
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 8 29 October 2019 1 / 41



Announcements

Each lecture includes a survey of computing
research and tech in NYC.

Today: Keith Okrosy
Career Development Services

CSci 127 (Hunter) Lecture 8 29 October 2019 2 / 41



Frequently Asked Questions

From lecture slips & recitation sections.

Can you go through the OpenData challenge from last week?

Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do I need?

I Final can replace missing lecture slips, lecture previews, code reviews, and
quizzes. Programs are 30%.

I You need to pass the final, which takes 60 out of 100 points.
I To earn a CR grade, you need 70%.
I Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 29 October 2019 3 / 41



Frequently Asked Questions

From lecture slips & recitation sections.

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do I need?

I Final can replace missing lecture slips, lecture previews, code reviews, and
quizzes. Programs are 30%.

I You need to pass the final, which takes 60 out of 100 points.
I To earn a CR grade, you need 70%.
I Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 29 October 2019 3 / 41



Frequently Asked Questions

From lecture slips & recitation sections.

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do I need?

I Final can replace missing lecture slips, lecture previews, code reviews, and
quizzes. Programs are 30%.

I You need to pass the final, which takes 60 out of 100 points.
I To earn a CR grade, you need 70%.
I Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 29 October 2019 3 / 41



Frequently Asked Questions

From lecture slips & recitation sections.

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do I need?

I Final can replace missing lecture slips, lecture previews, code reviews, and
quizzes. Programs are 30%.

I You need to pass the final, which takes 60 out of 100 points.
I To earn a CR grade, you need 70%.
I Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 29 October 2019 3 / 41



Frequently Asked Questions

From lecture slips & recitation sections.

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do I need?

I Final can replace missing lecture slips, lecture previews, code reviews, and
quizzes. Programs are 30%.

I You need to pass the final, which takes 60 out of 100 points.
I To earn a CR grade, you need 70%.
I Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 29 October 2019 3 / 41



Frequently Asked Questions

From lecture slips & recitation sections.

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do I need?

I Final can replace missing lecture slips, lecture previews, code reviews, and
quizzes. Programs are 30%.

I You need to pass the final, which takes 60 out of 100 points.
I To earn a CR grade, you need 70%.
I Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 29 October 2019 3 / 41



Frequently Asked Questions

From lecture slips & recitation sections.

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do I need?

I Final can replace missing lecture slips, lecture previews, code reviews, and
quizzes. Programs are 30%.

I You need to pass the final, which takes 60 out of 100 points.

I To earn a CR grade, you need 70%.
I Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 29 October 2019 3 / 41



Frequently Asked Questions

From lecture slips & recitation sections.

Can you go through the OpenData challenge from last week?
Yes, we’ll start with functions, and then go on to the OpenData challenge.

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes, but check with your advisor that it is possible with your major and standing.

To earn a Credit grade, what do I need?

I Final can replace missing lecture slips, lecture previews, code reviews, and
quizzes. Programs are 30%.

I You need to pass the final, which takes 60 out of 100 points.
I To earn a CR grade, you need 70%.
I Always good to aim a bit higher!

CSci 127 (Hunter) Lecture 8 29 October 2019 3 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

CS Survey: Career Services

CSci 127 (Hunter) Lecture 8 29 October 2019 4 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

CS Survey: Career Services

CSci 127 (Hunter) Lecture 8 29 October 2019 5 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 29 October 2019 6 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 29 October 2019 6 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 29 October 2019 6 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 29 October 2019 6 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 29 October 2019 6 / 41



Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parenthesis, both
in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 8 29 October 2019 7 / 41



In Pairs or Triples:

What are the formal parameters? What is returned?

CSci 127 (Hunter) Lecture 8 29 October 2019 8 / 41



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 29 October 2019 9 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 29 October 2019 10 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 29 October 2019 10 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 29 October 2019 10 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 29 October 2019 10 / 41



Input Parameters

When called, the actual
parameter values are copied to
the formal parameters.

All the commands inside the
function are performed on the
copies.

The actual parameters do not
change.

The copies are discarded when
the function is done.

The time a variable exists is
called its scope.

CSci 127 (Hunter) Lecture 8 29 October 2019 10 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 29 October 2019 11 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 29 October 2019 11 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 29 October 2019 11 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 29 October 2019 11 / 41



Input Parameters: What about Lists?

When called, the actual parameter values
are copied to the formal parameters.

What is copied with a list?

The address of the list, but not the
individual elements.

