
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 9 5 November 2019 1 / 47



Announcements

Grades have been updated on Blackboard.
Let us know if you see anything missing, so we
can fix it (we found duplicate accounts and
typos in EmpID’s).

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Anita Raja
Distributed Artificial Intelligence

CSci 127 (Hunter) Lecture 9 5 November 2019 2 / 47



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CS Survey

CSci 127 (Hunter) Lecture 9 5 November 2019 3 / 47



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CS Survey

CSci 127 (Hunter) Lecture 9 5 November 2019 4 / 47



In Pairs or Triples:

What are the formal parameters for the functions?

What is the output of:

r = prob4(4,"city")

print("Return: ", r)

What is the output of:

r = prob4(2,"university")

print("Return: ", r)

CSci 127 (Hunter) Lecture 9 5 November 2019 5 / 47



In Pairs or Triples:

What are the formal parameters for the functions?

CSci 127 (Hunter) Lecture 9 5 November 2019 6 / 47



In Pairs or Triples:

What are the formal parameters for the functions?

CSci 127 (Hunter) Lecture 9 5 November 2019 7 / 47



In Pairs or Triples:

What is the output of:

r = prob4(4,"city")

print("Return: ", r)

What is the output of:

r = prob4(2,"university")

print("Return: ", r)

CSci 127 (Hunter) Lecture 9 5 November 2019 8 / 47



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 9 5 November 2019 9 / 47



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 5 November 2019 10 / 47



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 5 November 2019 10 / 47



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 5 November 2019 10 / 47



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 5 November 2019 10 / 47



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 5 November 2019 10 / 47



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 5 November 2019 10 / 47



From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 5 November 2019 10 / 47



From Last Time: koalas

Process:

Get template → Fill in missing → Test locally → Submit to
from github → functions → idle3/python3 → Gradescope

CSci 127 (Hunter) Lecture 9 5 November 2019 11 / 47



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 5 November 2019 12 / 47



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 5 November 2019 12 / 47



From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 5 November 2019 12 / 47



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47



In Pairs or Triples:

Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 14 / 47



In Pairs or Triples:

Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 15 / 47



Group Work: Fill in Missing Pieces

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 16 / 47



Group Work: Fill in Missing Pieces

1 Write import statements.

import turtle

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 17 / 47



Third Part: Fill in Missing Pieces

1 Write import statements.

2 Write down new function names and inputs.

import turtle

def setUp():

#FILL IN

def getInput():

#FILL IN

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 18 / 47



Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

import turtle

def setUp():

#FILL IN

return(newTurtle)

def getInput():

#FILL IN

return(x,y)

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 19 / 47



Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

4 Fill in body of functions.

import turtle

def setUp():

newTurtle = turtle.Turtle()
newTurtle.penup()
return(newTurtle)

def getInput():

x = int(input(’Enter x: ’))
y = int(input(’Enter y: ’))
return(x,y)

def markLocation(t,x,y):

t.goto(x,y)
t.stamp()

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.CSci 127 (Hunter) Lecture 9 5 November 2019 20 / 47



In Pairs or Triples:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47



In Pairs or Triples:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47



In Pairs or Triples:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero

I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47



In Pairs or Triples:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one

I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47



In Pairs or Triples:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47



In Pairs or Triples:

Write a function that takes a number as an input and prints its
corresponding name.

For example,

I num2string(0) returns: zero
I num2string(1) returns: one
I num2string(2) returns: two

You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47



Python Tutor

(On github)

CSci 127 (Hunter) Lecture 9 5 November 2019 22 / 47



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CS Survey

CSci 127 (Hunter) Lecture 9 5 November 2019 23 / 47



Folium

CSci 127 (Hunter) Lecture 9 5 November 2019 24 / 47



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 5 November 2019 25 / 47



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 5 November 2019 25 / 47



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 5 November 2019 25 / 47



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 5 November 2019 25 / 47



Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 5 November 2019 25 / 47



Demo

(Map created by Folium.)

CSci 127 (Hunter) Lecture 9 5 November 2019 26 / 47



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 5 November 2019 27 / 47



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 5 November 2019 27 / 47



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 5 November 2019 27 / 47



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 5 November 2019 27 / 47



Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 5 November 2019 27 / 47



Demo

(Python program using Folium.)

