CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

Lecture 10

hunter.cuny.edu/csci

A
12 November 2019

1/ 44

Announcements

o CS Survey: Prof. Susan Epstein
Machine Learning

CSci 127 (Hunter)

Lecture 10

A
12 November 2019

2/ 44

Announcements

o CS Survey: Prof. Susan Epstein
Machine Learning

o Popular request from wrap-ups: Unix

CSci 127 (Hunter)

Lecture 10

A
12 November 2019

2/ 44

Announcements

o CS Survey: Prof. Susan Epstein
Machine Learning

o Popular request from wrap-ups: Unix
End of lecture: focus on Unix

CSci 127 (Hunter)

Lecture 10

DA

12 November 2019 2 /44

Today's Topics

CSci 127 (Hunter)

o Recap: Folium

o Indefinite loops

o Design Patterns: Max (Min)
o CS Survey

Lecture 10

12 November 2019

D

3/ 44

Today's Topics

o Recap: Folium

o Indefinite loops

o Design Patterns: Max (Min)
o CS Survey

CSci 127 (Hunter) Lecture 10

In Pairs or Triples:
What does this code do?

,import folium
import pandas as pd

=cuny = pd.read_csv('cunylLocations.csv')
ImapCUNY = folium.Map(location=[40.75, -74.125])

for index,row in cuny.iterrows():

lat = row["Latitude™]

lon = row["Longitude™"]

name = row["Campus"]

if row["College or Institution Type"] == "Senior Colleges":
collegeIcon = folium.Icon(color="purple™)

else:
collegelcon = folium.Icon(color="blue™)

newMarker = folium.Marker([lat, lon], popup=name, icon=collegeIcon)

newMarker . add_to(mapCUNY)

|mapCUNY.save(outfile='cunyLocqtionsSenior.html')

CSci 127 (Hunter) Lecture 10 12 November 2019 5/ 44

Folium example

What does this code do?

(import folium
import pandas as pd

| cuny = pd.read_csv('cunylLocations.csv')
mapCUNY = folium.Map(location=[40.75, -74.125])

for index,row in cuny.iterrows():
lat = row["Latitude"]
lon = row["Longitude"]
name = row["Campus"]

if row["College or Institution Type"] == "Senior Colleges":

collegelcon = folium.Icon(color="purple")

else:

collegeIcon = folium.Icon(color="blue")

newMarker = folium.Marker([lat, lon], popup=name, icon=collegeIcon)

newMarker . add_to(mapCUNY)

'mquUNY.sqve(outfile='cunyLocqtionsSen‘Lor‘ .html™)

CSci 127 (Hunter)

Lecture 10 12 November 2019

6/ 44

Folium example

What does this code do?

(import folium
import pandas as pd

=cuny = pd.read_csv('cunylLocations.csv')
mapCUNY = folium.Map(location=[40.75, -74.125])

for index,row in cuny.iterrows():
lat = row["Latitude"]
lon = row["Longitude"]
name = row["Campus"]

if row["College or Institution Type"] = "Senior Colleges":

collegelcon = folium.Icon(color="purple")
else:

collegeIcon = folium.Icon(color="blue")

newMarker = folium.Marker([lat, lon], popup=name, icon=collegeIcon)

newMarker.add_to(mapCUNY)

| mapCUNY . save(outfile="cunylLocationsSenior.html")

CSci 127 (Hunter)

Lecture 10

S
al: \Rulh {0
imfield

[m] = = =
12 November 2019

Kennedy.
Interhotiont
\" airgort

DA
6/ 44

Folium

o A module for making HTML maps.
Folium

CSci 127 (Hunter)

Lecture 10

E DA
12 November 2019

7/ 44

Folium

o A module for making HTML maps.
Folium

o It's a Python interface to the popular
leaflet. js.

