CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

hunter.cuny.edu/csci
o
Lecture 9

DA
5 November 2019 1/ 47

Announcements

o Grades have been updated on Blackboard.
Let us know if you see anything missing, so we
can fix it (we found duplicate accounts and
typos in EmplID’s).

o Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Anita Raja
Distributed Artificial Intelligence

o = E E T 9ace

CSci 127 (Hunter) Lecture 9 5 November 2019 2 /47

Today's Topics

©

Recap: Functions & Top Down Design

©

Mapping GIS Data

(%]

Random Numbers

©

Indefinite Loops

CS Survey

©

o = = = T 9ace

CSci 127 (Hunter) Lecture 9 5 November 2019 3 /47

Today's Topics

©

Recap: Functions & Top Down Design

©

Mapping GIS Data

©

Random Numbers

©

Indefinite Loops

CS Survey

©

CSci 127 (Hunter) Lecture 9 5 November 2019 4 /47

In Pairs or Triples:

def prob4(amy, beth): def helper (meg, jo):

g ="

if amy > 4:
print ("Easy case") for j in range(meg):
kate = -1 print(j, ": ", jo[jD
else: if j %2 ==0:
s =s + jol[jl

print ("Complex case")
kate = helper (amy,beth)

return(kate)

print("Building s:", s)
return(s)

o What are the formal parameters for the functions?

o What is the output of:

r = prob4(4,"city")
print ("Return: ", r)

o What is the output of:

r = prob4(2,"university")
print ("Return: ", r)

CSci 127 (Hunter) Lecture 9 5 November 2019 5 /47

In Pairs or Triples:

def prob4(amy, beth): def helper (meg, jo):
if amy > 4: s =""
print ("Easy case") for j in range(meg):
kate = -1 print(j, ": ", jo[jD
else: if j % 2 == 0:
print ("Complex case") s = s + jo[jl
kate = helper (amy,beth) print("Building s:", s)
return(kate) return(s)

o What are the formal parameters for the functions?

CSci 127 (Hunter) Lecture 9 5 November 2019 6 /47

In Pairs or Triples:

def prob
if amy > 4:

print ("Easy case") \
kate =
else:

-1

€
def he e
for j in range(meg):
Formal
Parameters
print ("Complex case")
kate = helper (amy,beth)
return(kate)

print(j, ": ", jo[jl)
if 3 %h2==0:
s = s + jol[j]
return(s)

print("Building s:"

, 8)
o What are the formal parameters for the functions?

CSci 127 (Hunter)

Lecture 9

5 November 2019

747

In Pairs or Triples:

def helper (meg, jo):

def prob4(amy, beth):

if amy > 4: s =
print ("Easy case") for j in range(meg):
kate = -1 print(j, ": ", jo[jD
else: if j % 2 ==0:
print ("Complex case") s = s + jo[jl
kate = helper (amy,beth) print("Building s:", s)
return(s)

return(kate)

o What is the output of:

r = prob4d(4,"city")
print ("Return: ", r)

o What is the output of:

r = prob4(2,"university")
print ("Return: ", r)

CSci 127 (Hunter) Lecture 9 5 November 2019 8 /47

Python Tutor

def probé(any, beth):
4

print(*Easy case")
xate =
else
print(*Coaplex case")
kate = helper (any,beth)
return(kate)

CSci 127 (Hunter)

dot helper (eg, jo)

for j in range(meg):

return(s)

print("Building s:"

.9

(Demo with pythonTutor)

Lecture 9

5 November 2019

9/ 47

From Last Time: koalas

CSci 127 (Hunter)

Lecture 9

5 November 2019

DA

10 / 47

From Last Time: koalas

CSci 127 (Hunter)

Lecture 9

5 November 2019

DA

10 / 47

From Last Time: koalas

CSci 127 (Hunter)

Lecture 9

5 November 2019

DA

10 / 47

From Last Time: koalas

@ & CAla <)@ o o) o

http://koalastothemax.com

ey e

CSci 127 (Hunter)

