CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

hunter.cuny.edu/csci
o
Lecture 12

DAy
1 May 2018 1/24

Today's Topics

©

Recap of Low-Level Programming

©

Introducing C++
Hello, World in C++

(*]

©

[/O and Definite Loops in C++

©

Final Exam Overview

o = = = T 9ace

CSci 127 (Hunter) Lecture 12 1 May 2018 2 /24

}

Java
Assembly

Low-Level vs. High-Level Languages

perl Ruby
|
et scala JavaScript
(codeCommit)
o Can view programming languages on a continuum.

CSci 127 (Hunter)

Lecture 12

DA
1 May 2018

3/24

Low-Level vs. High-Level Languages

Machine Code o lava perl Ruby
Assembly C++ scala Javascript

(codeCommit)

o Can view programming languages on a continuum.

o Those that directly access machine instructions & memory and have

little abstraction are low-level languages

CSci 127 (Hunter) Lecture 12

1 May 2018 3/24

Low-Level vs. High-Level Languages

Machine Code C Java

perl Ruby
} | } } |
| i
T T [T
Assembly C++ Scala lavascript

(codeCommit)

o Can view programming languages on a continuum.
o Those that directly access machine instructions & memory and have
little abstraction are low-level languages

(e.g. machine language, assembly language).

CSci 127 (Hunter) Lecture 12 1 May 2018 3/24

Low-Level vs. High-Level Languages

Machine Code o lava perl Ruby
Assembly C++ scala Javascript

(codeCommit)

o Can view programming languages on a continuum.

o Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).

o Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.

CSci 127 (Hunter) Lecture 12 1 May 2018 3/24

Low-Level vs. High-Level Languages

Machine Code o lava perl Ruby
Assembly C++ scala Javascript

(codeCommit)

o Can view programming languages on a continuum.

o Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).

o Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.

o Some languages, like C, are in between— allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 12 1 May 2018 3/24

Machine Language

o We will be writing programs in a

simplified machine

g]
ac
3]
0312 LA stz
7 632143 A ws432]
E B F O STh s
£ SEP %
1] B

® 35

P MmdIZ A % Y @
298119808 0088 0689 02 CFFF 0B60 B9

UL 8 X Y P WD
6686 5555 ode G2 ¥ 0900 B0
I 35555 06 90 60 80 00 80 00 0 60 00 9 60 00 0: NN

(wiki)

CSci 127 (Hunter) Lecture 12

language, WeMIPS.

1 May 2018

4/ 24

Machine Language

o We will be writing programs in a
simplified machine language, WeMIPS.
?EZ"M o It is based on a reduced instruction set
n':" computer (RISC) design, originally
L developed by the MIPS Computer
Systems.

]]
2 heiw

T MDIZE A X
3 C012 0011900 080 6t oiez ¥ 008 B0

mIZ 6 X 4 ® W
5011088 555 oit oie2 CreF o0 00
5580 69 0 80 69 69 00 60 09 60 09 09 09 00 NN

(wiki)

CSci 127 (Hunter) Lecture 12 1 May 2018 4 /24

Machine Language

o We will be writing programs in a
simplified machine language, WeMIPS.

g]
ac

i . B o It is based on a reduced instruction set
o computer (RISC) design, originally
e developed by the MIPS Computer

P MmIZ A %
; B8 coiz ol 1nes o0 o wi cF ot 10

Systems.

o Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

CSci 127 (Hunter) Lecture 12 1 May 2018 4 /24

Machine Language

g]
ac
]]

2 DA ws1%

4§ A sl
STA S917FE
ol
SEP %
B

L A)
; B8 coiz ol 1nes o0 o wi cF ot 10

CSci 127 (Hunter)

©

We will be writing programs in a
simplified machine language, WeMIPS.
It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

Lecture 12 1 May 2018 4 /24

“Hello World!" in Simplified Machine Language

Show/Hide Demos

Lne: 8 Gol

Addition Doubler |~ Stav | Looper
Gode Gen Save String Interactive
Debug

store 'Hello world!' at the top of the stack
ADDI $sp, $sp, -13

ADDT $t0, $zero, 72 # H

SB $t0, 0(Ssp)

ADDI $t0, Szero, 101 # e

SB $t0, 1($sp)

ADDI $t0, Szero, 108 # 1

SB $t0, Z($5p)

ADDI $t0, $zero, 108 # 1

SB $t0, 3(Ssp)

ADDI $t0, Szero, 111 # o

SB $t0, 4($sp)

ADDI $t0, Szero, 32 # (space)
SB $t0, 5($5p)

ADDI $t0, $zero, 119 # w

SB $t0, 6(Ssp)

ADDI $t0, Szero, 111 # o

sB $t0, 7($sp)

ADDI $t0, Szero, 114 # r

ADDI $t0, $zero, 108 # 1

P
zero, 100 # d
Szero, 33 # !

