there (and vice
versa):

(x and not y) or (not x and y)

o Solve the resulting logical puzzle.

>
e

] = = = DQAC
CSci 127 (Hunter) Lecture 7 21 March 2018 7 /26

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here

#Date: October 2017
#This program, uses functions,

says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 21 March 2018 8 /26

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R

#This program, uses functions, organlzed with functions.

says hello to the world!

def mainQ):

print("Hello, World!™)

if __name__ == "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 21 March 2018 8 /26

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here O Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
def mainQ):
print("Hello, World!™)

if __name__ == "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 21 March 2018 8 /26

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here O Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
The opening function is often called main()

def mainQ):

print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:

mainQ)

CSci 127 (Hunter) Lecture 7 21 March 2018 8 /26

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
The opening function is often called main()

def mainQ):

print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:

main© Example: print("Hello", "World")

CSci 127 (Hunter) Lecture 7 21 March 2018 8 /26

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
F mainQ:
print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:
main© Example: print("Hello", "World")

@ Can write, or define your own functions,

CSci 127 (Hunter) Lecture 7 21 March 2018 8 /26

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
F mainQ:
print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:
main© Example: print("Hello", "World")

@ Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 21 March 2018 8 /26

“Hello, World!" with Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

says hello to the world!
def main(Q):
print("Hello, World!™)
if __name__ == "__main__":
main()

CSci 127 (Hunter) Lecture 7 21 March 2018

z 9ace

9/ 26

Python Tutor

#Name: your name here
#Date: October 2017
#This program, uses functions,

says hello to the world!

def mainQ): (Demo with pythonTutor)
print("Hello, World!™)

if __name__ == "__main__":
main()

o & = =
Lecture 7 21 March 2018 10 / 26

CSci 127 (Hunter)

In Pairs or Triples:

1. Predict what the code will do: 2. Fill in the missing code:

def monthString(monthNum):

Takes as input a number, monthNum, and
returns the corresponding month name as a string.

def totalWithTax(food,tip): Example: monthString(1) returns "January".
?) Assumes that input is an integer ranging from 1 to

total = @

tax = 0.0875

total = food + food * tax monthString = ""
total = total + tip

return(total)

FILL IN YOUR CODE HERE #i#
Other than your name above,
this is the only section #i#
you change in this program.

lunch = float(input('Enter lunch total: '))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

return(monthString)
dinner= float(input('Enter dinner total: ')))
dTip = float(input('Enter dinner tip:')) def mainQy:
dTotal - tutalWithTax(dinner‘, dT'i.p) n = int(input('Enter the number of the month: '))

. . A mString = monthString(n)
print('Dinner total is', dTotal) print('The month is', mString)

o F = = DA

CSci 127 (Hunter) Lecture 7 21 March 2018 11 /26

Python Tutor

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: ')) .
1Tip = float(input('Enter lunch tip:')) D h
1Total - totalWithTax(lunch, 1Tip) (emo wit PYthonTUtor
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: ')
dTip = float(input('Enter dinner tip:')
dTotal - totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 21 March 2018 12 /26

IDLE

def monthString(nonthNum):

Takes as input a number, monthium, and

Feturns the corresponding nonth name as a string
Exanple: monthString(1) returns “January

Assunes that input is an integer ranging from 1 to 12

ronthString =

o (Demo with IDLE)
s

def main():
n = intCinput('Enter the number of the month: '))

mString = ronthString(n)
printC'The ronth is', mString)

DA

CSci 127 (Hunter) 21 March 2018 13 /26

Lecture 7

In Pairs or Triples:

Predict what the code will do:

#(CSci 127 Teaching Staff
#Triangles two ways...
import turtle

def setUp(t, dist, col):
t.penup(Q)
t.forward(dist)
t.pendown()
t.color(col)

def nestedTriangle(t, side):
if side > 10:
for i in range(3):
t.forward(side)
t.left(120)
nestedTriangle(t, side/2)

def fractalTriangle(t, side):
if side > 10:
for i in range(3):
t.forward(side)
t.left(120)

fractalTriangle(t, side/2)

CSci 127 (Hunter)

[def main():

t

if _

Lecture 7

nessa = turtle.Turtle()
setUp(nessa, 100, "violet")
nestedTriangle(nessa, 160)

frank = turtle.Turtle()
setUp(frank, -100, "red")
fractalTriangle(frank, 160)

_name__ == "__main__":

main()