Lecture 9

A
5 November 2019

10 / 47

From Last Time: koalas

http://koalastothemax.com

@ . & ° o <5l= . o o) o s o o a5
vy e e et s e e vy P ety ot o e S5t 1 P

CSci 127 (Hunter)

Lecture 9

A
5 November 2019

10 / 47

From Last Time: koalas

E—

http://koalastothemax.com

@ S TR—1 CAla <5l= . o o) o smara © o a5
vy e e et ey | ey g

CSci 127 (Hunter)

Lecture 9

A
5 November 2019

10 / 47

From Last Time: koalas

E—

http://koalastothemax.com

@ S TR—1 CAla <5l= . o o) o smara © o a5
vy e e et ey | ey g

CSci 127 (Hunter) Lecture 9

A
5 November 2019

10 / 47

From Last Time: koalas

Process:

Get template
from github —

gradescope
— Fill in missing — Test locally — Submit to
functions — idle3/python3 — Gradescope

CSci 127 (Hunter)

o
Lecture 9

= = = 9ac

5 November 2019 11 / 47

From Last Time: koalas

CSci 127 (Hunter)

@
=}

def main(}:

inFile = input('Enter image file name: ')

img = plt.imread(inFile)

#Divides the image in 1/2, 1/4, 1/8, ...

for i in range(8):
img2 = img.copy()
quarter(img2,i)

plt.imshow(img2)
plt.show()

#Make a copy to average

1/2*8, and displays each:

#5plit in half i times, and average regions

#lLoad our new image into pyplet

#show the image (waits until closed to continue)

#Shows the original image:

plt.imshow(img})
plt.show()

Lecture 9

#Load image into pyplot

#5how the image (waits until closed to continue)

[m] = = =
5 November 2019

= 9ac
12 / 47

From Last Time: koalas

52 def main(}:

78 inFile = input('Enter image file name: ')

71 img = plt.imread(inFile)

72

73 #Divides the image in 1/2, 1/4, 1/8, ... 1/2*8, and displays each:

74 for i in range(8):

75 img2 = img.copy() #Make a copy to average

76 quarter(img2,i) #5plit in half i times, and average regions

77

78 plt.imshow(img2) #lLoad our new image into pyplet

79 plt.show() #show the image (waits until closed to continue)
Be

B1 #Shows the original image:

B2 plt.imshow(img}) #Load image into pyplot

B3 plt.show() #5how the image (waits until closed to continue)
B4

o
wn

o The main() is written for you.

= = = E E DA
CSci 127 (Hunter) Lecture 9 5 November 2019 12 / 47

From Last Time: koalas

52 def main(}:
e inFile = input('Enter image file name: ')

img = plt.imread(inFile)

2
73 #Divides the image in 1/2, 1/4, 1/8, ... 1/2*8, and displays each:

for i in range(8):

img2 = img.copy() #Make a copy to average

6 quarter(img2,i) #5plit in half i times, and average regions

plt.imshow(img2) #lLoad our new image into pyplet
9 plt.show() #show the image (waits until closed to continue)

o o
a

#Shows the original image:

B2 plt.imshow(img}) #Load image into pyplot
B3 plt.show() #5how the image (waits until closed to continue)

o o

wn

o The main() is written for you.

o Only fill in two functions: average() and setRegion().
=} (=) = E E DA
CSci 127 (Hunter) Lecture 9 5 November 2019 12 / 47

Top-Down Design

CSci 127 (Hunter)

o The last example demonstrates

top-down design: breaking into
subproblems, and implementing each
part separately.

F = = £ DA

Lecture 9 5 November 2019 13 / 47

Top-Down Design

CSci 127 (Hunter)

o The last example demonstrates

top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do" list.

F = = £ DA

Lecture 9 5 November 2019 13 / 47

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a

“To Do" list.
» Translate list into function names &
inputs/returns.
=] = = = = a

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do" list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

=] =) = = £ DA

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do” list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

o Excellent approach since you can then
test each part separately before adding
it to a large program.

= =) E E 9ace
CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47

Top-Down Design

o The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

» Break the problem into tasks for a
“To Do” list.

» Translate list into function names &
inputs/returns.

