
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 10 12 November 2019 1 / 44

Announcements

CS Survey: Prof. Susan Epstein
Machine Learning

Popular request from wrap-ups: Unix
End of lecture: focus on Unix

CSci 127 (Hunter) Lecture 10 12 November 2019 2 / 44

Announcements

CS Survey: Prof. Susan Epstein
Machine Learning

Popular request from wrap-ups: Unix

End of lecture: focus on Unix

CSci 127 (Hunter) Lecture 10 12 November 2019 2 / 44

Announcements

CS Survey: Prof. Susan Epstein
Machine Learning

Popular request from wrap-ups: Unix
End of lecture: focus on Unix

CSci 127 (Hunter) Lecture 10 12 November 2019 2 / 44

Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

CS Survey

CSci 127 (Hunter) Lecture 10 12 November 2019 3 / 44

Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

CS Survey

CSci 127 (Hunter) Lecture 10 12 November 2019 4 / 44

In Pairs or Triples:
What does this code do?

CSci 127 (Hunter) Lecture 10 12 November 2019 5 / 44

Folium example

What does this code do?

CSci 127 (Hunter) Lecture 10 12 November 2019 6 / 44

Folium example

What does this code do?

CSci 127 (Hunter) Lecture 10 12 November 2019 6 / 44

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 12 November 2019 7 / 44

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 12 November 2019 7 / 44

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 12 November 2019 7 / 44

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 12 November 2019 7 / 44

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 12 November 2019 7 / 44

Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

Python Recap

CSci 127 (Hunter) Lecture 10 12 November 2019 8 / 44

In Pairs or Triples:

Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

CSci 127 (Hunter) Lecture 10 12 November 2019 9 / 44

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number..

CSci 127 (Hunter) Lecture 10 12 November 2019 10 / 44

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

CSci 127 (Hunter) Lecture 10 12 November 2019 11 / 44

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

return(num)

CSci 127 (Hunter) Lecture 10 12 November 2019 12 / 44

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

return(num)

CSci 127 (Hunter) Lecture 10 12 November 2019 13 / 44

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

while num <= 2000 or num >= 2018:

return(num)

CSci 127 (Hunter) Lecture 10 12 November 2019 14 / 44

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

while num <= 2000 or num >= 2018:

num = int(input(’Enter a number > 2000 & < 2018’))

return(num)

CSci 127 (Hunter) Lecture 10 12 November 2019 15 / 44

Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

Indefinite loops repeat as long as
the condition is true.

Could execute the body of the
loop zero times, 10 times, infinite
number of times.

The condition determines how
many times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

CSci 127 (Hunter) Lecture 10 12 November 2019 17 / 44

Indefinite Loops

CSci 127 (Hunter) Lecture 10 12 November 2019 17 / 44

In Pairs or Triples

Predict what this code does:

CSci 127 (Hunter) Lecture 10 12 November 2019 18 / 44

Trinket Demo

(Demo with trinket)

CSci 127 (Hunter) Lecture 10 12 November 2019 19 / 44

Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

Python Recap

CSci 127 (Hunter) Lecture 10 12 November 2019 20 / 44

Design Patterns

A design pattern is a standard algorithm
or approach for solving a common
problem.

The pattern is independent of the
programming language.

Can think of as a master recipe, with
variations for different situations.

CSci 127 (Hunter) Lecture 10 12 November 2019 21 / 44

Design Patterns

A design pattern is a standard algorithm
or approach for solving a common
problem.

The pattern is independent of the
programming language.

Can think of as a master recipe, with
variations for different situations.

CSci 127 (Hunter) Lecture 10 12 November 2019 21 / 44

Design Patterns

A design pattern is a standard algorithm
or approach for solving a common
problem.

The pattern is independent of the
programming language.

Can think of as a master recipe, with
variations for different situations.

CSci 127 (Hunter) Lecture 10 12 November 2019 21 / 44

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 10 12 November 2019 22 / 44

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 10 12 November 2019 23 / 44

Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Max Design Pattern

Set a variable to the smallest value.

Loop through the list,

If the current number is larger,
update your variable.

Print/return the largest number found.

Similar idea works for finding the
minimum value.

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Pandas: Minimum Values

In Pandas, lovely built-in functions:

I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 12 November 2019 25 / 44

Pandas: Minimum Values

In Pandas, lovely built-in functions:
I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 12 November 2019 25 / 44

Pandas: Minimum Values

In Pandas, lovely built-in functions:
I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 12 November 2019 25 / 44

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max

I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").

I For each item, X, in the list:
F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.