CSci 127 (Hunter)

Lecture 10

12 November 2019

D

7/ 44

Folium

o A module for making HTML maps.
o It's a Python interface to the popular

: leaflet. js.
Folium = _
o Qutputs .html files which you can open in a
browser.
e e == ol
CSci 127 (Hunter)

Q>

Lecture 10 12 November 2019 7/ 44

Folium

o A module for making HTML maps.
o It's a Python interface to the popular

Folium leaflet. js.

o Qutputs .html files which you can open in a
browser.

o An extra step:

= =3 = =) QC
12 November 2019 7/ 44

CSci 127 (Hunter) Lecture 10

Folium

o A module for making HTML maps.

o It's a Python interface to the popular

Folium leaflet. js.

o Qutputs .html files which you can open in a
browser.

o An extra step:

Write — Run — Open .html
code. program. in browser.
o <& = E z 9ac

CSci 127 (Hunter) Lecture 10 12 November 2019 7/ 44

Today's Topics

©

Recap: Folium

©

Indefinite loops

©

Design Patterns: Max (Min)

©

Python Recap

o =) = = ya
12 November 2019 8 /44

o

CSci 127 (Hunter) Lecture 10

In Pairs or Triples:

o Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

CSci 127 (Hunter) Lecture 10 12 November 2019 9 /44

Coding

o Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number..

CSci 127 (Hunter) Lecture 10 12 November 2019 10 / 44

Coding

o Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number

def getYear():

CSci 127 (Hunter) Lecture 10 12 November 2019 11 / 44

Coding

o Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number

def getYear():

return(num)

CSci 127 (Hunter) Lecture 10 12 November 2019 12 / 44

Coding

o Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number

def getYear():
num = 0

return(num)

CSci 127 (Hunter) Lecture 10 12 November 2019 13 / 44

Coding

o Write a function that asks a user for number after 2000 but before

def

2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number

getYear():
num = 0
while num <= 2000 or num >= 2018:

return(num)

CSci 127 (Hunter) Lecture 10 12 November 2019 14 / 44

Coding

o Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number

def getYear():
num = 0
while num <= 2000 or num >= 2018:
num = int(input(’Enter a number > 2000 & < 2018’))

return(num)

CSci 127 (Hunter) Lecture 10 12 November 2019 15 / 44

Indefinite Loops

import turtle
import random

trey = turtle.Turtle()
trey.speed(10)

for i in range(100):
trey. forward(10)
a = random.randrange(@,36@,90)
trey.right(a)

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

o Indefinite loops repeat as long as
the condition is true.

import turtle
import random

trey = turtle.Turtle()
trey.speed(10)

for i in range(100):
trey. forward(10)
a = random.randrange(@,36@,90)
trey.right(a)

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

o Indefinite loops repeat as long as
the condition is true.

t turtl
roort vandon o Could execute the body of the
trey - turtle. Turtle() loop zero times, 10 times, infinite
frey.speed1® number of times

for i in range(100):
trey. forward(10)
a = random.randrange(@,36@,90)
trey.right(a)

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

o Indefinite loops repeat as long as
the condition is true.

t turtl

roort vandon o Could execute the body of the
trey - turtle. Turtle() loop zero times, 10 times, infinite
frey.speed1® number of times
for i in range(100): .)

trey. forward(10) o The condition determines how

a = random.randrange(@,36@,90)

trey.right(a) many times_

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

o Indefinite loops repeat as long as
the condition is true.
ot o Could execute the body of the

import random
loop zero times, 10 times, infinite
number of times.

trey = turtle.Turtle()
trey.speed(10)

for i in range(100):

trey. forward(10) o The condition determines how
a = random.randrange(@,36@,90)
trey.right(a) many times_

o Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 12 November 2019 16 / 44

Indefinite Loops

import turtle
import random

trey = turtle.Turtle()
trey.speed(10)

for 1 in range(10@):
trey.forward(10)
a = random.randrange(@,360,90)
trey.right(a)

CSci 127 (Hunter) Lecture 10 12 November 2019 17 / 44

Indefinite Loops

Is the condition True?

import turtle
import random

trey = turtle.Turtle() yes

trey.speed(10) + no

for i in range(100): sizﬁ:?n'iﬁig llrr\mmc
trey.forward(10) body of the |

a = random.randrange(@,360,90)
trey.right(a)

CSci 127 (Hunter) Lecture 10 12 November 2019 17 / 44

In Pairs or Triples
Predict what this code does:

#Random search
import turtle
import random
tess = turtle.Turtle()
tess.color('steelBlue')
tess.shape('turtle’)
tess.penup()
#5tart off screen:
tess.goto(-256,-258)
#Remember: abs(x) < 25 means absolute wvalue: -25 < x < 25
while abs(tess.xcor()) > 25 or abs(tess.ycor{)) > 25:
X = random.randrange(-200,20@)
y = random.randrange(-200, 208)
tess.goto(x,y)
tess.stamp()
print(tess.xcor(), tess.ycor())
print('Found the center!')

