MOCK FINAL EXAM CSci 127: Introduction to Computer Science Hunter College, City University of New York

10 December 2019

Exam Rules

- Show all your work. Your grade will be based on the work shown.
- The exam is closed book and closed notes with the exception of an $8 \ 1/2$ " x 11" piece of paper filled with notes, programs, etc.
- When taking the exam, you may have with you pens and pencils, and your note sheet.
- You may not use a computer, calculator, tablet, phone, or other electronic device.
- Do not open this exam until instructed to do so.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

I understand that all cases of academic dishonesty will be reported to the								
Dean of Students and will result in sanctions.								
Name:								
EmpID:								
Email:								
Signature:								

L																																
Cha		a	q	U	σ	Ð	÷	0	q			×	_	Ξ	c	0	d	σ		S	÷	D	>	M	×	7	N	Ļ		~	ł	[DEL
Hex	60	61	62	63	64	65	99	67	68	69	6A	6B	9C	6D	9Е	6F	70	71	72	73	74	75	76	77	78	79	٦A	7B	7C	7D	7E	7F
cimal																																
Dec	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Char	0	۷	B	U	۵	ш	LL.	ט	Ŧ	_	_	¥	_	Σ	z	0	٩	o	ĸ	S	F	D	>	≥	×	۲	N	_	/	_	<	I.
Hex	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
mal																																
Deci	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	06	91	92	<u>9</u> 3	94	95
lar	ACEJ																															
x Cl	[SF		-	#	\$	%	ß	-	-	-	*	+	-	ł	ł	-	0	۲	0	m	4	ŋ	9	2	œ	6		•••	۷	Ш	٨	··
	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	ЗA	ЗB	С М	BD	ЗE	ЗF
cima																																
	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
		_			[NOI													[[[[]	'LEDGE]	E]	DCK]						_	RJ	
F		HEADING	EXTJ	Ē	ANSMISS		[JDGE]			NL TABJ		AB]	[0	RETURN			ESCAPE]	NTROL 1	NTROL 2	NTROL 3	NTROL 4	ACKNOW	OUS IDL	ANS. BLO		[MUID	E]		ATOR]	ARATOR	PARATO	RATOR]
ar	ET.	RT OF H	RT OF 1	O OF TE	O OF TR.	<i>QUIRY]</i>	KNOWLE	L]	CKSPACI	RIZONTA	E FEED]	RTICAL 7	RM FEED	RIAGE	FT OUT	FT IN]	TA LINK	/ICE CO	/ICE CO	/ICE CO	/ICE CO	SATIVE /	ICHRON	3 OF TR	VCEL]	O OF ME	STITUT	CAPE]	E SEPAR	JUP SEF	CORD SE	T SEPAH
ch Ch	[NN]	[STA	[STA	[ENC	[ENC	[ENC	[ACk	[BEL	[BAC	IOH]	[LIN	[VEF	[FOF	[CAF	[SHI	[SHI	[DA]	[DE/	[DE/	[DE/	[DE/	[NEC	[SYA	[ENC	[CAI	[END	[SUE	[ESC	[FILE	[GR([REC	[UNI
H ex	0	1	2	m	4	ß	9	7	ω	ი	۷	ш	υ	۵	ш	ш	10	11	12	13	14	15	16	17	18	19	1A	18	1C	1D	1E	11
N In all																																
Deci	0	1	2	m	4	S	9	7	ω	റ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

(Image from wikipedia commons)

- 1. (a) What will the following Python code print: pioneers="Asimov%Isaac#Shelley%Mary#Gibson%William" . num = pioneers.count('%')
 i. **Output:** num = num + pioneers.count('#') + 2 print(pioneers[len(pioneers)-num:].lower()) names = pioneers.split('#') Output: print(m[-4]+'. '+m[:7]) Output: for n in names: iii. print(n.split('%')[0][0]) (b) Consider the following shell commands: \$ pwd /Users/login/temp \$ ls csBridge.png Elevations.csv p25.py p27.py i. What is the output for: **Output:** \$ mkdir hwk \$ mv *.p* hwk \$ ls
 - ii. What is the output for:

