
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 11 24 April 2018 1 / 51



Announcements

Summer Prep Course for Discrete
Mathematics:

I Math10N03: “Pre-Discrete Mathematics
Workshop”

I Focuses on increasing algebraic mastery,
especially with manipulating expressions
involving multiple variables, indices, as
well as summation notation.

I The focus is on the mastery of skills
critical to success in CSci 150.

I The course is 1 hour, 1 credit,
Wednesdays, 9:50-11:50am.

I See CUNYFirst for registration.

CSci 127 (Hunter) Lecture 11 24 April 2018 2 / 51



Announcements

Summer Prep Course for Discrete
Mathematics:

I Math10N03: “Pre-Discrete Mathematics
Workshop”

I Focuses on increasing algebraic mastery,
especially with manipulating expressions
involving multiple variables, indices, as
well as summation notation.

I The focus is on the mastery of skills
critical to success in CSci 150.

I The course is 1 hour, 1 credit,
Wednesdays, 9:50-11:50am.

I See CUNYFirst for registration.

CSci 127 (Hunter) Lecture 11 24 April 2018 2 / 51



Announcements

Summer Prep Course for Discrete
Mathematics:

I Math10N03: “Pre-Discrete Mathematics
Workshop”

I Focuses on increasing algebraic mastery,
especially with manipulating expressions
involving multiple variables, indices, as
well as summation notation.

I The focus is on the mastery of skills
critical to success in CSci 150.

I The course is 1 hour, 1 credit,
Wednesdays, 9:50-11:50am.

I See CUNYFirst for registration.

CSci 127 (Hunter) Lecture 11 24 April 2018 2 / 51



Announcements

Summer Prep Course for Discrete
Mathematics:

I Math10N03: “Pre-Discrete Mathematics
Workshop”

I Focuses on increasing algebraic mastery,
especially with manipulating expressions
involving multiple variables, indices, as
well as summation notation.

I The focus is on the mastery of skills
critical to success in CSci 150.

I The course is 1 hour, 1 credit,
Wednesdays, 9:50-11:50am.

I See CUNYFirst for registration.

CSci 127 (Hunter) Lecture 11 24 April 2018 2 / 51



Announcements

Summer Prep Course for Discrete
Mathematics:

I Math10N03: “Pre-Discrete Mathematics
Workshop”

I Focuses on increasing algebraic mastery,
especially with manipulating expressions
involving multiple variables, indices, as
well as summation notation.

I The focus is on the mastery of skills
critical to success in CSci 150.

I The course is 1 hour, 1 credit,
Wednesdays, 9:50-11:50am.

I See CUNYFirst for registration.

CSci 127 (Hunter) Lecture 11 24 April 2018 2 / 51



Announcements

Summer Prep Course for Discrete
Mathematics:

I Math10N03: “Pre-Discrete Mathematics
Workshop”

I Focuses on increasing algebraic mastery,
especially with manipulating expressions
involving multiple variables, indices, as
well as summation notation.

I The focus is on the mastery of skills
critical to success in CSci 150.

I The course is 1 hour, 1 credit,
Wednesdays, 9:50-11:50am.

I See CUNYFirst for registration.

CSci 127 (Hunter) Lecture 11 24 April 2018 2 / 51



Today’s Topics

Recap of Python & Circuits

High vs. Low-Level Programming

A Simplified Machine Language

Final Exam Overview

CSci 127 (Hunter) Lecture 11 24 April 2018 3 / 51



Python & Circuits Review: 10 Weeks in 10 Minutes

A whirlwind tour of the semester, so far...