CSci 127 (Hunter) Lecture 9 5 November 2019 28 / 47



In Pairs of Triples

Predict which each line of code does:

(example from Folium documentation)

CSci 127 (Hunter) Lecture 9 5 November 2019 29 / 47



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CS Survey

CSci 127 (Hunter) Lecture 9 5 November 2019 30 / 47



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 5 November 2019 31 / 47



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 5 November 2019 31 / 47



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 5 November 2019 31 / 47



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 5 November 2019 31 / 47



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 5 November 2019 31 / 47



Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 5 November 2019 31 / 47



Trinket

(Demo turtle
random walk)

CSci 127 (Hunter) Lecture 9 5 November 2019 32 / 47



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CS Survey

CSci 127 (Hunter) Lecture 9 5 November 2019 33 / 47



In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 9 5 November 2019 34 / 47



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 9 5 November 2019 35 / 47



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47



Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

More details next lecture...

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47



Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Random Numbers

Indefinite Loops

CS Survey

CSci 127 (Hunter) Lecture 9 5 November 2019 37 / 47



CS Survey: Prof. Raja, Distributed Artificial Intelligence

	Introduction 

CSci 127 (Hunter) Lecture 9 5 November 2019 38 / 47



CS Survey: Prof. Raja, Distributed Artificial Intelligence

	Introduction 

  
Environment

action
state

reward
Agent

CSci 127 (Hunter) Lecture 9 5 November 2019 39 / 47



CS Survey: Prof. Raja, Distributed Artificial Intelligence

Unmanned	Vehicles	

Weather	tracking	

Figh4ng	Forest	Fires	

Disaster	Rescue	

Land	Use	Simula.on	

CSci 127 (Hunter) Lecture 9 5 November 2019 40 / 47



CS Survey: Prof. Raja, Distributed Artificial Intelligence

5	

Decision		
theory	

Economic	
theories	

Sociology	

Psychology	

Distributed	
systems	

OOP	

Ar.ficial	intelligence	
Mul.agent	Systems		
and	DAI	

Autonomy	
Markets	

Learning	
Proac4vity	

Reac4vity	

Coopera4on	

Character	

Communica4on	

Mobility	

Organiza4ons	

AOP	

Mul.agent	
Systems	

Ra4onality	

Social	Abili4es	

CSci 127 (Hunter) Lecture 9 5 November 2019 41 / 47



CS Survey: Prof. Raja, Distributed Artificial Intelligence

Weather	tracking	
Network	Load	Balancing	

Smart	Home	Technology	

Predic4ve	Analy4cs	

Tracking	Meteorological	
Phenomenon	

Predic.on	and	Preven.on	of	Preterm	Birth	

CSci 127 (Hunter) Lecture 9 5 November 2019 42 / 47



CS Survey: Prof. Raja, Distributed Artificial Intelligence

§  Average commute time in 
US: 26 minutes 
§  20% longer than 1988 

§  Selfish	rou4ng	
	
§  Prevalence	 of	 traffic-based	

social	 networks	 (Waze,	
google	maps)		

CSci 127 (Hunter) Lecture 9 5 November 2019 43 / 47



CS Survey: Prof. Raja, Distributed Artificial Intelligence

Flat	rate:	8	minutes	

Flat	rate:	8	minutes	

Subject	to	conges4on:	
t	cars	take	t	minutes	

Subject	to	conges4on:	
t	cars	take	t	minutes	

Fast	Flat	rate:	
1	minute	

W

S	

V	

D

CSci 127 (Hunter) Lecture 9 5 November 2019 44 / 47



Design Challenge: Routing Traffic

Driving times to LGA with x cars already en route:

TRFK (x) = 14 + x
10,000

for the RFK bridge.

TKQB(x) = 18 + x
5,000

for the Queensboro bridge.

TTun(x) = 16 + x
1,000

, for the Midtown Tunnel.

1 Assuming no traffic (i.e. x = 0), which is fastest?

2 How many cars would slow that route to make
another route faster?

3 Should you always route all cars to the current
fastest route? Why or why not?

4 How would you divide 50, 000 cars between the
routes? Assume all start empty.

CSci 127 (Hunter) Lecture 9 5 November 2019 45 / 47



Design Challenge: Routing Traffic

Driving times to LGA with x cars already en route:

TRFK (x) = 14 + x
10,000

for the RFK bridge.

TKQB(x) = 18 + x
5,000

for the Queensboro bridge.

TTun(x) = 16 + x
1,000

, for the Midtown Tunnel.

1 Assuming no traffic (i.e. x = 0), which is fastest?

2 How many cars would slow that route to make
another route faster?

3 Should you always route all cars to the current
fastest route? Why or why not?

4 How would you divide 50, 000 cars between the
routes? Assume all start empty.

CSci 127 (Hunter) Lecture 9 5 November 2019 45 / 47



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47



Practice Quiz & Final Questions

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 5 November 2019 47 / 47



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 5 November 2019 47 / 47



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 5 November 2019 47 / 47



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 5 November 2019 47 / 47



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 5 November 2019 47 / 47



Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 5 November 2019 47 / 47