ADDI $t0, S$zero, 0 # (null)
SB $t0, 12($sp)

ADDI $v0, $zero, 4 # 4 is for print string
ADDI $a0, $sp,
syscall # print to the log

CSci 127 (Hunter)

Stack Test | Hello World

nary2 Decimal | Decimal2 Binary

(WeMIPS)

Lecture 12

Step | Run

s

User Guide | Unit Tests | Docs

¥ Enable auto switching

AV

418

Stack

Log

1 May 2018

5 /24

In Pairs or Triples:
Predict what the code will do:

This is the same as the doubler, except the
to change drastically, therefore all of the
CHANGE_S: ADDI §t0, $zero, 2

BEQ $s0, $t0, EXIT

ADD $s1, $s80, $s0 # double s0 by adding it to
ADD $s2, $sl, $sl # double sl by adding it to
ADD $s83, %$s2, $s2 # double s2 by adding it to
ADD $s4, $s83, $s3 # double s3 by adding it to
ADD $s5, $s4, $s4 # double s4 by adding it to
ADD $s6, %55, $s5 # double s5 by adding it to
ADD $s87, $s86, $s6 # double s6 by adding it to
J CHANGE_V

CEANGE_T: ADD $t0, $s7, $s7
ADD $t1, $t0, $t0
ADD $t2, $tl1, $tl
ADD $t3, $t2, $t2
ADD $t4, $t3, $t3
ADD $t5, $t4, St
ADD $t6, $t5, $t5
ADD $t7, $t6, $t6
ADD $t8, $t7, $t7
ADD $t9, $t8, $t8
J CHANGE_S

CEANGE_A: ADD $a0, $t9, $t9
ADD $al, $a0, $al

ADD $a2, $al, $al

ADD $a3d, $a2, $a2

J CHANGE_S

CEANGE_V: ADD $v0, $a3, $al

ADD $v1, $vO0, $vO
J CHANGE_A

CSci 127 (Hunter)

jumps cause the order
values will be different.

itself, should be 4
itself, should be 8
itself, should be 16
itself, should be 32
itself, should be 64
itself, should be 128
itself, should be 256

Lecture 12

1 May 2018

6/ 24

WeMIPS

1 # This is the same as the doubler,

to chance drastically, therefore
CEANGE S: ADDI $£0, $ze:

EQ $80, $£0, EXIT
5 ADD $s1; $80, $s0 # double 0 by
G ADD $s2, $s1, $s1 # double sl
ADD $53, $s2, $s2 # double 52
$53 # double 3 by
ADD $s5, $sd, $sé # double sé by
0 ADD $56, $s5, $s5 # double s5 by

&
2g

1 ADD $s7, $s6, $s6 # double s6 by ad

2 3 CEANGEV
CHANGE_T: ADD $t0, $s7, $57
5 ADD $tI, $t0, $t0
ADD $t2, Stl, Stl
7 ADD $t3, $t2, $t2
§ ADD $td, $t3, $€3
ADD $t5, Sté, Sté
ADD $t6, $t5, €5
ADD $t7, $t6, St6
ADD $t8, $t7, €7
ADD $t9, St8, S8
CHANGE_S

D $a0, $t9, $t9
20
sal
V saz

3 CEANGE_S
CHANGE v: ADD $v0, $a3, $a3
3 DD $v1, $v0, $vO

{3 CHANGE A

CSci 127 (Hunter)

adding

it
ic
ic

ic
ic
ic

except the jumps
all of

the

to
o
o

o i

o
o
to

cause th
Values will be

itself, should

ai

be

I
H

be
be
be
be
be

orde;

frerent.

256

Lecture 12

(Demo with WeMIPS)

1 May 2018

724

In Pairs or Triples:

o Write a complete Python program that converts kilograms to
pounds.

o Predict what the C++ code will do:

int main ()
I
L

int year;

cout "Enter a number: '
cin year;

cout "Hello " year

CSci 127 (Hunter) Lecture 12 1 May 2018 8 /24

Python Tutor

o Write a complete Python program that converts kilograms to
pounds.

(Write from scratch in pythonTutor.)

CSci 127 (Hunter) Lecture 12 1 May 2018 9 /24

onlinegdb demo

int main ()
{

int year;

"Er a number

(Demo with onlinegdb)

CSci 127 (Hunter)

Lecture 12

1 May 2018

10 / 24

Introduction to C++

o C++ is a popular programming
language that extends C.