» Implement the functions, one-by-one.

o Excellent approach since you can then
test each part separately before adding
it to a large program.

o Very common when working with a
team: each has their own functions to
implement and maintain.

o F = = £ DA

CSci 127 (Hunter) Lecture 9 5 November 2019 13 / 47

In Pairs or Triples:

o Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.
for i in range(5):
x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 14 / 47

In Pairs or Triples:

o Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.
for i in range(5):
x,y = getlnput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 15 / 47

Group Work: Fill in Missing Pieces

def main():

tess = setUp() #Returns a purple turtle with pen up.
for i in range(5):
x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 16 / 47

Group Work: Fill in Missing Pieces

@ Write import statements.

import turtle

def main():

tess = setUp() #Returns a purple turtle with pen up.
for i in range(5):
x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 17 / 47

Third Part: Fill in Missing Pieces

@ Write import statements.

@ Write down new function names and inputs.

import turtle

def setUp():
#FILL IN

def getInput():
#FILL IN

def markLocation(t,x,y):
#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.
for i in range(5):
x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 5 November 2019 18 / 47

Third Part: Fill in Missing Pieces

@ Write import statements.

@ Write down new function names and inputs.

@ Fill in return values.

import turtle

def

def

def

def

setUp() :

#FILL IN
return(newTurtle)
getInput():

#FILL IN

return(x,y)
markLocation(t,x,y):

#FILL IN
main():
tess = setUp() #Returns a purple turtle with pen up.
for i in range(5):
x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.
CSci 127 (Hunter) Lecture 9 5 November 2019

19 / 47

Third Part: Fill in Missing Pieces

@ Write import statements.

@ Write down new function names and inputs.
@ Fill in return values.

@ Fill in body of functions.

import turtle

def setUp():
newTurtle = turtle. Turtle()
new Turtle.penup()
return(newTurtle)

def getInput():
x = int(input('Enter x: "))
y = int(input(’Enter y: "))
return(x,y)

def markLocation(t,x,y):

t.goto(x,y)
t.stamp()
def main():
tess = setUp() #Returns a purple turtle with pen up.
for i in range(5):
x,y = getInput() #Asks user for two numbers.

CSci 127 (Hunter) Lecture 9 ' 5 November 2019 20 / 47

In Pairs or Triples:

o Write a function that takes a number as an input and prints its
corresponding name.

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47

In Pairs or Triples:

o Write a function that takes a number as an input and prints its
corresponding name.

o For example,

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47

In Pairs or Triples:

o Write a function that takes a number as an input and prints its
corresponding name.

o For example,

» num2string(0) returns: zero

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47

In Pairs or Triples:

o Write a function that takes a number as an input and prints its
corresponding name.

o For example,

» num2string(0) returns: zero
» num2string(1) returns: one

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47

In Pairs or Triples:

o Write a function that takes a number as an input and prints its
corresponding name.

o For example,

» num2string(0) returns: zero
» num2string(1) returns: one
» num2string(2) returns: two

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47

In Pairs or Triples:

o Write a function that takes a number as an input and prints its
corresponding name.

o For example,

» num2string(0) returns: zero
» num2string(1) returns: one
» num2string(2) returns: two

@ You may assume that only single digits, 0,1,...,9, are given as input.

CSci 127 (Hunter) Lecture 9 5 November 2019 21 / 47

Python Tutor

(On github)

CSci 127 (Hunter) Lecture 9 5 November 2019 22 / 47

Today's Topics

©

Recap: Functions & Top Down Design

©

Mapping GIS Data

©

Random Numbers

©

Indefinite Loops

CS Survey

©

] = = = DQAC
CSci 127 (Hunter) Lecture 9 5 November 2019 23 / 47

Folium

UTTENBERG

Ay

‘O(PJ’;',:_\,
e,
4
>
Z
k!
>
=

3
L

CSci 127 (Hunter)

Lecture 9

&
Leaflet | (c) OpenStreetMap

[m]

=

A
5 November 2019

24 /47

Folium

o A module for making HTML maps.
Folium

CSci 127 (Hunter)