The actual parameters do not change, but
the inside elements might.

Easier to see with a demo.

CSci 127 (Hunter) Lecture 8 29 October 2019 11 / 41



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 29 October 2019 12 / 41



In Pairs or Triples:

What are the formal parameters for the functions?

What is the output of:

r = foo([1,2,3,4])

print("Return: ", r)

What is the output of:

r = foo([1024,512,256,128])

print("Return: ", r)

CSci 127 (Hunter) Lecture 8 29 October 2019 13 / 41



Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 29 October 2019 14 / 41



In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 8 29 October 2019 15 / 41



IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 8 29 October 2019 16 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

CS Survey: Career Services

CSci 127 (Hunter) Lecture 8 29 October 2019 17 / 41



OpenData Design Question

Design an algorithm that finds the closest collision.
(Sample NYC OpenData collision data file on back of lecture slip.)

CSci 127 (Hunter) Lecture 8 29 October 2019 18 / 41



OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 29 October 2019 19 / 41



OpenData Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Print the location with the smallest distance.

Let’s use function names as placeholders for the ones we’re unsure...

CSci 127 (Hunter) Lecture 8 29 October 2019 19 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 20 / 41



OpenData Design Question
Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

1 Find data set (great place to look: NYC OpenData).

import pandas as pd

inF = input(’Enter CSV file name:’)

2 Ask user for current location.

lat = float(input(’Enter latitude:’))

lon = float(input(’Enter longitude:’))

3 Open up the CSV file.

collisions = pd.read csv(inF)

4 Check distance to each to user’s location.

closestLat, closestLon = findClosest(collisions, lat, lon)

5 Print the location with the smallest distance.

print("The closest is at lat:", lat, "and lon:", lon)

CSci 127 (Hunter) Lecture 8 29 October 2019 21 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

CS Survey: Career Services

CSci 127 (Hunter) Lecture 8 29 October 2019 22 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 29 October 2019 23 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 29 October 2019 23 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 29 October 2019 23 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 29 October 2019 23 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 29 October 2019 23 / 41



Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 8 29 October 2019 23 / 41



In Pairs or Triples:

http://koalastothemax.com

Top-down design puzzle:

I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into code with function calls.

CSci 127 (Hunter) Lecture 8 29 October 2019 24 / 41



Demo

CSci 127 (Hunter) Lecture 8 29 October 2019 25 / 41



Demo

CSci 127 (Hunter) Lecture 8 29 October 2019 25 / 41



Demo

CSci 127 (Hunter) Lecture 8 29 October 2019 25 / 41



Demo

CSci 127 (Hunter) Lecture 8 29 October 2019 26 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 29 October 2019 27 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 29 October 2019 27 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:

I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 29 October 2019 27 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,

I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 29 October 2019 27 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.

I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 29 October 2019 27 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.

I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 29 October 2019 27 / 41



Design: Koalas to the Max

Input: Image & mouse movements

Output: Completed image

Design:
I Every mouse movement,
I Divide the region into 4 quarters.
I Average the color of each quarter.
I Set each quarter to its average.

CSci 127 (Hunter) Lecture 8 29 October 2019 27 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Averaging numpy arrays

Average each color channel of the image:

redAve = np.average(region[:,:,0])

greenAve = np.average(region[:,:,1])

blueAve = np.average(region[:,:,2])

Set each pixel to the average value:

region[:,:,0] = redAve

region[:,:,1] = greenAve

region[:,:,2] = blueAve

CSci 127 (Hunter) Lecture 8 29 October 2019 28 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

CS Survey: Career Services

CSci 127 (Hunter) Lecture 8 29 October 2019 29 / 41



Github

Octocat

In Lab 5, we created github accounts.

Like Google docs for code...

Used to share code, documents, etc.

More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code.

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

(Show github csci127 github repo.)

CSci 127 (Hunter) Lecture 8 29 October 2019 30 / 41



Github

Octocat

In Lab 5, we created github accounts.

Like Google docs for code...

Used to share code, documents, etc.

More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code.

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

(Show github csci127 github repo.)

CSci 127 (Hunter) Lecture 8 29 October 2019 30 / 41



Github

Octocat

In Lab 5, we created github accounts.

Like Google docs for code...

Used to share code, documents, etc.

More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code.

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

(Show github csci127 github repo.)

CSci 127 (Hunter) Lecture 8 29 October 2019 30 / 41



Github

Octocat

In Lab 5, we created github accounts.

Like Google docs for code...

Used to share code, documents, etc.