CSci 127 (Hunter)

Lecture 12

1 May 2018 11 /24

Introduction to C++

o C++ is a popular programming
language that extends C.
o Fast, efficient, and powerful.

int main O
{

int year;
cout:

cin >y
cout:

}

CSci 127 (Hunter) Lecture 12 1 May 2018 11 /24

Introduction to C++

o C++ is a popular programming
language that extends C.

o Fast, efficient, and powerful.

int main O

{ o Used for systems programming

int year;
cout:

e (and future courses!).

cout:

}

CSci 127 (Hunter) Lecture 12 1 May 2018 11 /24

Introduction to C++

C++ is a popular programming
language that extends C.

(]

o Fast, efficient, and powerful.

©

Used for systems programming
(and future courses!).

©

Today, we'll introduce the basic
structure and simple input/output
(1/0) in C/C++.

CSci 127 (Hunter) Lecture 12 1 May 2018 11 /24

Introduction to C++

int main O
{

int year;
cout:

cin >y
cout

CSci 127 (Hunter)

o Programs are organized in functions.

Lecture 12

1 May 2018

12 /24

Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:

int main O
{

int year;
cout << "Ent
cin

cout

CSci 127 (Hunter) Lecture 12 1 May 2018 12 /24

Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

int main O
{

int year;
cout << "Ent
cin

cout

CSci 127 (Hunter) Lecture 12 1 May 2018 12 /24

Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

int main O
{

int year;
cout << "Ent
cin

cout

CSci 127 (Hunter) Lecture 12 1 May 2018 12 /24

Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

int main O
{

, o To print, we'll use cout <<:
int year;
cout "Ent
i

CSci 127 (Hunter) Lecture 12 1 May 2018 12 /24

Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

int main ()
{

o To print, we'll use cout <<:
S A cout << "Hello!!"

CSci 127 (Hunter) Lecture 12 1 May 2018 12 /24

Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

g e o To print, we'll use cout <<:
' cout << "Hello!!"

o To get input, we'll use cin >>:

CSci 127 (Hunter) Lecture 12 1 May 2018 12 /24

Introduction to C++

o Programs are organized in functions.

o Variables must be declared before
used:
int num;

o Many types available:
int, float, char,

g e o To print, we'll use cout <<:
' cout << "Hello!!"

o To get input, we'll use cin >>:
cin >> num

CSci 127 (Hunter) Lecture 12 1 May 2018 12 /24

Introduction to C++

5 int main O

CSci 127 (Hunter)

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available:
int, float, char,

To print, we'll use cout <<:
cout << "Hello!!"

To get input, we'll use cin >>:
cin >> num

To use those 1/0 functions, we put at
the top of the program:

Lecture 12 1 May 2018 12 /24

Introduction to C++

5 int main O

CSci 127 (Hunter)

Programs are organized in functions.

Variables must be declared before
used:

int num;

Many types available:

int, float, char,

To print, we'll use cout <<:
cout << "Hello!!"

To get input, we'll use cin >>:
cin >> num

To use those 1/0 functions, we put at
the top of the program:

#include <iostream>

using namespace std;

Lecture 12 1 May 2018 12 /24

In Pairs or Triples:

Predict what the following pieces of code will do:

//Another C++ program, demonstrating I/0 & arithmetic
#include <iostream>

using namespace std;

int main

{

float kg, lbs;

cout << "Enter kg: ";
cin >> kg;

lbs = kg * 2.2;

cout << endl << "Lbs: " << lbs << "\n'n";
return @;

= =) E E E 9ace
CSci 127 (Hunter) Lecture 12 1 May 2018 13 /24

C++ Demo

//Another C++ program, demonstrating 1/0 & arithmetic
#include <iostream>
using namespace std;
int main
{
float kg, 1bs;

50 1 (Demo with onlinegdb)

"Lbs: " << lbs << "\m\n";

return 0;

CSci 127 (Hunter) Lecture 12 1 May 2018 14 / 24

In Pairs or Triples:

Predict what the following pieces of code will do:
//Another C++ program; Demonstrates loops
#include <iostream>

using namespace std;

int main ()

{
int 1i,3;
for (i = 0; i < 4; i++)
{
cout << "The world turned upside down...\n";
}
for (j = 10; j > @; j--)
{
cout << j << " "3
1
cout << "Blast off!!" << endl;
return @;
}

. E z 9ace

CSci 127 (Hunter) Lecture 12 1 May 2018 15 / 24

C++ Demo

//Another C++ program; Demonstrates loops
#include <iostream>

using namespace std;
int main O
{

int 1,3;

for (i = 0; 1 < 4; 1+4)

cout <

< "The world turned upside down...\n";

