
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 10 17 April 2018 1 / 36



Announcements

Final will be Tuesday, 22 May, 9am to 11am.

For those with conflicts, we are arranging an
alternative time (most likely reading day).

Best way to prepare for final:

I Do the programming problems & labs.
I Do the sample final problems

(in lecture & past exams on webpage).
I Attend lecture & review lecture notes.
I Do the associated reading.

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Artificial Intelligence

CSci 127 (Hunter) Lecture 10 17 April 2018 2 / 36



Announcements

Final will be Tuesday, 22 May, 9am to 11am.

For those with conflicts, we are arranging an
alternative time (most likely reading day).

Best way to prepare for final:

I Do the programming problems & labs.
I Do the sample final problems

(in lecture & past exams on webpage).
I Attend lecture & review lecture notes.
I Do the associated reading.

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Artificial Intelligence

CSci 127 (Hunter) Lecture 10 17 April 2018 2 / 36



Announcements

Final will be Tuesday, 22 May, 9am to 11am.

For those with conflicts, we are arranging an
alternative time (most likely reading day).

Best way to prepare for final:

I Do the programming problems & labs.
I Do the sample final problems

(in lecture & past exams on webpage).
I Attend lecture & review lecture notes.
I Do the associated reading.

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Artificial Intelligence

CSci 127 (Hunter) Lecture 10 17 April 2018 2 / 36



Announcements

Final will be Tuesday, 22 May, 9am to 11am.

For those with conflicts, we are arranging an
alternative time (most likely reading day).

Best way to prepare for final:

I Do the programming problems & labs.

I Do the sample final problems
(in lecture & past exams on webpage).

I Attend lecture & review lecture notes.
I Do the associated reading.

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Artificial Intelligence

CSci 127 (Hunter) Lecture 10 17 April 2018 2 / 36



Announcements

Final will be Tuesday, 22 May, 9am to 11am.

For those with conflicts, we are arranging an
alternative time (most likely reading day).

Best way to prepare for final:

I Do the programming problems & labs.
I Do the sample final problems

(in lecture & past exams on webpage).

I Attend lecture & review lecture notes.
I Do the associated reading.

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Artificial Intelligence

CSci 127 (Hunter) Lecture 10 17 April 2018 2 / 36



Announcements

Final will be Tuesday, 22 May, 9am to 11am.

For those with conflicts, we are arranging an
alternative time (most likely reading day).

Best way to prepare for final:

I Do the programming problems & labs.
I Do the sample final problems

(in lecture & past exams on webpage).
I Attend lecture & review lecture notes.

I Do the associated reading.

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Artificial Intelligence

CSci 127 (Hunter) Lecture 10 17 April 2018 2 / 36



Announcements

Final will be Tuesday, 22 May, 9am to 11am.

For those with conflicts, we are arranging an
alternative time (most likely reading day).

Best way to prepare for final:

I Do the programming problems & labs.
I Do the sample final problems

(in lecture & past exams on webpage).
I Attend lecture & review lecture notes.
I Do the associated reading.

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Artificial Intelligence

CSci 127 (Hunter) Lecture 10 17 April 2018 2 / 36



Announcements

Final will be Tuesday, 22 May, 9am to 11am.

For those with conflicts, we are arranging an
alternative time (most likely reading day).

Best way to prepare for final:

I Do the programming problems & labs.
I Do the sample final problems

(in lecture & past exams on webpage).
I Attend lecture & review lecture notes.
I Do the associated reading.

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Artificial Intelligence

CSci 127 (Hunter) Lecture 10 17 April 2018 2 / 36



Today’s Topics

Recap: folium & koalas

Indefinite Loops

Searching Data

Random Numbers

CSci 127 (Hunter) Lecture 10 17 April 2018 3 / 36



folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 17 April 2018 4 / 36



folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 17 April 2018 4 / 36



folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 17 April 2018 4 / 36



folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 17 April 2018 4 / 36



folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 17 April 2018 4 / 36



From Last Time: folium example
What does this code do?