] = = P 8
CSci 127 (Hunter) Lecture 10 12 November 2019 18 / 44

= MPANGg

Trinket Demo

#Randon search
import turtle
import random
tess = turtle.TurtleQ)
tess.color('steelBlue’)
tess. shape(’ turtle')
tess.penup()
#Start off screen: .
tess.goto(-250,-250) D h s k
5 25 ms il vlun: 25 < x <25 (Demo with trinket
while abs(tess.xcor()) > 25 or abs(tess.ycor()) > 25:
x = random. randrange(-200, 200)
¥ = randon. randrange(-200, 200
tess.goto(x,y)
tess.stamp()
print(tess.xcor(), tess.ycor())
print(Found the center!')

o =) = = -
12 November 2019 19 / 44

CSci 127 (Hunter) Lecture 10

Today's Topics

©

Recap: Folium

o Indefinite loops

©

Design Patterns: Max (Min)

©

Python Recap

] = = P 8
CSci 127 (Hunter) Lecture 10 12 November 2019 20 / 44

= MPANGg

Design Patterns

o A design pattern is a standard algorithm
or approach for solving a common
problem.

CSci 127 (Hunter)

Lecture 10

A
12 November 2019

21/ 44

Design Patterns

o A design pattern is a standard algorithm
or approach for solving a common
problem.

o The pattern is independent of the
programming language.

= =) E E 9ace
Lecture 10 12 November 2019 21 / 44

CSci 127 (Hunter)

Design Patterns

o A design pattern is a standard algorithm
or approach for solving a common
problem.

o The pattern is independent of the
programming language.

o Can think of as a master recipe, with
variations for different situations.

o <& = E D

12 November 2019 21 / 44

CSci 127 (Hunter) Lecture 10

In Pairs or Triples:

Predict what the code will do:

nums = [1,4,10,6,5,42,9,8,12]

maxNum = @
for n in nums:
i1f n > maxNum:
maxNum = n
print("'The max is', maxNum)

CSci 127 (Hunter) Lecture 10 12 November 2019 22 / 44

Python Tutor

nums = [1,4,10,6,5,42,9,8,12]

maxNum = @
for n in nums: .
if n > maxNum: (Demo with PythonTutOr)
maxNum = n
print('The max is', maxNum)

CSci 127 (Hunter) Lecture 10 12 November 2019 23 / 44

Max Design Pattern

o Set a variable to the smallest value.

nums = [1,4,10,6,5,42,9,8,12]

maxNum = @
for n in nums:
if n > maxNum:
maxNum = n
print('The max is', maxNum)

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Max Design Pattern

o Set a variable to the smallest value.
nums - [1,4,10,6,5,42,9,8,12] o Loop through the list,

maxNum = @
for n in nums:
if n > maxNum:
maxNum = n
print('The max is', maxNum)

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Max Design Pattern

nums = [1,4,10,6,5,42,9,8,12]

maxNum = @
for n in nums:
if n > maxNum:
maxNum = n
print('The max is', maxNum)

CSci 127 (Hunter)

o Set a variable to the smallest value.

o Loop through the list,

o If the current number is larger,
update your variable.

Lecture 10 12 November 2019

24 / 44

Max Design Pattern

o Set a variable to the smallest value.
nums - [1,4,10,6,5,42,9,8,12] o Loop through the list,
maxhum = @ o If the current number is larger,
forn tnnums: update your variable.
pmt(.T::x::: Ts'. maxhum) o Print/return the largest number found.

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Max Design Pattern

o Set a variable to the smallest value.
nums - [1,4,10,6,5,42,9,8,12] o Loop through the list,
maxNum = @ o If the current number is larger,
forn tnnums: update your variable.
it C The e 1ot um o Print/return the largest number found.
o Similar idea works for finding the

minimum value.

