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Today's Topics

©

Recap of Low-Level Programming

©

Introducing C++
Hello, World in C++

(*]

©

[/O and Definite Loops in C++

©

Final Exam Overview

o = = = T 9ace
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Java
Assembly

Low-Level vs. High-Level Languages

perl Ruby
|
et scala JavaScript
(codeCommit)
o Can view programming languages on a continuum.
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Low-Level vs. High-Level Languages

Machine Code o lava perl Ruby
Assembly C++ scala Javascript

(codeCommit)

o Can view programming languages on a continuum.

o Those that directly access machine instructions & memory and have

little abstraction are low-level languages
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Low-Level vs. High-Level Languages

Machine Code C Java

perl Ruby
} | } } |
| i
T T [ T
Assembly C++ Scala lavascript

(codeCommit)

o Can view programming languages on a continuum.
o Those that directly access machine instructions & memory and have
little abstraction are low-level languages

(e.g. machine language, assembly language).

CSci 127 (Hunter) Lecture 12 1 May 2018 3/24



Low-Level vs. High-Level Languages

Machine Code o lava perl Ruby
Assembly C++ scala Javascript

(codeCommit)

o Can view programming languages on a continuum.

o Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).

o Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.

CSci 127 (Hunter) Lecture 12 1 May 2018 3/24



Low-Level vs. High-Level Languages

Machine Code o lava perl Ruby
Assembly C++ scala Javascript

(codeCommit)

o Can view programming languages on a continuum.

o Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).

o Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.

o Some languages, like C, are in between— allowing both low level
access and high level data structures.
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Machine Language

o We will be writing programs in a

simplified machine
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Machine Language

o We will be writing programs in a
simplified machine language, WeMIPS.
?EZ"M o It is based on a reduced instruction set
n':" computer (RISC) design, originally
L developed by the MIPS Computer
Systems.
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Machine Language

o We will be writing programs in a
simplified machine language, WeMIPS.

g ]
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o computer (RISC) design, originally
e developed by the MIPS Computer
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Systems.

o Due to its small set of commands,
processors can be designed to run those
commands very efficiently.
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Machine Language
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©

We will be writing programs in a
simplified machine language, WeMIPS.
It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....
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“Hello World!" in Simplified Machine Language

Show/Hide Demos

Lne: 8 Gol

Addition Doubler |~ Stav | Looper
Gode Gen Save String  Interactive
Debug

# store 'Hello world!' at the top of the stack
ADDI $sp, $sp, -13

ADDT $t0, $zero, 72 # H

SB $t0, 0(Ssp)

ADDI $t0, Szero, 101 # e

SB $t0, 1($sp)

ADDI $t0, Szero, 108 # 1

SB $t0, Z($5p)

ADDI $t0, $zero, 108 # 1

SB $t0, 3(Ssp)

ADDI $t0, Szero, 111 # o

SB $t0, 4($sp)

ADDI $t0, Szero, 32 # (space)
SB $t0, 5($5p)

ADDI $t0, $zero, 119 # w

SB $t0, 6(Ssp)

ADDI $t0, Szero, 111 # o

sB $t0, 7($sp)

ADDI $t0, Szero, 114 # r

ADDI $t0, $zero, 108 # 1

P
zero, 100 # d
Szero, 33 # !

ADDI $t0, S$zero, 0 # (null)
SB $t0, 12($sp)

ADDI $v0, $zero, 4 # 4 is for print string
ADDI $a0, $sp,
syscall # print to the log

CSci 127 (Hunter)

Stack Test | Hello World

nary2 Decimal | Decimal2 Binary

(WeMIPS)
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In Pairs or Triples:
Predict what the code will do:

# This is the same as the doubler, except the
# to change drastically, therefore all of the
CHANGE_S: ADDI §t0, $zero, 2

BEQ $s0, $t0, EXIT

ADD $s1, $s80, $s0 # double s0 by adding it to
ADD $s2, $sl, $sl # double sl by adding it to
ADD $s83, %$s2, $s2 # double s2 by adding it to
ADD $s4, $s83, $s3 # double s3 by adding it to
ADD $s5, $s4, $s4 # double s4 by adding it to
ADD $s6, %55, $s5 # double s5 by adding it to
ADD $s87, $s86, $s6 # double s6 by adding it to
J CHANGE_V

CEANGE_T: ADD $t0, $s7, $s7
ADD $t1, $t0, $t0
ADD $t2, $tl1, $tl
ADD $t3, $t2, $t2
ADD $t4, $t3, $t3
ADD $t5, $t4, St
ADD $t6, $t5, $t5
ADD $t7, $t6, $t6
ADD $t8, $t7, $t7
ADD $t9, $t8, $t8
J CHANGE_S