CSci 127 (Hunter) Lecture 11 24 April 2018 4 / 51



Week 1: print(), loops, comments, & turtles

Introduced comments & print():

#Name: Thomas Hunter ← These lines are comments

#Date: September 1, 2017 ← (for us, not computer to read)

#This program prints: Hello, World! ← (this one also)

print("Hello, World!") ← Prints the string ”Hello, World!” to the screen

As well as definite loops & the turtle package:

CSci 127 (Hunter) Lecture 11 24 April 2018 5 / 51



Week 1: print(), loops, comments, & turtles

Introduced comments & print():

#Name: Thomas Hunter ← These lines are comments

#Date: September 1, 2017 ← (for us, not computer to read)

#This program prints: Hello, World! ← (this one also)

print("Hello, World!") ← Prints the string ”Hello, World!” to the screen

As well as definite loops & the turtle package:

CSci 127 (Hunter) Lecture 11 24 April 2018 5 / 51



Week 1: print(), loops, comments, & turtles

Introduced comments & print():

#Name: Thomas Hunter ← These lines are comments

#Date: September 1, 2017 ← (for us, not computer to read)

#This program prints: Hello, World! ← (this one also)

print("Hello, World!") ← Prints the string ”Hello, World!” to the screen

As well as definite loops & the turtle package:

CSci 127 (Hunter) Lecture 11 24 April 2018 5 / 51



Week 2: variables, data types, more on loops & range()

A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.

Different kinds, or types, of values need different amounts of space:
I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers

I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers

I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters

I list: a sequence of items
e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]

I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]

I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 2: variables, data types, more on loops & range()
A variable is a reserved memory location for storing a value.
Different kinds, or types, of values need different amounts of space:

I int: integer or whole numbers
I float: floating point or real numbers
I string: sequence of characters
I list: a sequence of items

e.g. [3, 1, 4, 5, 9] or [’violet’,’purple’,’indigo’]
I class variables: for complex objects, like turtles.

More on loops & ranges:

CSci 127 (Hunter) Lecture 11 24 April 2018 6 / 51



Week 3: colors, hex, slices, numpy & images

CSci 127 (Hunter) Lecture 11 24 April 2018 7 / 51



Week 3: colors, hex, slices, numpy & images

CSci 127 (Hunter) Lecture 11 24 April 2018 7 / 51



Week 3: colors, hex, slices, numpy & images

CSci 127 (Hunter) Lecture 11 24 April 2018 7 / 51



Week 4: design problem (cropping images) & decisions

First: specify inputs/outputs. Input file name, output file name,
upper, lower, left, right (“bounding box”)

Next: write pseudocode.
1 Import numpy and pyplot.
2 Ask user for file names and dimensions for cropping.
3 Save input file to an array.
4 Copy the cropped portion to a new array.
5 Save the new array to the output file.

Next: translate to Python.

CSci 127 (Hunter) Lecture 11 24 April 2018 8 / 51



Week 4: design problem (cropping images) & decisions

First: specify inputs/outputs. Input file name, output file name,
upper, lower, left, right (“bounding box”)

Next: write pseudocode.
1 Import numpy and pyplot.
2 Ask user for file names and dimensions for cropping.
3 Save input file to an array.
4 Copy the cropped portion to a new array.
5 Save the new array to the output file.

Next: translate to Python.

CSci 127 (Hunter) Lecture 11 24 April 2018 8 / 51



Week 4: design problem (cropping images) & decisions

First: specify inputs/outputs. Input file name, output file name,
upper, lower, left, right (“bounding box”)

Next: write pseudocode.
1 Import numpy and pyplot.
2 Ask user for file names and dimensions for cropping.
3 Save input file to an array.
4 Copy the cropped portion to a new array.
5 Save the new array to the output file.

Next: translate to Python.

CSci 127 (Hunter) Lecture 11 24 April 2018 8 / 51



Week 4: design problem (cropping images) & decisions

First: specify inputs/outputs. Input file name, output file name,
upper, lower, left, right (“bounding box”)

Next: write pseudocode.
1 Import numpy and pyplot.
2 Ask user for file names and dimensions for cropping.
3 Save input file to an array.
4 Copy the cropped portion to a new array.
5 Save the new array to the output file.

Next: translate to Python.