CSci 127 (Hunter) Lecture 10 12 November 2019 24 / 44

Pandas: Minimum Values

panda

Yit

e T

e

o In Pandas, lovely built-in functions:

CSci 127 (Hunter)

Lecture 10

Q@
12 November 2019

25 / 44

Pandas: Minimum Values

pandas

b g +

Ll W M

o In Pandas, lovely built-in functions:

» df.sort_values(’First Name’) and
» df [’First Name’] .min()

CSci 127 (Hunter) Lecture 10

12 November 2019

25 / 44

Pandas: Minimum Values

pandas

)i+

e

o In Pandas, lovely built-in functions:

» df.sort_values(’First Name’) and
» df [’First Name’] .min()

o What if you don't have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 12 November 2019 25 / 44

Design Question: Find first alphabetically

e

o What if you don't have a CSV and DataFrame, or data not ordered?

pandas

H

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

e

o What if you don't have a CSV and DataFrame, or data not ordered?
o Useful Design Pattern: min/max

pandas

)i+

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

e

o What if you don't have a CSV and DataFrame, or data not ordered?
o Useful Design Pattern: min/max
» Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").

pandas

) H

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

e

o What if you don't have a CSV and DataFrame, or data not ordered?
o Useful Design Pattern: min/max

» Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
» For each item, X, in the list:

pandas

) iz

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

e

o What if you don't have a CSV and DataFrame, or data not ordered?
o Useful Design Pattern: min/max

» Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
» For each item, X, in the list:

pandas

) H

* Compare X to your variable.

CSci 127 (Hunter) Lecture 10 12 November 2019 26 / 44

Design Question: Find first alphabetically

e

pandas

)i+

o What if you don't have a CSV and DataFrame, or data not ordered?

o Useful Design Pattern: min/max

» Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
» For each item, X, in the list:

* Compare X to your variable.
* |f better, update your variable to be X.

CSci 127 (Hunter) Lecture 10 12 November 2019

26 / 44

Design Question: Find first alphabetically

e

pandas

)i+

o What if you don't have a CSV and DataFrame, or data not ordered?

o Useful Design Pattern: min/max

» Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
» For each item, X, in the list:

* Compare X to your variable.
* |f better, update your variable to be X.

» Print/return X.

CSci 127 (Hunter) Lecture 10 12 November 2019

26 / 44

Today's Topics

CSci 127 (Hunter)

o Recap: Folium

o Indefinite loops

o Design Patterns: Max (Min)
o CS Survey

Lecture 10

12 November 2019

o

27 / 44

CS SUrVey Talk

Prof. Susan Epstein
(Machine Learning)

CSci 127 (Hunter)

Lecture 10

Q>
12 November 2019

28 / 44

CS Survey: Prof. Epstein

/ Computational agents

» Computational system implements decisions and actions on a
physical device
* Acomputational agent executes a perpetual sense-decide-act loop

e)

Do forever

Sense the world
Select an action >
Execute that action

CSscCl 127 aae

CSci 127 (Hunter) Lecture 10 12 November 2019 29 / 44

CS Survey: Prof. Epstein

/ Computational agents

» Computational system implements decisions and actions on a
physical device
* Acomputational agent executes a perpetual sense-decide-act loop

@)
Do forever
Sense the world
Select an action >
Execute that action
v
* How to sense the world: infrared sonar radar Kinect

microphone camera

CSscCl 127 aae

CSci 127 (Hunter) Lecture 10 12 November 2019 30/ 44

CS Survey: Prof. Epstein

/ Computational agents

» Computational system implements decisions and actions on a
physical device
* A computational agent executes a perpetual sense-decide-act loop

@

Do forever
Sense the world
Select an action
Execute that action

v

* How to sense the world: infrared sonar radar Kinect
microphone camera
+ Given a set of possible actions, the agent selects one

CscCl 127 aae

CSci 127 (Hunter) Lecture 10 12 November 2019 31/ 44

CS Survey: Prof. Epstein

f Artificial intelligence (Al)

* An Al agent doesn't have to be a robot (embodied in the world)

* An Al agent doesn't have to be autonomous (make decisions entirely on
its own)

+ But it does have to be smart...

e)

Do forever
Sense the world
Select an action

Execute that action

CscCl 127 oo

Q>

CSci 127 (Hunter) Lecture 10 12 November 2019 32/ 44

CS Survey: Prof. Epstein

/ Artificial intelligence (Al)

* An Al agent doesn't have to be a robot (embodied in the world)

* An Al agent doesn't have to be autonomous (make decisions entirely on
its own)

+ But it does have to be smart...

