
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 3 10 September 2019 1 / 41

Announcements

Guest Lecturer: Katherine Howitt

CSci 127 (Hunter) Lecture 3 10 September 2019 2 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?

Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?

Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?

Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?

Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions:

print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!")

or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)

Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string:

words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1]

or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?

Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?

We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Frequently Asked Questions

From lecture slips & recitation sections.

Can I get a copy of the lecture slides and programs from lecture?
Yes, the slides are posted on the class website.

Can I work ahead on programs?
Yes, you’ll get the most out of lecture if you’re 5 or so programs ahead. We give
an extra 7-10 days on deadlines from when material is presented.

I’m sure I did Problem 9 correctly, but Gradescope disagrees. Why?
Some of the grading scripts are really finicky about spacing and new lines.
Let us know– some we can fix, some have to match exactly.

I don’t get the brackets. Why are using them? Why not parenthesis?
Parenthesis are for functions: print("Hi!") or tori.left(90)
Brackets are for accessing part of a list or string: words[1] or mess[3:6].

Could you explain more about arithmetic (especially modulo!) in Python?
Yes, will do! We’ll start out with arithmetic.

One more time on all the range() options?
We’ll have some in group work and a quick review.

CSci 127 (Hunter) Lecture 3 10 September 2019 3 / 41

Today’s Topics

Arithmetic

Indexing and Slicing Lists

Design Challenge: Planes

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 10 September 2019 4 / 41

Today’s Topics

Arithmetic

Indexing and Slicing Lists

Design Challenge: Planes

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 10 September 2019 5 / 41

Arithmetic

Some arithmetic operators in Python:

Addition:

sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction:

deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication:

area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division:

ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:

weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:

days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:

pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

Arithmetic

Some arithmetic operators in Python:

Addition: sum = sum + 3

Subtraction: deb = deb - item

Multiplication: area = h * w

Division: ave = total / n

Floor or Integer Division:
weeks = totalDays // 7

Remainder or Modulus:
days = totalDays % 7

Exponentiaion:
pop = 2**time

CSci 127 (Hunter) Lecture 3 10 September 2019 6 / 41

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 10 September 2019 7 / 41

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 10 September 2019 7 / 41

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 10 September 2019 7 / 41

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 10 September 2019 7 / 41

In Pairs or Triples...

What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

If the user enters, 12 and 4.

If the user enters, 8 and 20.

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 10 September 2019 7 / 41

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 8 / 41

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 9 and 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 8 / 41

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 12 and 4.

CSci 127 (Hunter) Lecture 3 10 September 2019 9 / 41

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 12 and 4.

CSci 127 (Hunter) Lecture 3 10 September 2019 9 / 41

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 8 and 20.

CSci 127 (Hunter) Lecture 3 10 September 2019 10 / 41

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 8 and 20.

CSci 127 (Hunter) Lecture 3 10 September 2019 10 / 41

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 10 September 2019 11 / 41

In Pairs or Triples...
What does this code do?

In particular, what is printed...

If the user enters, 11 and 1.

CSci 127 (Hunter) Lecture 3 10 September 2019 11 / 41

Today’s Topics

Arithmetic

Indexing and Slicing Lists

Design Challenge: Planes

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 10 September 2019 12 / 41

In Pairs or Triples...

Mostly review:

CSci 127 (Hunter) Lecture 3 10 September 2019 13 / 41

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 3 10 September 2019 14 / 41

Review: range()

The three versions:

range(stop)

range(start, stop)

range(start, stop, step)

CSci 127 (Hunter) Lecture 3 10 September 2019 15 / 41

Review: range()

The three versions:

range(stop)

range(start, stop)

range(start, stop, step)

CSci 127 (Hunter) Lecture 3 10 September 2019 15 / 41

Review: range()

The three versions:

range(stop)

range(start, stop)

range(start, stop, step)

CSci 127 (Hunter) Lecture 3 10 September 2019 15 / 41

Review: range()

The three versions:

range(stop)

range(start, stop)

range(start, stop, step)

CSci 127 (Hunter) Lecture 3 10 September 2019 15 / 41

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 10 September 2019 16 / 41

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 10 September 2019 16 / 41

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 10 September 2019 16 / 41

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 10 September 2019 16 / 41

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 10 September 2019 16 / 41

Slices

Similar to range(), you can take
portions or slices of lists and strings:

s[5:8]

gives: "Uni"

Also works for lists:

names[1:3]

gives: ["Anna", "Alice"]

Python also lets you “count backwards”:
last element has index: -1.

CSci 127 (Hunter) Lecture 3 10 September 2019 16 / 41

Preview: Images

img[i,j,0]

img[i,j,1]

img[i,j,2]

This image has 287 rows, 573 columns, and 4 color channels

(for red, green, blue, and a 4th for how transparent).

CSci 127 (Hunter) Lecture 3 10 September 2019 17 / 41

Preview: Images

img[i,j,0]

img[i,j,1]

img[i,j,2]

This image has 287 rows, 573 columns, and 4 color channels

(for red, green, blue, and a 4th for how transparent).

CSci 127 (Hunter) Lecture 3 10 September 2019 17 / 41

Today’s Topics

Arithmetic

Indexing and Slicing Lists

Design Challenge: Planes

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 10 September 2019 18 / 41

Design Challenge: Planes

CSci 127 (Hunter) Lecture 3 10 September 2019 19 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist:

refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.

I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.