Lecture 9

DA
5 November 2019 25 / 47

Folium

o A module for making HTML maps.
o It's a Python interface to the popular
: leaflet. js.
Folium

CSci 127 (Hunter)

Lecture 9

DA
5 November 2019 25 / 47

Folium

o A module for making HTML maps.

o It's a Python interface to the popular

Folium leaflet. js.

o Qutputs .html files which you can open in a
browser.

o = = Do

CSci 127 (Hunter) Lecture 9 5 November 2019 25 / 47

Folium

o A module for making HTML maps.

o It's a Python interface to the popular

Folium leaflet. js.

o Qutputs .html files which you can open in a
browser.

o An extra step:

=} = = DQAC
CSci 127 (Hunter) Lecture 9 5 November 2019 25 / 47

Folium

o A module for making HTML maps.

o It's a Python interface to the popular

Folium leaflet. js.

o Qutputs .html files which you can open in a
browser.

o An extra step:

Write — Run — Open .html
code. program. in browser.
o <& = E z 9ac

CSci 127 (Hunter) Lecture 9 5 November 2019 25 / 47

Demo

ot

‘Q% Q%‘ (Map created by Folium.)

%

Leaflet | (c) OpenStreetiap

CSci 127 (Hunter)

Lecture 9

DA
5 November 2019 26 / 47

FOIiUm

© To use:

import folium

FO"Um

CSci 127 (Hunter)

Lecture 9

5 November 2019

Q>
27 / 47

Folium

@ To use:
import folium
o Create a map:

FO“Um myMap = folium.Map()

CSci 127 (Hunter) Lecture 9

5 November 2019

DA
27 / 47

Folium

@ To use:
import folium
o Create a map:
Folium myMap = folium.Map()
0 Make markers:

newMark = folium.Marker([lat,lon],popup=name)

E z 9ace

CSci 127 (Hunter) Lecture 9 5 November 2019 27 / 47

Folium

0 To use:
import folium
o Create a map:
Folium myMap = folium.Map()
O Make markers:
newMark = folium.Marker([lat,lon],popup=name)
o Add to the map:
newMark.add_to (myMap)

Q>

[m] = = =
CSci 127 (Hunter) Lecture 9 5 November 2019 27 / 47

Folium

0 To use:
import folium
0 Create a map:
Folium myMap = folium.Map()
O Make markers:
newMark = folium.Marker([lat,lon],popup=name)
o Add to the map:
newMark.add_to (myMap)

@ Many options to customize background map (“tiles”)
and markers.

[m] = = =
CSci 127 (Hunter) Lecture 9 5 November 2019 27 / 47

Q>

Demo

Q%‘ (Python program using Folium.)

Leaflet | (c) OpenStreetiap

CSci 127 (Hunter)

Lecture 9

DA
5 November 2019 28 / 47

In Pairs of Triples

m = folium.Map(

o Predict which each line of code does

zoom_start=12,

location=[45.372, -121.6972],
)

tiles='Stamen Terrain'
folium.Marker(
location=[45.3288, -121.6625],

popup='Mt. Hood Meadows',

icon=folium.Tcon(icon='cloud')
}.add_to(m)
folium.Marker

location=[45.3311, -121.7113],
popup='Timberline Lodge',
icon=folium.Tcon(color="green')
).add_tof{m)

folium.Marker

lecation=[45.3300, -121.6823],

popup='Some Other Location',
icon=folium.Icon(color='red', icon='info-sign')
).add_to(m)

(example from Folium documentation)

CSci 127 (Hunter)

« 0
Lecture 9

> <

3

DA

5 November 2019 29 / 47

Today's Topics

©

Recap: Functions & Top Down Design
Mapping GIS Data

©

(%]

Random Numbers

©

Indefinite Loops

CS Survey

©

Q>

] = = P 8
CSci 127 (Hunter) Lecture 9 5 November 2019 30 / 47

Python's random package

o Python has a built-in package for generating
pseudo-random numbers.

fimport turtle
import random

trey = turtle.TurtleQ)
trey.speed(10)

for i in range(100):
trey . forward(10)
a = random. randrange(0,360,90)
trey.rightCa)