+ That means it has to make smart decisions

+ Artificial intelligence = simulation of intelligent (human) behavior by a
computational agent

@

Do forever
Sense the world
Select an action
Execute that action

Nest reprograms itself
based on human behavior

CscCl 127

CSci 127 (Hunter) Lecture 10 12 November 2019 33/ 44

Q>

CS Survey: Prof. Epstein

/ What Al does

» Tackles hard, interesting problems
Does this image show cancer?
Should | move this car through the intersection?
How do | get to that concert?

CscCl 127 aae

CSci 127 (Hunter) Lecture 10 12 November 2019 34 / 44

CS Survey: Prof. Epstein

/ What Al does

» Tackles hard, interesting problems
Does this image show cancer?
Should | move this car through the intersection?
How do | get to that concert?

» Builds models of perception, thinking, and action
* Uses these models to build smarter programs

\ el Apollo and ROSie

J-

CSci 127 (Hunter) Lecture 10 12 November 2019 35/ 44

D

CS Survey: Prof. Epstein

/ What Al does

» Tackles hard, interesting problems
Does this image show cancer?
Should | move this car through the intersection?
How do | get to that concert?

» Builds models of perception, thinking, and action
* Uses these models to build smarter programs

" fetch Apollo and ROSie .
= Our autonomous robot navigators

» Despite uncertainty, noise, and

constant changes in the world
J-' * Learn models of their environment
* Make smart decisions with those
models

cscl 127 e

CSci 127 (Hunter) Lecture 10 12 November 2019 36 / 44

CS Survey: Prof. Epstein

f How our robots navigate

* We built SemaFORR, a robot controller that makes decisions
autonomously

+ First the robots learn to travel by building a model of the world we put
them in

» Then they prove they can find both hard and easy targets there

CscCl 127 o

Q>

CSci 127 (Hunter) Lecture 10 12 November 2019 37/ 44

CS Survey: Prof. Epstein

/ How our robots navigate

* We built SemaFORR, a robot controller that makes decisions
autonomously

+ First the robots learn to travel by building a model of the world we put
them in

» Then they prove they can find both hard and easy targets there

+ Apollo has already done this on a small part of the 10t floor here
* And in simulation ROSie has traveled

* Through much of Hunter, The Graduate Center, and MOMA
* Through moving crowds of people

* Without collision and without coming too close to people

* And explained her behavior in natural language

CscCl 127

CSci 127 (Hunter) Lecture 10 12 November 2019 38/ 44

CS Survey: Prof. Epstein

/ How to build an intelligent agent

* Find good problems

+ Start simple

* Run lots of experiments

* Analyze the results carefully
* ...and repeat

CscCl 127 aae

CSci 127 (Hunter) Lecture 10 12 November 2019 39 / 44

Design Challenge

Collect all five stars (locations randomly generated):

*

CSci 127 (Hunter) Lecture 10 12 November 2019 40 / 44

Design Challenge

o Possible approaches:

CSci 127 (Hunter)

Lecture 10

12 November 2019

41/ 44

Design Challenge

o Possible approaches:

» Randomly wander until all 5 collected, or

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

o Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

o Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

o Input: The map of the ‘world.’

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

o Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

o Input: The map of the ‘world.’
o Output: Time taken and/or locations of the 5 stars.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

©

Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

©

Input: The map of the ‘world.’

(]

Output: Time taken and/or locations of the 5 stars.

©

How to store locations? Use numpy array with -1 everywhere.

CSci 127 (Hunter) Lecture 10 12 November 2019 41 / 44

Design Challenge

© © 0 o

Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’
Output: Time taken and/or locations of the 5 stars.
How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

CSci 127 (Hunter) Lecture 10 12 November 2019

41/ 44

Design Challenge

© © 0 o

Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.
Possible algorithms: while numStars < 5:

» Move forward.

CSci 127 (Hunter) Lecture 10 12 November 2019

41/ 44

Design Challenge

© © 0 o

Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.
Possible algorithms: while numStars < 5:

» Move forward.
» If wall, mark 0 in map, randomly turn left or right.

CSci 127 (Hunter) Lecture 10 12 November 2019

41/ 44

Design Challenge

© © 0 o

Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.
Possible algorithms: while numStars < 5:

» Move forward.
» If wall, mark 0 in map, randomly turn left or right.
» If star, mark 1 in map and add 1 to numStars.