CSci 127 (Hunter) Lecture 11 24 April 2018 8 / 51



Week 4: design problem (cropping images) & decisions

CSci 127 (Hunter) Lecture 11 24 April 2018 9 / 51



Week 5: logical operators, truth tables & logical circuits

in1 in2 returns:

False and False False
False and True False
True and False False
True and True True

CSci 127 (Hunter) Lecture 11 24 April 2018 10 / 51



Week 5: logical operators, truth tables & logical circuits

in1 in2 returns:

False and False False
False and True False
True and False False
True and True True

CSci 127 (Hunter) Lecture 11 24 April 2018 10 / 51



Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 24 April 2018 11 / 51



Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 24 April 2018 11 / 51



Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 24 April 2018 11 / 51



Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 24 April 2018 11 / 51



Week 6: structured data, pandas, & more design

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 11 24 April 2018 11 / 51



Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 24 April 2018 12 / 51



Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 24 April 2018 12 / 51



Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 24 April 2018 12 / 51



Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 24 April 2018 12 / 51



Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 24 April 2018 12 / 51



Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 24 April 2018 12 / 51



Week 7: functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 11 24 April 2018 12 / 51



Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 24 April 2018 13 / 51



Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 24 April 2018 13 / 51



Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 24 April 2018 13 / 51



Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 24 April 2018 13 / 51



Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 24 April 2018 13 / 51



Week 8: function parameters, github

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 11 24 April 2018 14 / 51



Week 9: top-down design, folium

CSci 127 (Hunter) Lecture 11 24 April 2018 15 / 51



Week 10: indefinite loops, searching data, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

CSci 127 (Hunter) Lecture 11 24 April 2018 16 / 51



Week 10: indefinite loops, searching data, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

CSci 127 (Hunter) Lecture 11 24 April 2018 16 / 51



Week 10: indefinite loops, searching data, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

CSci 127 (Hunter) Lecture 11 24 April 2018 16 / 51



Week 10: indefinite loops, searching data, random()

Indefinite (while) loops allow you to
repeat a block of code as long as a
condition holds.

Very useful for checking user input
for correctness.

Python’s built-in random package
has useful methods for generating
random whole numbers and real
numbers.

To use, must include:
import random.

CSci 127 (Hunter) Lecture 11 24 April 2018 16 / 51



Python & Circuits Review: 10 Weeks in 10 Minutes

Input/Output (I/O): input() and print();
pandas for CSV files

Types:

I Primitive: int, float, bool, string;
I Container: lists (but not dictionaries/hashes

or tuples)

Objects: turtles (used but did not design our own)

Loops: definite & indefinite

Conditionals: if-elif-else

Logical Expressions & Circuits

Functions: parameters & returns

Packages:

I Built-in: turtle, math, random
I Popular: numpy, matplotlib, pandas, folium

CSci 127 (Hunter) Lecture 11 24 April 2018 17 / 51



Python & Circuits Review: 10 Weeks in 10 Minutes

A whirlwind tour with
10 (or so) challenges...

CSci 127 (Hunter) Lecture 11 24 April 2018 18 / 51



In Pairs or Triples: Week 1

Predict what the code will do:

CSci 127 (Hunter) Lecture 11 24 April 2018 19 / 51



In Pairs or Triples: Week 2

Predict what the code will do:

CSci 127 (Hunter) Lecture 11 24 April 2018 20 / 51



In Pairs or Triples: Week 3

Predict what the code will do:

CSci 127 (Hunter) Lecture 11 24 April 2018 21 / 51



In Pairs or Triples: Week 4

Extend this program to also allow drawing in purple & stamping:

CSci 127 (Hunter) Lecture 11 24 April 2018 22 / 51



In Pairs or Triples: Week 5

When does this circuit yield true?

That is, what values for the inputs give an output value of true?