CSci 127 (Hunter) Lecture 10 17 April 2018 5 / 36



From Last Time: folium example

What does this code do?

CSci 127 (Hunter) Lecture 10 17 April 2018 6 / 36



From Last Time: folium example

What does this code do?

CSci 127 (Hunter) Lecture 10 17 April 2018 6 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 10 17 April 2018 7 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 10 17 April 2018 7 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 10 17 April 2018 7 / 36



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 10 17 April 2018 7 / 36



From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with
function calls.

CSci 127 (Hunter) Lecture 10 17 April 2018 8 / 36



From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with
function calls.

CSci 127 (Hunter) Lecture 10 17 April 2018 8 / 36



From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 10 17 April 2018 9 / 36



From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 10 17 April 2018 9 / 36



From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 10 17 April 2018 9 / 36



From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 10 17 April 2018 9 / 36



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 10 17 April 2018 10 / 36



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 10 17 April 2018 10 / 36



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 10 17 April 2018 10 / 36



From Last Time: koalas

Process:

Get template → Fill in missing → Test locally → Submit to
from github → functions → idle3/python3 → Gradescope

CSci 127 (Hunter) Lecture 10 17 April 2018 11 / 36



In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 10 17 April 2018 12 / 36



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 10 17 April 2018 13 / 36



Indefinite Loops

CSci 127 (Hunter) Lecture 10 17 April 2018 14 / 36



Indefinite Loops

CSci 127 (Hunter) Lecture 10 17 April 2018 14 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 17 April 2018 15 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 17 April 2018 15 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 17 April 2018 15 / 36



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 17 April 2018 15 / 36



In Pairs or Triples:

Answer the following questions on your lecture slip:

Of the students in the room,

Whose name comes first alphabetically?

Whose name comes last alphabetically?

Is there someone in the room with your initials?

CSci 127 (Hunter) Lecture 10 17 April 2018 16 / 36



In Pairs or Triples:

Design a program that takes a CSV file and a set of initials:

Whose name comes first alphabetically?

Whose name comes last alphabetically?

Is there someone in the room with your initials?

CSci 127 (Hunter) Lecture 10 17 April 2018 17 / 36



Design Question: Find first alphabetically

In Pandas, lovely built-in functions:

I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 17 April 2018 18 / 36



Design Question: Find first alphabetically

In Pandas, lovely built-in functions:
I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 17 April 2018 18 / 36



Design Question: Find first alphabetically

In Pandas, lovely built-in functions:
I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 17 April 2018 18 / 36



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

CSci 127 (Hunter) Lecture 10 17 April 2018 19 / 36



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max

I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

CSci 127 (Hunter) Lecture 10 17 April 2018 19 / 36



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").

I For each item, X, in the list:
F Compare X to your variable.
F If better, update your variable to be X.

CSci 127 (Hunter) Lecture 10 17 April 2018 19 / 36



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

CSci 127 (Hunter) Lecture 10 17 April 2018 19 / 36



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.

F If better, update your variable to be X.

CSci 127 (Hunter) Lecture 10 17 April 2018 19 / 36



Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

CSci 127 (Hunter) Lecture 10 17 April 2018 19 / 36



Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False
I while there are items in the list and not found

F If item matches your value, set found = True

CSci 127 (Hunter) Lecture 10 17 April 2018 20 / 36



Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False

I while there are items in the list and not found
F If item matches your value, set found = True

CSci 127 (Hunter) Lecture 10 17 April 2018 20 / 36



Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False
I while there are items in the list and not found

F If item matches your value, set found = True

CSci 127 (Hunter) Lecture 10 17 April 2018 20 / 36



Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False
I while there are items in the list and not found

F If item matches your value, set found = True

CSci 127 (Hunter) Lecture 10 17 April 2018 20 / 36



In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 10 17 April 2018 21 / 36



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 10 17 April 2018 22 / 36



In Pairs or Triples:

Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

CSci 127 (Hunter) Lecture 10 17 April 2018 23 / 36



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number..