CSci 127 (Hunter) Lecture 10 12 November 2019

41/ 44

Design Challenge

© © 0 o

Possible approaches:

» Randomly wander until all 5 collected, or
» Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.
Possible algorithms: while numStars < 5:

Move forward.

If wall, mark O in map, randomly turn left or right.
If star, mark 1 in map and add 1 to numStars.
Otherwise, mark 2 in map that it's an empty square.

v vy VvYy

CSci 127 (Hunter) Lecture 10 12 November 2019

41/ 44

Recap

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

CSci 127 (Hunter)

Lecture 10

A
12 November 2019

42 / 44

Recap

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ Quick recap of a Python library, Folium for
creating interactive HTML maps.

=} 5 E £ DA

CSci 127 (Hunter) Lecture 10 12 November 2019 42 / 44

Recap

@ On lecture slip, write down a topic you wish we
had spent more time (and why).

@ Quick recap of a Python library, Folium for
creating interactive HTML maps.

@ More details on while loops for repeating
commands for an indefinite number of times.

= =) E E E 9ace
CSci 127 (Hunter) Lecture 10 12 November 2019 42 / 44

Recap

CSci 127 (Hunter)

On lecture slip, write down a topic you wish we
had spent more time (and why).

Quick recap of a Python library, Folium for
creating interactive HTML maps.

More details on while loops for repeating
commands for an indefinite number of times.

9 Introduced the max design pattern.

0 Pass your lecture slips to the aisles for the UTAs

to collect.

] = =
Lecture 10 12 November 2019

Final Exam Prep: UNIX

o This course has three main themes:

MAKE ME A SANDMIGH » Programming & Problem Solving

WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /
A SANDWICH.
OKAY.

Lo
% £

xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

o This course has three main themes:

MAKE ME A SANDMIGH » Programming & Problem Solving
HAT? H H
. » Organization of Hardware & Data
SUDO MAKE ME /
A SANDWICH.
OKaY.
\ %\/
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

o This course has three main themes:

MAKE ME A SANDMICH > Progra.mm-lng & Problem Solving
WHAT? G » Organization of Hardware & Data
SUDO MAKE e O/Y » Design & Survey of Computer
KAY. . .
\ ' Science Topics
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

o This course has three main themes:

MAKE ME A SANDMICH » Programming & Problem Solving
WHAT? G » Organization of Hardware & Data
SUDO MAKE e /Y » Design & Survey of Computer
\ O Science Topics
& % o The operating system, Unix, is part of
the second theme.
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 43 / 44

Final Exam Prep: UNIX

MAKE ME A SANDWICH.

WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /
A SANDWICH.
OKaY.

Lo
% £

xkcd 149

CSci 127 (Hunter)

o This course has three main themes:
» Programming & Problem Solving
» Organization of Hardware & Data
» Design & Survey of Computer
Science Topics
o The operating system, Unix, is part of
the second theme.
o Unix commands in the weekly on-line
labs

Lecture 10 12 November 2019

43 / 44

Final Exam Prep: UNIX

MAKE ME A SANDWICH.

WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /
A SANDWICH.
OKaY.

Lo
% £

xkcd 149

CSci 127 (Hunter)

o This course has three main themes:
» Programming & Problem Solving
» Organization of Hardware & Data
» Design & Survey of Computer
Science Topics
o The operating system, Unix, is part of
the second theme.
o Unix commands in the weekly on-line
labs

Lecture 10 12 November 2019

43 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:

MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /

A SANDWICH.

OKAY.
\ %
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:

o Lab 1: pwd, 1s, mkdir, cd

MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /

A SANDWICH.

OKAY.
\ %
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd

o Lab2:1s -1, cp, mv

MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /

A SANDWICH.

OKAY.
\ %
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd
o Lab2:1s -1, cp, mv
o Lab 3: cd ../ (relative paths)

MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /

A SANDWICH.