\$ cd hwk
\$ ls | grep ^p | wc -l

- iii. What is the output for:
 - \$ pwd \$ cd ../
 - \$ pwd

Output:

Output:

2. (a) Consider the code: import turtle thomasH = turtle.Turtle() i. After the command: thomasH.color("#1B1B1B"), what color is thomasH? \Box black \Box red \Box white \Box gray \Box teal ii. After the command: thomasH.color("#00AAAA"), what color is thomasH? \Box black \Box red \Box white \Box gray \Box teal iii. Fill in the code below to change thomasH to be the color white: ") thomasH.color("# iv. Fill in the code below to change **thomasH** to be the brightest purple: thomasH.color("# ") (b) Fill in the code to produce the output on the right: **Output:** i. for i in range(): 0 1 2 3 4 5 6 7 8 9


```
import numpy as np
import matplotlib.pyplot as plt
iii. im = np.ones( (10,10,3) )
im[:,.....:5,:] = 0
```

im[:,L____:5,:] = 0
plt.imshow(im)
plt.show()

print(i, end=" ")

```
import numpy as np
import matplotlib.pyplot as plt
iv. im = np.ones( (10,10,3) )
im[0::..., 2::..., :] = 0
plt.imshow(im)
plt.show()
```

Output:

-20246

Output:

(b) Draw a circuit that implements the logical expression:

((in1 or in2) and (not in2))

(c) Fill in the circuit that implements the logical expression:

- 4. (a) Draw the output for the function calls:
- i. ramble(tess,8)

```
import turtle
tess = turtle.Turtle()
tess.shape('turtle')
def ramble(t, len):
    if len <= 10:
        t.stamp()
    elif len%2 == 0:
        t.left(90)
        t.forward(len)
        ramble(t, len//2)
    else:
        t.right(90)
        t.forward(len)
        ramble(t, len//2)
```


ii. ramble(tess,180)

(b) What are the formal parameters for ramble():

- (c) If you call ramble(tess,8), which branches of the function are tested:
 - \Box the if-clause only,
 - \Box the elif-clause only,
 - \Box the else-clause only,
 - \Box if-clause and the elif-clause, or
 - \Box all the clauses are visited from this invocation (call).

(d) If you call ramble(tess, 180), which branches of the function are tested:

- \Box the if-clause only,
- \Box the elif-clause only,
- \Box the else-clause only,
- $\hfill\square$ if-clause and the <code>elif-clause</code>, or
- \Box all the clauses are visited from this invocation (call).

5.

Consider the driving times from Hunter College to LaGuardia Airport using the different routes which factors in delays due to traffic (x cars) already en route:

- $T_{RFK}(x) = 14 + \frac{x}{10,000}$, the time, in minutes, for the Triborough/RFK bridge route.
 - $T_{KQB}(x) = 18 + \frac{x}{5,000}$, the time, in minutes, for the Koch Queensboro bridge route.
 - $T_{Tun}(x) = 16 + \frac{x}{1,000}$, the time, in minutes, for the Queens Midtown Tunnel route.

Design an algorithm that, given the current status of traffic at any given moment, suggests the best route.

• Input:	
• Output:	

• Process (as a list of steps):

video_id	trending_date	title	channel_title	publish_time	views	likes	dislikes
2kyS6SvSYSE	17.14.11	WE WANT T	CaseyNeistat	2017-11-13T17:13:0	748374	57527	2966
1ZAPwfrtAFY	17.14.11	The Trump F	LastWeekTonight	2017-11-13T07:30:00	2418783	97185	6146
5qpjK5DgCt4	17.14.11	Racist Supe	Rudy Mancuso	2017-11-12T19:05:24	3191434	146033	5339
puqaWrEC7tY	17.14.11	Nickelback I	Good Mythical M	2017-11-13T11:00:04	343168	10172	666
d380meD0W0M	17.14.11	I Dare You: 0	nigahiga	2017-11-12T18:01:4	2095731	132235	1989
gHZ1Qz0KiKM	17.14.11	2 Weeks with	iJustine	2017-11-13T19:07:23	119180	9763	511
39idVpFF7NQ	17.14.11	Roy Moore &	Saturday Night L	2017-11-12T05:37:17	2103417	15993	2445
nc99ccSXST0	17.14.11	5 Ice Cream	CrazyRussianHa	2017-11-12T21:50:3	817732	23663	778
jr9QtXwC9vc	17.14.11	The Greates	20th Century Fox	2017-11-13T14:00:23	826059	3543	119
TUmyygCMMGA	17.14.11	Why the rise	Vox	2017-11-13T13:45:16	256426	12654	1363