F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Today’s Topics

Recap: Folium

Indefinite loops

Design Patterns: Max (Min)

CS Survey

CSci 127 (Hunter) Lecture 10 12 November 2019 27 / 44

CS Survey Talk

Prof. Susan Epstein
(Machine Learning)

CSci 127 (Hunter) Lecture 10 12 November 2019 28 / 44

CS Survey: Prof. Epstein

• Computational system implements decisions and actions on a
physical device

• A computational agent executes a perpetual sense-decide-act loop

Do forever
Sense the world
Select an action
Execute that action

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 29 / 44

CS Survey: Prof. Epstein

• Computational system implements decisions and actions on a
physical device

• A computational agent executes a perpetual sense-decide-act loop

• How to sense the world: infrared sonar radar Kinect
microphone camera

Do forever
Sense the world
Select an action
Execute that action

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 30 / 44

CS Survey: Prof. Epstein

• Computational system implements decisions and actions on a
physical device

• A computational agent executes a perpetual sense-decide-act loop

• How to sense the world: infrared sonar radar Kinect
microphone camera

• Given a set of possible actions, the agent selects one

Do forever
Sense the world
Select an action
Execute that action

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 31 / 44

CS Survey: Prof. Epstein

• An AI agent doesn't have to be a robot (embodied in the world)
• An AI agent doesn't have to be autonomous (make decisions entirely on

its own)
• But it does have to be smart…

Do forever
Sense the world
Select an action
Execute that action

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 32 / 44

CS Survey: Prof. Epstein

• An AI agent doesn't have to be a robot (embodied in the world)
• An AI agent doesn't have to be autonomous (make decisions entirely on

its own)
• But it does have to be smart…
• That means it has to make smart decisions
• Artificial intelligence = simulation of intelligent (human) behavior by a

computational agent

Nest reprograms itself
based on human behavior

Do forever
Sense the world
Select an action
Execute that action

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 33 / 44

CS Survey: Prof. Epstein

• Tackles hard, interesting problems
Does this image show cancer?
Should I move this car through the intersection?
How do I get to that concert?

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 34 / 44

CS Survey: Prof. Epstein

• Tackles hard, interesting problems
Does this image show cancer?
Should I move this car through the intersection?
How do I get to that concert?

• Builds models of perception, thinking, and action
• Uses these models to build smarter programs

Apollo and ROSie

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 35 / 44

CS Survey: Prof. Epstein

• Tackles hard, interesting problems
Does this image show cancer?
Should I move this car through the intersection?
How do I get to that concert?

• Builds models of perception, thinking, and action
• Uses these models to build smarter programs

Our autonomous robot navigators
• Despite uncertainty, noise, and

constant changes in the world
• Learn models of their environment
• Make smart decisions with those

models

Apollo and ROSie

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 36 / 44

CS Survey: Prof. Epstein

• We built SemaFORR, a robot controller that makes decisions
autonomously

• First the robots learn to travel by building a model of the world we put
them in

• Then they prove they can find both hard and easy targets there

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 37 / 44

CS Survey: Prof. Epstein

• We built SemaFORR, a robot controller that makes decisions
autonomously

• First the robots learn to travel by building a model of the world we put
them in

• Then they prove they can find both hard and easy targets there

• Apollo has already done this on a small part of the 10th floor here
• And in simulation ROSie has traveled

• Through much of Hunter, The Graduate Center, and MOMA
• Through moving crowds of people
• Without collision and without coming too close to people
• And explained her behavior in natural language

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 38 / 44

CS Survey: Prof. Epstein

• Find good problems
• Start simple
• Run lots of experiments
• Analyze the results carefully
• …and repeat

Good reasons

Learning algorithms

Fun problems

CSCI 127
CSci 127 (Hunter) Lecture 10 12 November 2019 39 / 44

Design Challenge

Collect all five stars (locations randomly generated):

CSci 127 (Hunter) Lecture 10 12 November 2019 40 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or

I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.

I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.

I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.

I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Quick recap of a Python library, Folium for
creating interactive HTML maps.

More details on while loops for repeating
commands for an indefinite number of times.

Introduced the max design pattern.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 12 November 2019 42 / 44

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Quick recap of a Python library, Folium for
creating interactive HTML maps.

More details on while loops for repeating
commands for an indefinite number of times.

Introduced the max design pattern.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 12 November 2019 42 / 44

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Quick recap of a Python library, Folium for
creating interactive HTML maps.

More details on while loops for repeating
commands for an indefinite number of times.

Introduced the max design pattern.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 12 November 2019 42 / 44

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Quick recap of a Python library, Folium for
creating interactive HTML maps.

More details on while loops for repeating
commands for an indefinite number of times.

Introduced the max design pattern.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 12 November 2019 42 / 44

Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving

I Organization of Hardware & Data
I Design & Survey of Computer

Science Topics

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data

I Design & Survey of Computer
Science Topics

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data
I Design & Survey of Computer

Science Topics

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data
I Design & Survey of Computer

Science Topics

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data
I Design & Survey of Computer

Science Topics

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

xkcd 149

This course has three main themes:
I Programming & Problem Solving
I Organization of Hardware & Data
I Design & Survey of Computer

Science Topics

The operating system, Unix, is part of
the second theme.

Unix commands in the weekly on-line
labs

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

xkcd 149

Unix commands in the weekly on-line labs:

Lab 1: pwd, ls, mkdir, cd

Lab 2: ls -l, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ∼

Lab 5: Scripts, chmod

Lab 6: Running Python from the command line

Lab 7: git from the command line

Lab 8: ls *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: ls | wc -c (pipes), grep, wc

Lab 11: file, which

Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