CSci 127 (Hunter) Lecture 9 5 November 2019 31/ 47

Python's random package

o Python has a built-in package for generating
pseudo-random numbers.

o To use:

import random

fimport turtle
import random

trey = turtle.TurtleQ)
trey.speed(10)

for i in range(100):
trey . forward(10)
a = random. randrange(0,360,90)
trey.rightCa)

CSci 127 (Hunter) Lecture 9 5 November 2019 31/ 47

Python's random package

o Python has a built-in package for generating
pseudo-random numbers.

o To use:

import random

o Useful command to generate whole numbers:

iimport turtle
iaport. randa random.randrange (start,stop,step)
trey = turtle.Turtle()

trey.speed(10)

which gives a number chosen randomly from
ey formik10y the specified range.

a = random. randrange(®,360,90)
trey.rightCa)

CSci 127 (Hunter) Lecture 9 5 November 2019

31/ 47

Python's random package

o Python has a built-in package for generating
pseudo-random numbers.

o To use:

import random

o Useful command to generate whole numbers:

iimport turtle
iaport. randa random.randrange (start,stop,step)
trey = turtle.Turtle()
trey.speed(10)

which gives a number chosen randomly from
ey formik10y the specified range.

a = random. randrange(®,360,90)
trey.rightCa)

o Useful command to generate real numbers:

CSci 127 (Hunter) Lecture 9 5 November 2019

31/ 47

Python's random package

Qo

fimport turtle
import random

trey = turtle.TurtleQ)
trey.speed(10)

for 1 in range(100):
trey. fornard(10)
a = random. randrange(®,360,90)
trey.rightCa)

CSci 127 (Hunter)

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:
random.randrange (start,stop,step)
which gives a number chosen randomly from
the specified range.
Useful command to generate real numbers:
random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Lecture 9 5 November 2019

31/ 47

Python's random package

o Python has a built-in package for generating
pseudo-random numbers.

o To use:

import random

o Useful command to generate whole numbers:

fimport turtle

iaport: randon random.randrange (start,stop,step)
trey = turtle.Turtle() . .

trey speed(ie) which gives a number chosen randomly from
For L horenoccion: the specified range.

a = random. randrange(®,360,90)
trey.rightCa)

o Useful command to generate real numbers:
random.random()
which gives a number chosen (uniformly) at
random from [0.0,1.0).

o Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 5 November 2019 31/ 47

Trinket

import turtle
import random

trey = turtle.Turtle()
trey.speed(10) (Demo turtle
o random walk)
for 1 1n range(18@):
trey.forward(10)
a = random. randrange(®,360,98)
trey.right{a)

CSci 127 (Hunter) Lecture 9 5 November 2019 32 /47

Today's Topics

©

Recap: Functions & Top Down Design
Mapping GIS Data

©

(%]

Random Numbers

©

Indefinite Loops

CS Survey

©

Q>

] = = P 8
CSci 127 (Hunter) Lecture 9 5 November 2019 33 /47

In Pairs or Triples:

Predict what the code will do:

dist = int(input('Enter distance:
while dist < 0:

)

print('Distances cannot be negative.')
dist = int(input('Enter distance: "))

print('The distance entered is', dist)

CSci 127 (Hunter)

Lecture 9

DA
5 November 2019 34 /47

Python Tutor

dist = int(input('Enter distance: '))
while dist < 0:
print('Distances cannot be negative.')

dist - int(input('Enter distance: ')) (Demo Wlth pythonTut or)

print('The distance entered is', dist)

CSci 127 (Hunter) Lecture 9 5 November 2019 35/ 47

Indefinite Loops

dist = int(input('Enter distance: '))
while dist < 0:

print('Distances cannot be negative.')

dist = int(input('Enter distance:

print('The distance entered is', dist)

#Spring 2012 Final Exam, #8

nums - [1,4,0,6,5,2,9,8,12]
print(nums)

while i < lennums)-1:
if nums[i] < nums[i+1]:

nums[i], nums[i+1] - nums[i+1], nums[i]

imisl

print(nums)

CSci 127 (Hunter)

o Indefinite loops repeat as long as the

condition is true.