I They build an airplane to your design (test
plane) without consulting you.

I You exchange test planes, and revise your
algorithm.

I The build team makes 3 copies of your paper
airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.

I You exchange test planes, and revise your
algorithm.

I The build team makes 3 copies of your paper
airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.

I The build team makes 3 copies of your paper
airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane,

and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.

I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Planes

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 20 / 41

Design Challenge: Initial Design (2 Minutes)

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 21 / 41

Design Challenge: Test Build (2 Minutes)

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design

(test plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 22 / 41

Design Challenge: Revise Design (3 Minutes)

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 23 / 41

Design Challenge: Build Final Planes (2 Minutes)

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your

paper airplane, and flies it from the balcony
(must be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 24 / 41

Design Challenge: Test Planes (3 Minutes)

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony
(must be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 25 / 41

Design Challenge: Retrieve Planes (2 Minutes)

A classic write-an-algorithm challenge for
introductory programming.

With a slight twist: refining designs

I As a team, write down your design.
I Exchange with another team.
I They build an airplane to your design (test

plane) without consulting you.
I You exchange test planes, and revise your

algorithm.
I The build team makes 3 copies of your paper

airplane, and flies it from the balcony (must
be behind first row of seats).

I Will be judged on closeness to the stage.
I Winning design/build team gets chocolate.

Remember to pick up all your airplanes!

CSci 127 (Hunter) Lecture 3 10 September 2019 26 / 41

Today’s Topics

Arithmetic

Indexing and Slicing Lists

Design Challenge: Planes

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 10 September 2019 27 / 41

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 10 September 2019 28 / 41

Colors

Can specify by name.

Can specify by numbers:

I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 10 September 2019 28 / 41

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).

I Adding light, not paint:
F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 10 September 2019 28 / 41

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 10 September 2019 28 / 41

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue

F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 10 September 2019 28 / 41

Colors

Can specify by name.

Can specify by numbers:
I Amount of Red, Green, and Blue (RGB).
I Adding light, not paint:

F Black: 0% red, 0% green, 0% blue
F White: 100% red, 100% green, 100% blue

CSci 127 (Hunter) Lecture 3 10 September 2019 28 / 41

Colors

Can specify by numbers (RGB):

I Fractions of each:
e.g. (1.0, 0, 0) is 100% red, no green, and no blue.

I 8-bit colors: numbers from 0 to 255:
e.g. (0, 255, 0) is no red, 100% green, and no blue.

I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 10 September 2019 29 / 41

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 10 September 2019 29 / 41

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.

I 8-bit colors: numbers from 0 to 255:
e.g. (0, 255, 0) is no red, 100% green, and no blue.

I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 10 September 2019 29 / 41

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 10 September 2019 29 / 41

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.

I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 10 September 2019 29 / 41

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers)...

CSci 127 (Hunter) Lecture 3 10 September 2019 29 / 41

Decimal & Hexadecimal Numbers

Counting with 10 digits:

(from i-programmer.info)

CSci 127 (Hunter) Lecture 3 10 September 2019 30 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 3 10 September 2019 31 / 41

Decimal & Hexadecimal Numbers

Counting with 16 digits:

(from i-programmer.info)

CSci 127 (Hunter) Lecture 3 10 September 2019 32 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 3 10 September 2019 33 / 41

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers):

e.g. #0000FF is no red, no green, and 100% blue.

CSci 127 (Hunter) Lecture 3 10 September 2019 34 / 41

Colors

Can specify by numbers (RGB):
I Fractions of each:

e.g. (1.0, 0, 0) is 100% red, no green, and no blue.
I 8-bit colors: numbers from 0 to 255:

e.g. (0, 255, 0) is no red, 100% green, and no blue.
I Hexcodes (base-16 numbers):

e.g. #0000FF is no red, no green, and 100% blue.

CSci 127 (Hunter) Lecture 3 10 September 2019 34 / 41

In Pairs or Triples...
Some review and some novel challenges:

CSci 127 (Hunter) Lecture 3 10 September 2019 35 / 41

Trinkets

(Demo with trinkets)

CSci 127 (Hunter) Lecture 3 10 September 2019 36 / 41

Today’s Topics

Arithmetic

Indexing and Slicing Lists

Design Challenge: Planes

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 10 September 2019 37 / 41

Today’s Topics

Arithmetic

Indexing and Slicing Lists

Design Challenge: Planes

Colors & Hexadecimal Notation

CSci 127 (Hunter) Lecture 3 10 September 2019 38 / 41

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 10 September 2019 39 / 41

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 10 September 2019 39 / 41

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists

I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 10 September 2019 39 / 41

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors

I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 10 September 2019 39 / 41

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 10 September 2019 39 / 41

Recap

On lecture slip, write down a topic you
wish we had spent more time (and why).

In Python, we introduced:

I Indexing and Slicing Lists
I Colors
I Hexadecimal Notation

Pass your lecture slips to the end of the
rows for the UTA’s to collect.

CSci 127 (Hunter) Lecture 3 10 September 2019 39 / 41

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 40 / 41

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 40 / 41

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 40 / 41

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 40 / 41

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 40 / 41

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 40 / 41

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 40 / 41

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

We’re starting with Fall 2017, Version 2.

CSci 127 (Hunter) Lecture 3 10 September 2019 40 / 41

Writing Boards

Return writing boards as you leave...

CSci 127 (Hunter) Lecture 3 10 September 2019 41 / 41