CEANGE_A: ADD $a0, $t9, $t9
ADD $al, $a0, $al

ADD $a2, $al, $al

ADD $a3d, $a2, $a2

J CHANGE_S

CEANGE_V: ADD $v0, $a3, $al

ADD $v1, $vO0, $vO
J CHANGE_A

CSci 127 (Hunter)

jumps cause the order
values will be different.

itself, should be 4
itself, should be 8
itself, should be 16
itself, should be 32
itself, should be 64
itself, should be 128
itself, should be 256
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WeMIPS

1 # This is the same as the doubler,

# to chance drastically, therefore
CEANGE S: ADDI $£0, $ze:

EQ $80, $£0, EXIT
5 ADD $s1; $80, $s0 # double 0 by
G ADD $s2, $s1, $s1 # double sl
ADD $53, $s2, $s2 # double 52
$53 # double 3 by
ADD $s5, $sd, $sé # double sé by
0 ADD $56, $s5, $s5 # double s5 by

&
2g

1 ADD $s7, $s6, $s6 # double s6 by ad

2 3 CEANGEV
CHANGE_T: ADD $t0, $s7, $57
5 ADD $tI, $t0, $t0
ADD $t2, Stl, Stl
7 ADD $t3, $t2, $t2
§ ADD $td, $t3, $€3
ADD $t5, Sté, Sté
ADD $t6, $t5, €5
ADD $t7, $t6, St6
ADD $t8, $t7, €7
ADD $t9, St8, S8
CHANGE_S

D $a0, $t9, $t9
20
sal
V saz

3 CEANGE_S
CHANGE v: ADD $v0, $a3, $a3
3 DD $v1, $v0, $vO

{3 CHANGE A

CSci 127 (Hunter)
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In Pairs or Triples:

o Write a complete Python program that converts kilograms to
pounds.

o Predict what the C++ code will do:

int main ()
I
L

int year;

cout "Enter a number: '
cin year;

cout "Hello " year
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Python Tutor

o Write a complete Python program that converts kilograms to
pounds.

(Write from scratch in pythonTutor.)
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onlinegdb demo

int main ()
{

int year;

"Er a number

(Demo with onlinegdb)
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Introduction to C++

o C++ is a popular programming
language that extends C.
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Introduction to C++

o C++ is a popular programming
language that extends C.
o Fast, efficient, and powerful.

int main O
{

int year;
cout:

cin >y
cout:

}

CSci 127 (Hunter) Lecture 12 1 May 2018 11 /24



Introduction to C++

o C++ is a popular programming
language that extends C.

o Fast, efficient, and powerful.

int main O

{ o Used for systems programming

int year;
cout:

e (and future courses!).

cout:

}
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Introduction to C++

C++ is a popular programming
language that extends C.

(]

o Fast, efficient, and powerful.

©

Used for systems programming
(and future courses!).

©

Today, we'll introduce the basic
structure and simple input/output
(1/0) in C/C++.
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Introduction to C++

int main O
{

int year;
cout:

cin >y
cout

CSci 127 (Hunter)

o Programs are organized in functions.
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Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:

int main O
{

int year;
cout << "Ent
cin

cout
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Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

int main O
{

int year;
cout << "Ent
cin

cout
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Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

int main O
{

int year;
cout << "Ent
cin

cout
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Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

int main O
{

, o To print, we'll use cout <<:
int year;
cout "Ent
i
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Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

int main ()
{

o To print, we'll use cout <<:
S A cout << "Hello!!"
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Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

g e o To print, we'll use cout <<:
' cout << "Hello!!"

o To get input, we'll use cin >>:
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Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

g e o To print, we'll use cout <<:
' cout << "Hello!!"

o To get input, we'll use cin >>:
cin >> num
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Introduction to C++

5 int main O

CSci 127 (Hunter)

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available:
int, float, char,

To print, we'll use cout <<:
cout << "Hello!!"

To get input, we'll use cin >>:
cin >> num

To use those 1/0 functions, we put at
the top of the program:
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Introduction to C++

5 int main O

CSci 127 (Hunter)

Programs are organized in functions.

Variables must be declared before
used:

int num;

Many types available:

int, float, char,

To print, we'll use cout <<:
cout << "Hello!!"