Lecture 9

5 November 2019

36 / 47

Indefinite Loops

o Indefinite loops repeat as long as the
condition is true.

dist = int(input('Enter distance: '))
while dist < 0:

preC Distrces covt 12 gt > o Could execute the body of the loop
print('Tre distance entered is', dist) zero times, 10 times, infinite number
of times.
#Spring 2012 Final Exam, #8
nums = [1,4,0,6,5,2,9,8,12]
print(nums)
U]

i
while i < len(nums)-1:
if nums[i] < nums[i+1]:
nums[i], nums[i+1] = nums[i+1], nums[i]
i=isl

print(nums)

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47

Indefinite Loops

o Indefinite loops repeat as long as the
condition is true.

dist = int(input('Enter distance: '))
while dist < 0:

prine Dstaces cano be egetivn o Could execute the body of the loop
print('The distance entered is', dist) zero times, 10 times, infinite number
of times.
#Spring 2012 Final Exam, #8 L. R
nas - 140.65.298 o The condition determines how many
Wntle € < LenGoums> 12 times.

if nums[i] < nums[i+1]:
nums[i], nums[i+1] = nums[i+1], nums[i]
i=isl

print(nums)

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47

Indefinite Loops

o Indefinite loops repeat as long as the
condition is true.

dist = int(input('Enter distance: '))
while dist < 0:

pratC st et e et > o Could execute the body of the loop
print('The distance entered is', dist) zero times, 10 times, infinite number
of times.
#Spring 2012 Final Exam, #8 L. R
nas - 140.65.298 o The condition determines how many
Wntle € < LenGoums> 12 times.

if nums[i] < nums[i+1]:
nums[i], nums[i+1] = nums[i+1], nums[i]
i=isl

o Very useful for checking input,
simulations, and games.

print(nums)

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47

Indefinite Loops

o Indefinite loops repeat as long as the
condition is true.

dist = int(input('Enter distance: '))
while dist < 0:

pratC st et e et > o Could execute the body of the loop
print('The distance entered is', dist) zero times, 10 times, infinite number
of times.
#Spring 2012 Final Exam, #8 L. R
nas - 140.65.298 o The condition determines how many
Wntle € < LenGoums> 12 times.

if nums[i] < nums[i+1]:
nums[i], nums[i+1] = nums[i+1], nums[i]
i=isl

o Very useful for checking input,
simulations, and games.

print(nums)

o More details next lecture...

CSci 127 (Hunter) Lecture 9 5 November 2019 36 / 47

Today's Topics

©

Recap: Functions & Top Down Design
Mapping GIS Data

©

(%]

Random Numbers

©

Indefinite Loops

CS Survey

©

Q>

] = = P 8
CSci 127 (Hunter) Lecture 9 5 November 2019 37 /47

CS Survey: Prof. Raja, Distributed Artificial Intelligence

Introduction

A Model for Computation in the 21st
Century

CSci 127 (Hunter) Lecture 9 5 November 2019 38 / 47

CS Survey: Prof. Raja, Distributed Artificial Intelligence

Computational Multi-Agent Syster/
Agent? Distributed Al
Environment

CSci 127 (Hunter)

Lecture 9

[m]

=

Qe
5 November 2019

30 / 47

CS Survey: Prof. Raja, Distributed Artificial Intelligence

Multi agent Applications

Fighting Forest Fires ﬂ

g uns

\\\\\\

- 0
Ca=- -

CSci 127 (Hunter)

Lecture 9

DA

5 November 2019 40 / 47

CS Survey: Prof. Raja, Distributed Artificial Intelligence

Economic
theories

Decision
theory

Markets

Distributed
systems

Communication

Learning

Proactivity

B = Cooperation
Organizations
‘ Character | paactivity
sociology ‘ Social Abiliies Artificial intelligence
Multiagent Systems

and DAI

Psychology

CSci 127 (Hunter) Lecture 9 5 November 2019

41/ 47

CS Survey: Prof.