CSci 127 (Hunter) Lecture 11 24 April 2018 23 / 51



In Pairs or Triples: Week 6

Predict what the following will do:

print("Queens:", pop["Queens"].min())

print("S I:", pop["Staten Island"].mean())

print("S I:", pop["Staten Island"].std())

pop.plot.bar(x="Year")

pop.plot.scatter(x="Brooklyn", y= "Total")

pop["Fraction"] = pop["Bronx"]/pop["Total"]

CSci 127 (Hunter) Lecture 11 24 April 2018 24 / 51



In Pairs or Triples: Week 7

Fill in the function body:

CSci 127 (Hunter) Lecture 11 24 April 2018 25 / 51



In Pairs or Triples: Week 8

What are the formal parameters for the functions?

What is the output of:

r = foo([1,2,3,4])

print("Return: ", r)

What is the output of:

r = foo([1024,512,256,128])

print("Return: ", r)

CSci 127 (Hunter) Lecture 11 24 April 2018 26 / 51



In Pairs or Triples: Week 9

What does this code do?

CSci 127 (Hunter) Lecture 11 24 April 2018 27 / 51



In Pairs or Triples: Week 10

Predict what the code will do:

Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

CSci 127 (Hunter) Lecture 11 24 April 2018 28 / 51



Python & Circuits Review: 10 Weeks in 10 Minutes

Input/Output (I/O): input() and print();
pandas for CSV files

Types:

I Primitive: int, float, bool, string;
I Container: lists (but not dictionaries/hashes

or tuples)

Objects: turtles (used but did not design our own)

Loops: definite & indefinite

Conditionals: if-elif-else

Logical Expressions & Circuits

Functions: parameters & returns

Packages:

I Built-in: turtle, math, random
I Popular: numpy, matplotlib, pandas, folium

CSci 127 (Hunter) Lecture 11 24 April 2018 29 / 51



Lecture Slip: Commenting Code

In pairs or triples:

What does the code do?

Add comments to explain
each line.

CSci 127 (Hunter) Lecture 11 24 April 2018 30 / 51



Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.

Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 24 April 2018 31 / 51



Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages

(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 24 April 2018 31 / 51



Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).

Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 24 April 2018 31 / 51



Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.

Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 24 April 2018 31 / 51



Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 11 24 April 2018 31 / 51



Machine Language

(Ruth Gordon & Ester Gerston programming the ENIAC, UPenn)

CSci 127 (Hunter) Lecture 11 24 April 2018 32 / 51



Machine Language

(wiki)

CSci 127 (Hunter) Lecture 11 24 April 2018 33 / 51



Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 11 24 April 2018 34 / 51



Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 11 24 April 2018 34 / 51



Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 11 24 April 2018 34 / 51



Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 11 24 April 2018 34 / 51



“Hello World!” in Simplified Machine Language

(WeMIPS)

CSci 127 (Hunter) Lecture 11 24 April 2018 35 / 51



WeMIPS

(Demo with WeMIPS)

CSci 127 (Hunter) Lecture 11 24 April 2018 36 / 51



In Pairs or Triples:

Write a program that prints out the alphabet: a b c d ... x y z

CSci 127 (Hunter) Lecture 11 24 April 2018 37 / 51



WeMIPS

(Demo with WeMIPS)

CSci 127 (Hunter) Lecture 11 24 April 2018 38 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.

I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.

I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.

I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:

I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.

I Style of questions: what does the code do? short answer, write
functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Final Overview: Format

The exam is 2 hours long.

There are 4 different versions to discourage copying.

It is on paper. No use of computers, phones, etc. allowed.

You may have 1 piece of 8.5” x 11” piece of paper.
I With notes, examples, programs: what will help you on the exam.
I No origami– it’s distracting to others taking the exam.
I Best if you design/write yours since excellent way to study.

The exam format:
I 10 questions, each worth 10 points.
I Style of questions: what does the code do? short answer, write

functions, top down design, & write complete programs.

Past exams available on webpage (includes answer keys).

CSci 127 (Hunter) Lecture 11 24 April 2018 39 / 51



Recap: Python, Languages, & Design

On lecture slip, write down a topic you wish we
had spent more time (and why).