More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code.

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

(Show github csci127 github repo.)

CSci 127 (Hunter) Lecture 8 29 October 2019 30 / 41



Github

Octocat

In Lab 5, we created github accounts.

Like Google docs for code...

Used to share code, documents, etc.

More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code.

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

(Show github csci127 github repo.)

CSci 127 (Hunter) Lecture 8 29 October 2019 30 / 41



Github

Octocat

In Lab 5, we created github accounts.

Like Google docs for code...

Used to share code, documents, etc.

More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code.

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

(Show github csci127 github repo.)

CSci 127 (Hunter) Lecture 8 29 October 2019 30 / 41



Github

Octocat

In Lab 5, we created github accounts.

Like Google docs for code...

Used to share code, documents, etc.

More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code.

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

(Show github csci127 github repo.)

CSci 127 (Hunter) Lecture 8 29 October 2019 30 / 41



Github

Octocat

In Lab 5, we created github accounts.

Like Google docs for code...

Used to share code, documents, etc.

More formally: git is a version
control protocol for tracking changes
and versions of documents.

Github provides hosting for
repositories (‘repos’) of code.

Also convenient place to host websites
(i.e. stjohn.github.io).

In lab, we will set up github accounts
and copy (‘clone’) documents from
the class repo. (More in future
courses.)

(Show github csci127 github repo.)

CSci 127 (Hunter) Lecture 8 29 October 2019 30 / 41



Today’s Topics

More on Functions

Recap: Open Data

Top Down Design

Github

CS Survey: Career Services

CSci 127 (Hunter) Lecture 8 29 October 2019 31 / 41



CS Survey Talk

Keith Okrosy
Career Development Services

CSci 127 (Hunter) Lecture 8 29 October 2019 32 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Find all current city job postings for internship positions.

CSci 127 (Hunter) Lecture 8 29 October 2019 33 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 29 October 2019 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 29 October 2019 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:

1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 29 October 2019 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.

2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 29 October 2019 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.

3 Print out those rows.

CSci 127 (Hunter) Lecture 8 29 October 2019 34 / 41



Design Challenge

(data.cityofnewyork.us/City-Government/NYC-Jobs/kpav-sd4t)

Input: CSV file from NYC OpenData.

Output: A list of internships offered by the city.

Process:
1 Open the file.
2 Select the rows that have “intern” in the business title.
3 Print out those rows.

CSci 127 (Hunter) Lecture 8 29 October 2019 34 / 41



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 8 29 October 2019 35 / 41



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 8 29 October 2019 35 / 41



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 8 29 October 2019 35 / 41



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 8 29 October 2019 35 / 41



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 8 29 October 2019 35 / 41



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 8 29 October 2019 35 / 41



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 8 29 October 2019 35 / 41



Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Functions are a way to break code into pieces,
that can be easily reused.

Functions can have input parameters that
bring information into the function,

And return values that send information back.

Top-down design: breaking into subproblems,
and implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

Github provides a platform for sharing work that
allows collaboration (and version control).

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 8 29 October 2019 35 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4 and #7.

CSci 127 (Hunter) Lecture 8 29 October 2019 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4 and #7.

CSci 127 (Hunter) Lecture 8 29 October 2019 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4 and #7.

CSci 127 (Hunter) Lecture 8 29 October 2019 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4 and #7.

CSci 127 (Hunter) Lecture 8 29 October 2019 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4 and #7.

CSci 127 (Hunter) Lecture 8 29 October 2019 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4 and #7.

CSci 127 (Hunter) Lecture 8 29 October 2019 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4 and #7.

CSci 127 (Hunter) Lecture 8 29 October 2019 36 / 41



Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions! Starting with S18, V1, #4 and #7.

CSci 127 (Hunter) Lecture 8 29 October 2019 36 / 41



Final Exam: Spring 2018, Version 1, #4a

CSci 127 (Hunter) Lecture 8 29 October 2019 37 / 41



Final Exam: Spring 2018, Version 1, #4a

(Demo with trinket)

CSci 127 (Hunter) Lecture 8 29 October 2019 38 / 41



Final Exam: Spring 2018, Version 1, #4b

CSci 127 (Hunter) Lecture 8 29 October 2019 39 / 41



Final Exam: Spring 2018, Version 1, #4b

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 8 29 October 2019 40 / 41



Writing Boards

Return writing boards as you leave...

CSci 127 (Hunter) Lecture 8 29 October 2019 41 / 41