(Demo with onlinegdb)

cout << "Blast offl1" << endl;

return 0;

CSci 127 (Hunter)

Lecture 12

1 May 2018 16 / 24

Definite loops

//Another C++ program; Demonstrates loops
#include <iostream>
using namespace std;

int main (O

int 1,3;
for (i = @; i < 4; i++)
{

cout << "The world turned upside down..

for (j = 10; j > 0; 3--)
{
cout << j << " "
cout << "Blast off!!" << endl;

return 0;

CSci 127 (Hunter)

An";

General format:

for (initialization ; test ; updateAction)

{

Lecture 12

commandl;
command?2;
command3;

1 May 2018

17 / 24

In Pairs or Triples:

Predict what the following pieces of code will do:

//Growth example
#include <iostream-
using namespace std;

int main)
{
int population = 100;
cout << "Year“tPopulationin";
for (int year = @; year < 10@; year= year+5)

{
cout << year << "\t" << population << "\n";
population = population * 2;
}
return @;
}
o = = = = wace
CSci 127 (Hunter) Lecture 12

1 May 2018 18 / 24

C++ Demo

7/Growth example
#include <iostream>
using namespace std;

int main O
{

int population -
cout << ”Year\tPopulat\on\n ; .
for (int year = 0 year < 100; year= years5) (Demo with C++)
t
cout << year << "\t" << population << "\n";

population - population * 2;

return 0;

CSci 127 (Hunter)

Lecture 12

1 May 2018 19 / 24

In Pairs or Triples:
Predict what the following pieces of code will do:

//Another C++ program; Demonstrates loops
#include <iostream>
using namespace std;

int main O
{
int i,j,size;
cout << "Enter size: ";
cin »> size;
for (1 = @; 1 < size; i++)

{
for (j = @; j < size; j++)
cout << "*";
cout << endl;
1

cout << "\n\n";
for (1 = size; 1 > @; i--)
{
for (j =@; j < 1i; j++)
cout << "*";
cout << endl;
1
return @;
1 o = = =)
CSci 127 (Hunter) Lecture 12 1 May 2018 20 / 24

it
<

C++ Demo

//Another C++ program; Demonstrates loops
#include <iostream>
using namespace std;

int main QO
{

int 1,j,size;
cout << "Enter size:
cin >> size;
for (i = 0; i < size; i++)

£

o " (Demo with C++)

cout << endl;

cout << "\n\n";
for (i = size; i > @; i--)
{
for (j = 0; § < i; j++)
cout << "*";
cout << endl;

return 0;

=}) = E DQAC
CSci 127 (Hunter) Lecture 12 1 May 2018 21 /24

it
<

Lecture Slips

In pairs or triples: translate the C++ program into Python:

//Growth example
#include <iostream>
using namespace std;

int main O
{
int population = 100;
cout << "Year\tPopulationin";

for (int year = @; year < 100; year= year+5)
{

cout << year << "“t" << population << "\n";
population = population * 2;

}

return @;

o =
CSci 127 (Hunter) Lecture 12 1 May 2018

Recap: C++

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

CSci 127 (Hunter)

Lecture 12

£ DA
1 May 2018 23 /24

Recap: C++

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ CH+ is a popular programming language that
extends C.

=} 5 E £ DA

CSci 127 (Hunter) Lecture 12 1 May 2018 23 /24

Recap: C++

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ CH+ is a popular programming language that
extends C.

o Input/Output (I/0):

» cin >>
> cout <<

=} 5 E £ DA

CSci 127 (Hunter) Lecture 12 1 May 2018 23 /24

Recap: C++

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

C++ is a popular programming language that
extends C.
Input/Output (1/0):

> cin >>

» cout <<

Definite loops:
for (i = 0; i < 10; i++)

= =) E E E 9ace
Lecture 12 1 May 2018 23 /24

Practice Quiz & Final Questions

o Lightning rounds:

CSci 127 (Hunter)

Lecture 12

£ DA
1 May 2018 24 / 24

Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;

CSci 127 (Hunter)

Lecture 12

£ DA
1 May 2018 24 / 24

Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and

CSci 127 (Hunter)

Lecture 12

£ DA
1 May 2018 24 / 24

Practice Quiz & Final Questions

o Lightning rounds:
> repeat.

» write as much you can for 60 seconds;
» followed by answer; and

CSci 127 (Hunter)

Lecture 12

£ DA
1 May 2018 24 / 24

Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

o Continue from last time on the mock exam (on web page).

CSci 127 (Hunter)

Lecture 12

z 9ace
1 May 2018 24 /24