21 March 2018

14 /26

IDLE

#CSci 127 Teaching Staff
#Triangles two ways. ..
import turtle

def setUp(t, dist, col):
t.penup()
t. forward(dist)
t.pendown()
t.color(col)

def nestedTriangle(t, side): .
if side > 10:
220 e (Demo with IDLE)
t.forward(side)
t.1eft(120)
nestedTriangle(t, side/2)

def fractalTriangle(t, side):
f side > 10:
for i in range(3):
t. forward(side)
t.1eft(120)

fractalTriangleCt, side/2)

] = =
CSci 127 (Hunter) Lecture 7

21 March 2018 15 /26

Recap: Functions

@ Functions are a way to break code into pieces,
#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 21 March 2018 16 / 26

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 21 March 2018 16 / 26

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
printC"Hello, World!™) Example: print("Hello", "World")
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 21 March 2018 16 / 26

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
printC"Hello, World!™) Example: print("Hello", "World")
if __name__ == "__main__": . . .
mainGy @ Can write, or define your own functions,

CSci 127 (Hunter) Lecture 7 21 March 2018 16 / 26

Recap: Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

#

if

says hello to the world!

F mainQ:

print("Hello, World!™)

__name__ == "__main__":
main()

CSci 127 (Hunter)

@ Functions are a way to break code into pieces,
that can be easily reused.

@ You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

@ Can write, or define your own functions,
which are stored, until invoked or called.

Lecture 7 21 March 2018 16 / 26

In Pairs or Triples:

Predict what the code will do:

import matplotlib.pyplot as plt

import numpy as np

img = plt.imread('csBridge.png")
' plt.imshow(img)

plt.show()

height = img.shape[@]

width = img.shape[1]

motto = "Mihi Cura Futuri'
1 = len(motto)
for 1 in range(l):

print(motto[i]) img2 = img[:height/2, :width/2]
for j in range(l-1,-1,-1): plt. imshow(img2)
print(motto[j]))

plt.show()

CSci 127 (Hunter) Lecture 7 21 March 2018 17 /26

Python Tutor

motto = "Mihi Cura Futuri"
1 = len(motto)
for i in range(l): .
print(motto[i]) (Demo Wlth pythonTutor)
for j in range(l-1,-1,-1):
print(motto[j1)

CSci 127 (Hunter) Lecture 7 21 March 2018 18 / 26

Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

.
"(;‘V*

o Freely available source of data

CSci 127 (Hunter)

Lecture 7

A
21 March 2018

19 /26

Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

/=i..y
aQ -
Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.

"(;‘V*

o Maintained by the NYC data analytics team.

CSci 127 (Hunter)

Lecture 7

A
21 March 2018

19 /26

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.

o Maintained by the NYC data analytics team.

o We will use several different ones for this class

CSci 127 (Hunter)

Lecture 7

DAy
21 March 2018 19 / 26

Accessing Structured Data: NYC Open Data

Open Data for Qa .

®
All New Yorkers S

i
#

Search Open Data for things like 311, Buildings, Crime¢ ' l ;‘ N7_ ‘

o Freely available source of data.
o Maintained by the NYC data analytics team.
o We will use several different ones for this class.

o Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

= = = = E DA
CSci 127 (Hunter) Lecture 7 21 March 2018 19 / 26

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

Freely available source of data.
Maintained by the NYC data analytics team.
We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

©

Lab 7 covers accessing and downloading NYC OpenData datasets.
=} (=) = E E DA
CSci 127 (Hunter) Lecture 7 21 March 2018 19 / 26

Structured Data

pandas

Yir = B8z + i + €

]

o Common to have data structured in a spread sheet

CSci 127 (Hunter)

Lecture 7

Q>
21 March 2018 20 / 26

Structured Data

pandas

3" Lhi + €t

e

o Common to have data structured in a spread sheet.

o The text file version is called CSV for comma separated values.

CSci 127 (Hunter) Lecture 7 21 March 2018 20 / 26

Structured Data

panda

3" Lhi + €t

e

o Common to have data structured in a spread sheet.

o The text file version is called CSV for comma separated values.

o Each row is a line; columns are separated by commas.

CSci 127 (Hunter) Lecture 7 21 March 2018

20 / 26

Structured Data

pandas

) e

e

o Common to have data structured in a spread sheet.

o The text file version is called CSV for comma separated values.
o Each row is a line; columns are separated by commas.
o We will use the popular Python Data Analysis Library (Pandas).