CSci 127 (Hunter) Lecture 10 17 April 2018 24 / 36



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

CSci 127 (Hunter) Lecture 10 17 April 2018 25 / 36



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

return(num)

CSci 127 (Hunter) Lecture 10 17 April 2018 26 / 36



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

return(num)

CSci 127 (Hunter) Lecture 10 17 April 2018 27 / 36



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

while num <= 2000 or num >= 2018:

return(num)

CSci 127 (Hunter) Lecture 10 17 April 2018 28 / 36



Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

while num <= 2000 or num >= 2018:

num = int(input(’Enter a number > 2000 & < 2018’))

return(num)

CSci 127 (Hunter) Lecture 10 17 April 2018 29 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 10 17 April 2018 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 10 17 April 2018 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 10 17 April 2018 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 10 17 April 2018 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 10 17 April 2018 30 / 36



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 10 17 April 2018 30 / 36



Trinket

(Demo turtle
random walk)

CSci 127 (Hunter) Lecture 10 17 April 2018 31 / 36



CS Survey Talk

Prof. Susan Epstein
(Machine Learning)

CSci 127 (Hunter) Lecture 10 17 April 2018 32 / 36



Design Challenge

Collect all five stars (locations randomly generated):

CSci 127 (Hunter) Lecture 10 17 April 2018 33 / 36



Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 17 April 2018 34 / 36



Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or

I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 17 April 2018 34 / 36



Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 17 April 2018 34 / 36



Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 17 April 2018 34 / 36



Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 17 April 2018 34 / 36



Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 17 April 2018 34 / 36



Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 17 April 2018 34 / 36



Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 17 April 2018 34 / 36



Recap: Indefinite Loops & Random Numbers

On lecture slip, write down a topic you wish we
had spent more time (and why).

Indefinite (while) loops allow you to repeat a
block of code as long as a condition holds.

Very useful for checking user input for correctness.

Python’s built-in random package has useful
methods for generating random whole numbers
and real numbers.

To use, must include: import random.

CSci 127 (Hunter) Lecture 10 17 April 2018 35 / 36



Recap: Indefinite Loops & Random Numbers

On lecture slip, write down a topic you wish we
had spent more time (and why).

Indefinite (while) loops allow you to repeat a
block of code as long as a condition holds.

Very useful for checking user input for correctness.

Python’s built-in random package has useful
methods for generating random whole numbers
and real numbers.

To use, must include: import random.

CSci 127 (Hunter) Lecture 10 17 April 2018 35 / 36



Recap: Indefinite Loops & Random Numbers

On lecture slip, write down a topic you wish we
had spent more time (and why).

Indefinite (while) loops allow you to repeat a
block of code as long as a condition holds.

Very useful for checking user input for correctness.

Python’s built-in random package has useful
methods for generating random whole numbers
and real numbers.

To use, must include: import random.

CSci 127 (Hunter) Lecture 10 17 April 2018 35 / 36



Recap: Indefinite Loops & Random Numbers

On lecture slip, write down a topic you wish we
had spent more time (and why).

Indefinite (while) loops allow you to repeat a
block of code as long as a condition holds.

Very useful for checking user input for correctness.

Python’s built-in random package has useful
methods for generating random whole numbers
and real numbers.

To use, must include: import random.

CSci 127 (Hunter) Lecture 10 17 April 2018 35 / 36



Recap: Indefinite Loops & Random Numbers

On lecture slip, write down a topic you wish we
had spent more time (and why).

Indefinite (while) loops allow you to repeat a
block of code as long as a condition holds.

Very useful for checking user input for correctness.

Python’s built-in random package has useful
methods for generating random whole numbers
and real numbers.

To use, must include: import random.

CSci 127 (Hunter) Lecture 10 17 April 2018 35 / 36



Practice Quiz & Final Questions

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 10 17 April 2018 36 / 36



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 10 17 April 2018 36 / 36



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 10 17 April 2018 36 / 36



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 10 17 April 2018 36 / 36



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Continue from last time on the mock exam (on web page).

CSci 127 (Hunter) Lecture 10 17 April 2018 36 / 36