Python language

Logical Circuits

Simplified Machine Language

Design: from written description (‘specs’) to
function inputs & outputs (‘APIs’)

CSci 127 (Hunter) Lecture 11 24 April 2018 40 / 51



Recap: Python, Languages, & Design

On lecture slip, write down a topic you wish we
had spent more time (and why).

Python language

Logical Circuits

Simplified Machine Language

Design: from written description (‘specs’) to
function inputs & outputs (‘APIs’)

CSci 127 (Hunter) Lecture 11 24 April 2018 40 / 51



Recap: Python, Languages, & Design

On lecture slip, write down a topic you wish we
had spent more time (and why).

Python language

Logical Circuits

Simplified Machine Language

Design: from written description (‘specs’) to
function inputs & outputs (‘APIs’)

CSci 127 (Hunter) Lecture 11 24 April 2018 40 / 51



Recap: Python, Languages, & Design

On lecture slip, write down a topic you wish we
had spent more time (and why).

Python language

Logical Circuits

Simplified Machine Language

Design: from written description (‘specs’) to
function inputs & outputs (‘APIs’)

CSci 127 (Hunter) Lecture 11 24 April 2018 40 / 51



Recap: Python, Languages, & Design

On lecture slip, write down a topic you wish we
had spent more time (and why).

Python language

Logical Circuits

Simplified Machine Language

Design: from written description (‘specs’) to
function inputs & outputs (‘APIs’)

CSci 127 (Hunter) Lecture 11 24 April 2018 40 / 51



Final Overview: Top-Down Design & APIs
For each question, write only the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

Write a function that takes a string and returns its length.

Write a function that, given a DataFrame, returns the minimal value
in the first column.

Write a function that takes a whole number and returns the
corresponding binary number as a string.

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

(Hint: highlight key words, make list of inputs, list of outputs, then put
together.)

CSci 127 (Hunter) Lecture 11 24 April 2018 41 / 51



Final Overview: Top-Down Design & APIs
For each question, write only the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

Write a function that takes a string and returns its length.

Write a function that, given a DataFrame, returns the minimal value
in the first column.

Write a function that takes a whole number and returns the
corresponding binary number as a string.

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

(Hint: highlight key words, make list of inputs, list of outputs, then put
together.)

CSci 127 (Hunter) Lecture 11 24 April 2018 41 / 51



Final Overview: Top-Down Design & APIs
For each question, write only the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

Write a function that takes a string and returns its length.

Write a function that, given a DataFrame, returns the minimal value
in the first column.

Write a function that takes a whole number and returns the
corresponding binary number as a string.

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

(Hint: highlight key words, make list of inputs, list of outputs, then put
together.)

CSci 127 (Hunter) Lecture 11 24 April 2018 41 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 11 24 April 2018 42 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 11 24 April 2018 42 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg)

lbs = kg * 2.2

return(lbs)

CSci 127 (Hunter) Lecture 11 24 April 2018 43 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 11 24 April 2018 44 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 11 24 April 2018 44 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

length = len(str)

return(length)

CSci 127 (Hunter) Lecture 11 24 April 2018 45 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 11 24 April 2018 46 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 11 24 April 2018 46 / 51



Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

mM = df[’Manhattan’].min()

return(mM)

CSci 127 (Hunter) Lecture 11 24 April 2018 47 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 11 24 April 2018 48 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 11 24 April 2018 48 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

binStr = ""

while (num > 0):

#Divide by 2, and add the remainder to the string

r = num %2

binString = str(r) + binStr

num = num / 2

return(binStr)

CSci 127 (Hunter) Lecture 11 24 April 2018 49 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 11 24 April 2018 50 / 51



Final Overview
For each question, write the function header (name & inputs) and return
values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 11 24 April 2018 50 / 51



Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

(Some formula for payment)

return(payment)

CSci 127 (Hunter) Lecture 11 24 April 2018 51 / 51