CSci 127 (Hunter) Lecture 7 21 March 2018 20 / 26

Structured Data

© © o o

©

pandas

) e

e

Common to have data structured in a spread sheet.

The text file version is called CSV for comma separated values.
Each row is a line; columns are separated by commas.

We will use the popular Python Data Analysis Library (Pandas).
To use, add to the top of your file:

import pandas as pd

CSci 127 (Hunter) Lecture 7 21 March 2018 20 / 26

Structured Data

© © o o

©

panda

) e [

e

Common to have data structured in a spread sheet.

The text file version is called CSV for comma separated values.
Each row is a line; columns are separated by commas.

We will use the popular Python Data Analysis Library (Pandas).
To use, add to the top of your file:

import pandas as pd

To read in a CSV file:
myVar = pd.read_csv("myFile.csv")

CSci 127 (Hunter) Lecture 7 21 March 2018 20 / 26

Example: Reading in CSV Files

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111
Tirol Canens afior the consoiidntion of the'tive boressterrsir

‘{c«:x,Munhuun,Brwwklyn.Vuwn:,szunx,ﬂubcn Toland,Total

27,49447

1890, 1441216, 838547, 87050, 88908, 51693, 2507414
1900, 1850093, 1166583, 152959, 200507 7021, 3437202

1500, 1428285, 2830936, 1091375, 168972, xsil:x Toniess
1990, 1497536, 2300664, 1951598, 1203789, 3709777322564
2010, 1585873, 2504700, 2230772, 1365109, 468730, 8175133
2015, 1644510, 2636735, 2339150, 1455444, 474556, 8550405

nycHistPop.csv

In Lab 6

CSci 127 (Hunter) Lecture 7

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

Firol Canens afior the consoiidntion of the'Tive boresdherrs

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111

Teax, Hanhattan, Brooklyn, Quoens, Bronx, Staten Tsland,Total
el T

179033131, 4549, 6155 ,1701, 3827 49447
s ses1s srie, tsu nss et

90 scsrsae aso0sedriasison,aosTes 37800y Tszases

2070,1383873, 2504700, 2230722, 1385109, 468730, 0175133
D06, 1e4as10, 2636758, 2390150, 1455404, 474538, 8550408

nycHistPop.csv

In Lab 6

CSci 127 (Hunter) Lecture 7 21 March 2018 21 /26

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111
fior the consoiantion of the'Eive boressherrrr s

Teax, Hanhattan, Brooklyn, Quoens, Bronx, Staten Tsland,Total
1698,4937,2017,,,727, 7651

2010,1585873, 2504700, 2230722, 1365109, &
T0is,Seass1a, 2656798, 1939150, 45841, 74558, 8550108

nycHistPop.csv

In Lab 6

CSci 127 (Hunter) Lecture 7 21 March 2018 21 /26

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

Sourca: neeps://on.wixipedia.org/uiki /Denogeaphice_of Now_York
nous aftor the consolidation of the Eive boroughe,,,...

s e pl t.show ()

pop.plot(x="Year")

nycHistPop.csv

In Lab 6

CSci 127 (Hunter) Lecture 7 21 March 2018 21 /26

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

n-iipeats-org/uixi/pemopcaphicn of_tow York cio
Firol Canens aftor the consoiidation of the'five boresshe.

&éuil«,n::ﬁ Brockiym.Quoens Brons, Staten Toland,Toiel plt .show ()

pop.plot(x="Year")

9000000
:3:3 1123532 Bus«z o, — Manhattan
8000000 —— Brooklyn
— Queens
Bronx y
7000000 Staten Island
~—— Total
2010, 1585873, 2504700, 2230722, 1385108, 468730, 8175133 6000000
015, Leeis Lo, 2606735, 2033130, 458A0S 47455 0350008
5000000
nycHistPop.csv 4000000
In Lab 6 3000000 /
2000000
1000000
0 —
1698 1820 1870 1920 1970 2015

Year

[m] = = =
CSci 127 (Hunter) Lecture 7 21 March 2018 21 /26

PRNEe

Series in Pandas

o Series can store a column or row of a
DataFrame.

CSci 127 (Hunter) Lecture 7 21 March 2018 22 /26

Series in Pandas

o Series can store a column or row of a
DataFrame.

o Example: pop["Manhattan"] is the Series
corresponding to the column of Manhattan
data.