Raja, Distributed Artificial Intelligence

My Research

Prediction and Prevention of Preterm Birth

o 4
o5
g —¥
< L"
. - . Smart Home!chnology
Tracking Meteorological .
Network Load Balancing
Phenomenon

CSci 127 (Hunter)

Lecture 9

Ha o
5 November 2019

42 /a7

CS Survey: Prof. Raja, Distributed Artificial Intelligence

Traffic Networks

= Average commute time in
US: 26 minutes
= 20% longer than 1988

= Selfish routing
= Prevalence of traffic-based

social networks (Waze,
google maps)

* Goal : Reduce congestion

CSci 127 (Hunter) Lecture 9 5 November 2019 43 / 47

Flat rate: 8 minutes

4

CS Survey: Prof. Raja, Distributed Artificial Intelligence

Subject to congestion:

t cars take t minutes
Fast Flgff rate: -
s 1 mint @
Subject to congestion?

Flat rate: 8 minutes
t cars take t minutes

Braess Paradox

PRISONER2
Confess Lie
Confess| 8,8 0,10
PRISONER 1
Lie[-10,0 1,1
CSci 127 (Hunter)

Prisoner’s Dilemma

o
Lecture 9

=

Ha o
5 November 2019

a4 / a7

Design Challenge: Routing Traffic

Driving times to LGA with x cars already en route:
0 Trex(x) =14+ 10,000 o5 for the RFK bridge.
0 Tkes(x) =18+ m for the Queensboro bridge.

O Trun(x) =16+ for the Midtown Tunnel.

1,000 000’

CSci 127 (Hunter) Lecture 9 5 November 2019

45 / 47

Design Challenge: Routing Traffic

Driving times to LGA with x cars already en route:
O Trrk(x) = 14 + 1555 for the RFK bridge.
0 Tkes(x) =18+ ﬁ for the Queensboro bridge.
O Trun(x) =16+ ﬁ, for the Midtown Tunnel.

@ Assuming no traffic (i.e. x = 0), which is fastest?

@ How many cars would slow that route to make
another route faster?

@ Should you always route all cars to the current
fastest route? Why or why not?

@ How would you divide 50,000 cars between the
routes? Assume all start empty.

CSci 127 (Hunter) Lecture 9 5 November 2019

45 / 47

Recap

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47

Recap

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ Top-down design: breaking into subproblems, and
implementing each part separately.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47

Recap

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ Top-down design: breaking into subproblems, and
implementing each part separately.

O Excellent approach: can then test each part
separately before adding it to a large program.

CSci 127 (Hunter) Lecture 9 5 November 2019

46 / 47

Recap

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ Top-down design: breaking into subproblems, and
implementing each part separately.

O Excellent approach: can then test each part
separately before adding it to a large program.

@ When possible, design so that your code is flexible
to be reused (“code reuse”).

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47

Recap

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ Top-down design: breaking into subproblems, and
implementing each part separately.

O Excellent approach: can then test each part
separately before adding it to a large program.

@ When possible, design so that your code is flexible
to be reused (“code reuse”).

O Introduced a Python library, Folium for creating
interactive HTML maps.

CSci 127 (Hunter) Lecture 9 5 November 2019 46 / 47

Recap

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Lecture 9 5 November 2019

46 / 47

Recap

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

Lecture 9 5 November 2019

46 | 47

Practice Quiz & Final Questions

o Lightning rounds:

CSci 127 (Hunter)

Lecture 9

5 November 2019

NG

47 / 47

Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;

CSci 127 (Hunter)

Lecture 9

5 November 2019

NG

47 / 47

Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and

CSci 127 (Hunter)

Lecture 9

5 November 2019

Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

CSci 127 (Hunter)

Lecture 9

5 November 2019

NG

47 / 47

Practice Quiz & Final Questions

o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

o Past exams are on the webpage (under Final Exam Information).

CSci 127 (Hunter)

Lecture 9

5 November 2019

Q>

a7 / 47

Practice Quiz & Final Questions

o Lightning rounds:
» write as much you can for 60 seconds;
» followed by answer; and
> repeat.
o Past exams are on the webpage (under Final Exam Information).
o Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter)

Lecture 9

5 November 2019

Q>

a7 / 47