6. Given the YouTube dataset of top-trending videos in 2017, a snapshot given in the image below:

Fill in the Python program below:

#P6, Mock: extracts data about indifferent views and about videos
#with highest number of likes
#Import the libraries for data frames and plotting data:

#Prompt user for input file name:
csvFile =
#Read input data into data frame:
youtube =
#Calculate a new column for the number of indifferent views
#(i.e. those views that did not like nor dislike)
#Print the maximum number of indifferent views on a video
#Group videos by channel to find out the maximum number of likes on each channel
channelLikes = youtube.groupby([" "])[" "].max()
#Print the top 5 channels with largest number of likes
<pre>print(channelLikes[.])</pre>

7. Write a **complete Python program** that prompts the user for the name of an .png (image) file and prints the fraction of pixels that are grayscale, or a shade of gray. Recall that a pixel is a shade of gray if the red, green, and blue values are all equal.

8. (a) What does the following MIPS program print:

(b) Modify the program to print out 10 consecutive letters starting with 'K'. Shade in the box for each line that needs to be changed and rewrite the instruction in the space below.

□ ADDI \$sp, \$sp, -6	# Set up stack
🗆 ADDI \$t0, \$zero, 75	# Start \$t0 at 75 (K)
□ ADDI \$s2, \$zero, 83	# Use to test when you reach 83 (S)
□ SETUP: SB \$t0, 0(\$sp)	# Next letter in \$t0
□ ADDI \$sp, \$sp, 1	# Increment the stack
□ ADDI \$t0, \$t0, 2	# Increase the letter by 2
□ BEQ \$t0, \$s2, DONE	# Jump to done if \$t0 == 83
□ J SETUP	# If not, jump back to SETUP for loop
□ DONE: ADDI \$t0, \$zero, 0	# Null (0) to terminate string
□ SB \$t0, 0(\$sp)	# Add null to stack
□ ADDI \$sp, \$sp, -6	# Set up stack to print
🗆 ADDI \$v0, \$zero, 4	# 4 is for print string
□ ADDI \$a0, \$sp, 0	# Set \$a0 to stack pointer for printing
□ syscall	# Print to the log

9. What is the output of the following C++ programs?

```
//Quote by Mary Shelley
   #include <iostream>
                                                   Output:
   using namespace std;
   int main()
   {
        cout<<"Invention,\nit must be ";</pre>
        cout<<"humbly admitted,\ndoes not ";</pre>
        cout<<"consist in ";</pre>
(a)
        cout<<"creating"<<endl<<"out of ";</pre>
        cout<<"void,\nbut out of chaos. ";</pre>
        cout<<"M.S.";</pre>
        return 0;
   }
   #include <iostream>
   using namespace std;
   int main()
   {
        double tot = 0;
                                                   Input: 400; Output:
        cout <<"Please enter amount\n";</pre>
        cin >> tot;
        while (tot > 100) {
(b)
            tot = tot - (tot * 0.5);
            cout << tot << endl;</pre>
        }
        return 0;
   }
   #include <iostream>
                                                    Output:
   using namespace std;
   int main(){
        int i, j;
        for (i = 1; i < 6; i++){</pre>
            for (j = 1; j < 6; j++){
                 if(j % 2 == 1)
(c)
                      cout << i;</pre>
                 else
                      cout << j;</pre>
             }
            cout << endl;</pre>
        }
        return 0;
   }
```

10. Write a **complete C++ program** that repeatedly asks the user for their score on a programming assignment until the entered score is a negative number. The program then **prints the average programming assignment score**. The negative number simply indicates that the user has finished entering scores and it is not included in the average.