CSci 127 (Hunter) Lecture 7 21 March 2018 22 /26

Series in Pandas

o Series can store a column or row of a
DataFrame.

o Example: pop["Manhattan"] is the Series
corresponding to the column of Manhattan
data.

o Example:
print ("The largest number living in
the Bronx is", pop["Bronx"].max())

CSci 127 (Hunter) Lecture 7 21 March 2018 22 /26

CS Survey: Mitsue lwata, Data Analytics

Open Data for

All New Yorkers

©

Search Open Data for things like 311, Buildings, Crime¢

' 1} W *
o Project Manager, NYC Mayor’'s Office of Data Analytics

CSci 127 (Hunter)

Lecture 7

A
21 March 2018

23 / 26

CS Survey: Mitsue lwata, Data Analytics

Open Data for

All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

o Project Manager, NYC Mayor’'s Office of Data Analytics
o Hunter College, Class of 2014.

CSci 127 (Hunter)

Lecture 7

A
21 March 2018

23 /26

CS Survey: Mitsue lwata, Data Analytics

Open Data for

All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

o Project Manager, NYC Mayor’'s Office of Data Analytics
o Hunter College, Class of 2014.

o MS, Computational Analysis & Public Policy,
University of Chicago, 2016.

CSci 127 (Hunter)

Lecture 7

E DA
21 March 2018

23 / 26

Design Question
e

@ ©
o, G q
; 9

@

Q & o Q

Qe Q

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
(Design only the pseudocode.)

CSci 127 (Hunter)

=} = ~ _ .
Lecture 7

Qe
21 March 2018

24 / 26

Design Question
e

@ ©
o, G q
; 9

@

Q & o Q

Qe Q

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
(Design only the pseudocode.)

CSci 127 (Hunter)

=} = ~ _ .
Lecture 7

Qe
21 March 2018

24 / 26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
How to approach this:

o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.

o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

® Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 21 March 2018 25 /26

Recap

@ On lecture slip, write down a topic you
wish we had spent more time (and why)
Open Data for
All New Yorkers
e " -
Q
Q . ¥
YN
U

CSci 127 (Hunter)

Lecture 7

A
21 March 2018

26 / 26

Recap

@ On lecture slip, write down a topic you
wish we had spent more time (and why).

Open Data for
All New Yorkers

o Functions are a way to break code into
pieces, that can be easily reused.

e " :
v
g : ,
9 Q /
Pty ¢
U O
=] (=) = £ DA
CSci 127 (Hunter) Lecture 7

21 March 2018 26 / 26

Recap

@ On lecture slip, write down a topic you
wish we had spent more time (and why).

Open Data for
All New Yorkers

o Functions are a way to break code into
pieces, that can be easily reused.

@ You call or invoke a function by typing
its name, followed by any inputs,
surrounded by parenthesis:

= =) E E E 9ace
CSci 127 (Hunter) Lecture 7 21 March 2018 26 / 26

Recap

@ On lecture slip, write down a topic you
wish we had spent more time (and why).

Open Data for
All New Yorkers

o Functions are a way to break code into
pieces, that can be easily reused.

@ You call or invoke a function by typing
its name, followed by any inputs,
surrounded by parenthesis:

Example: print("Hello", "World")

= =) E E E 9ace
CSci 127 (Hunter) Lecture 7 21 March 2018 26 / 26

Recap

o On lecture slip, write down a topic you

wish we had spent more time (and why).
Open Data for = . .
All New Yorkers I o Functions are a way to break code into

pieces, that can be easily reused.

@ You call or invoke a function by typing

Qe " its name, followed by any inputs,
¢ e © surrounded by parenthesis:
¢ e Example: print("Hello", "World")
Q 99 e 99 @ o Can write, or define your own functions,
% :

= =) E E E 9ace
CSci 127 (Hunter) Lecture 7 21 March 2018 26 / 26

Recap

o On lecture slip, write down a topic you
wish we had spent more time (and why).

Open Data for (S T . .

All New Yorkers @ 2. o Functions are a way to break code into

e pieces, that can be easily reused.

"

A

@ You call or invoke a function by typing

Qe " its name, followed by any inputs,
¢ e © surrounded by parenthesis:
Q & Example: print("Hello", "World")
Q % e 99 @ o Can write, or define your own functions,
A Q which are stored, until invoked or called.
Q >

o Accessing Formatted Data: NYC
OpenData

= =) E E E 9ace
CSci 127 (Hunter) Lecture 7 21 March 2018 26 / 26