To get input, we'll use cin >>:
cin >> num

To use those 1/0 functions, we put at
the top of the program:

#include <iostream>

using namespace std;
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In Pairs or Triples:

Predict what the following pieces of code will do:

//Another C++ program, demonstrating I/0 & arithmetic
#include <iostream>

using namespace std;

int main

{

float kg, lbs;

cout << "Enter kg: ";
cin >> kg;

lbs = kg * 2.2;

cout << endl << "Lbs: " << lbs << "\n'n";
return @;

= =) E E E 9ace
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C++ Demo

//Another C++ program, demonstrating 1/0 & arithmetic
#include <iostream>
using namespace std;
int main
{
float kg, 1bs;

50 1 (Demo with onlinegdb)

"Lbs: " << lbs << "\m\n";

return 0;
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In Pairs or Triples:

Predict what the following pieces of code will do:
//Another C++ program; Demonstrates loops
#include <iostream>

using namespace std;

int main ()

{
int 1i,3;
for (i = 0; i < 4; i++)
{
cout << "The world turned upside down...\n";
}
for (j = 10; j > @; j--)
{
cout << j << " "3
1
cout << "Blast off!!" << endl;
return @;
}

. E z 9ace
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C++ Demo

//Another C++ program; Demonstrates loops
#include <iostream>

using namespace std;
int main O
{

int 1,3;

for (i = 0; 1 < 4; 1+4)

cout <

< "The world turned upside down...\n";

(Demo with onlinegdb)

cout << "Blast offl1" << endl;

return 0;

CSci 127 (Hunter)
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Definite loops

//Another C++ program; Demonstrates loops
#include <iostream>
using namespace std;

int main (O

int 1,3;
for (i = @; i < 4; i++)
{

cout << "The world turned upside down..

for (j = 10; j > 0; 3--)
{
cout << j << " "
cout << "Blast off!!" << endl;

return 0;

CSci 127 (Hunter)

An";

General format:

for ( initialization ; test ; updateAction )

{

Lecture 12
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command?2;
command3;
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In Pairs or Triples:

Predict what the following pieces of code will do:

//Growth example
#include <iostream-
using namespace std;

int main )
{
int population = 100;
cout << "Year“tPopulationin";
for (int year = @; year < 10@; year= year+5)

{
cout << year << "\t" << population << "\n";
population = population * 2;
}
return @;
}
o = = = = wace
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C++ Demo

7/Growth example
#include <iostream>
using namespace std;

int main O
{

int population -
cout << ”Year\tPopulat\on\n ; .
for (int year = 0 year < 100; year= years5) (Demo with C++)
t
cout << year << "\t" << population << "\n";

population - population * 2;

return 0;

CSci 127 (Hunter)
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In Pairs or Triples:
Predict what the following pieces of code will do:

//Another C++ program; Demonstrates loops
#include <iostream>
using namespace std;

int main O
{
int i,j,size;
cout << "Enter size: ";
cin »> size;
for (1 = @; 1 < size; i++)

{
for (j = @; j < size; j++)
cout << "*";
cout << endl;
1

cout << "\n\n";
for (1 = size; 1 > @; i--)
{
for (j =@; j < 1i; j++)
cout << "*";
cout << endl;
1
return @;
1 o = = = )
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C++ Demo

//Another C++ program; Demonstrates loops
#include <iostream>
using namespace std;

int main QO
{

int 1,j,size;
cout << "Enter size:
cin >> size;
for (i = 0; i < size; i++)

£

o " (Demo with C++)

cout << endl;

cout << "\n\n";
for (i = size; i > @; i--)
{
for (j = 0; § < i; j++)
cout << "*";
cout << endl;

return 0;

=} ) = E DQAC
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Lecture Slips

In pairs or triples: translate the C++ program into Python:

//Growth example
#include <iostream>
using namespace std;

int main O
{
int population = 100;
cout << "Year\tPopulationin";

for (int year = @; year < 100; year= year+5)
{

cout << year << "“t" << population << "\n";
population = population * 2;

}

return @;

o =
CSci 127 (Hunter) Lecture 12 1 May 2018



Recap: C++

@ On lecture slip, write down a topic you wish we
had spent more time (and why).
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Recap: C++

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ CH+ is a popular programming language that
extends C.

=} 5 E £ DA
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Recap: C++

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ CH+ is a popular programming language that
extends C.

o Input/Output (I/0):

» cin >>
> cout <<

=} 5 E £ DA
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Recap: C++

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

C++ is a popular programming language that
extends C.
Input/Output (1/0):

> cin >>

» cout <<

Definite loops:
for (i = 0; i < 10; i++)

= =) E E E 9ace
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Practice Quiz & Final Questions

o Lightning rounds:
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Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;
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Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
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Practice Quiz & Final Questions

o Lightning rounds:
> repeat.

» write as much you can for 60 seconds;
» followed by answer; and
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Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

o Continue from last time on the mock exam (on web page).
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