OKAY.
\ %
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019

44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd
o Lab2:1s -1, cp, mv
o Lab 3: cd ../ (relative paths)

0 Lab 4: cd /usr/bin (absolute paths), cd ~
MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF.
SUDO MAKE ME /
A SANDWICH.
OKAY.
\ %
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:

Q
Qo
Qo
Qo
MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF. o)
SUDO MAKE ME /
A SANDWICH.
OKAY.
\ %
xkcd 149

CSci 127 (Hunter)

Lab 1:
Lab 2:
Lab 3:
Lab 4:
Lab 5:

pwd, 1s, mkdir, cd

1s -1, cp, mv

cd ../ (relative paths)

cd /usr/bin (absolute paths), cd ~
Scripts, chmod

Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd
o Lab2:1s -1, cp, mv
o Lab 3: cd ../ (relative paths)

o Lab 4: cd /usr/bin (absolute paths), cd ~

MAKE ME A SANDWICH.
[e o Lab 5: Scripts, chmod
SUDO MAKE ME / - p !
A SANDWICH. oKaY.
\ %f o Lab 6: Running Python from the command line
xked 149

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd
o Lab2:1s -1, cp, mv
o Lab 3: cd ../ (relative paths)

o Lab 4: cd /usr/bin (absolute paths), cd ~

MAKE ME A SANDWICH.
WHAT? W .
SUDO[M v '7"""52& o Lab 5: Scripts, chmod
A SANDWICH. oKaY.
\ / o Lab 6: Running Python from the command line
& % o Lab 7: git from the command line
xkcd 149

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd
o Lab2:1s -1, cp, mv
o Lab 3: cd ../ (relative paths)

o Lab 4: cd /usr/bin (absolute paths), cd ~
MAKE ME A SANDWICH.
m;ﬁxgéﬁ L b 5 S H hIIl d

SUb WAKE ME / @ Lab 5: Scripts, chmo
A SANDWICH. oKaY.

\ / o Lab 6: Running Python from the command line

& % o Lab 7: git from the command line

xked 149 o Lab 8: Is *.py (wildcards)
CSci 127 (Hunter) Lecture 10 12 November 2019

44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd
o Lab2:1s -1, cp, mv
o Lab 3: cd ../ (relative paths)

o Lab 4: cd /usr/bin (absolute paths), cd ~
MAKE ME A SANDWICH.
RS o Lab 5: Scripts, chmod
e/ a0 2 >eripts, o
\ - o Lab 6: Running Python from the command line
& % o Lab 7: git from the command line
xked 149 o Lab 8: Is *.py (wildcards)

o Lab 9: More on scripts, vim

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

MAKE ME A SANDWICH.
WHAT? MAKE
IT YOURSELF.
SUDO MAKE ME /
A SANDWICH.
OKAY.
\ /

% A

xkcd 149

CSci 127 (Hunter)

Qo

Qo

Qo

Unix commands in the weekly on-line labs:

Lab 1: pwd, 1s, mkdir, cd

Lab 2: 1s -1, cp, mv

Lab 3: cd ../ (relative paths)

Lab 4: cd /usr/bin (absolute paths), cd ~
Lab 5: Scripts, chmod

Lab 6: Running Python from the command line
Lab 7: git from the command line

Lab 8: Is *.py (wildcards)

Lab 9: More on scripts, vim

Lab 10: 1s | wc -c (pipes), grep, wc

Lecture 10 12 November 2019

44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd
o Lab2:1s -1, cp, mv
o Lab 3: cd ../ (relative paths)

o Lab 4: cd /usr/bin (absolute paths), cd ~
MAKE ME A SANDWICH.
RS o Lab 5: Scripts, chmod
e/ a0 2 >eripts, o
\ - o Lab 6: Running Python from the command line
& % o Lab 7: git from the command line
xked 149 o Lab 8: Is *.py (wildcards)

o Lab 9: More on scripts, vim
o Lab 10: 1s | wc -c (pipes), grep, wc
o Lab 11: file, which

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

Final Exam Prep: UNIX

Unix commands in the weekly on-line labs:
o Lab 1: pwd, 1s, mkdir, cd
o Lab2:1s -1, cp, mv
o Lab 3: cd ../ (relative paths)

o Lab 4: cd /usr/bin (absolute paths), cd ~
MAKE ME A SANDWICH.
RS o Lab 5: Scripts, chmod
e/ a0 2 >eripts, o
\ - o Lab 6: Running Python from the command line
& % o Lab 7: git from the command line
xked 149 o Lab 8: Is *.py (wildcards)

o Lab 9: More on scripts, vim
o Lab 10: 1s | wc -c (pipes), grep, wc
o Lab 11: file, which

o Lab 12: man, more, w

CSci 127 (Hunter) Lecture 10 12 November 2019 44 / 44

