
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 9 7 November 2018 1 / 41

Announcements

Each lecture includes a survey of computing
research and tech in NYC.

Today: Prof. Susan Epstein
Machine Learning

CSci 127 (Hunter) Lecture 9 7 November 2018 2 / 41

Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Loops

CS Survey

CSci 127 (Hunter) Lecture 9 7 November 2018 3 / 41

In Pairs or Triples:

What are the formal parameters for the functions?

What is the output of:

r = prob4(4,"city")

print("Return: ", r)

What is the output of:

r = prob4(2,"university")

print("Return: ", r)

CSci 127 (Hunter) Lecture 9 7 November 2018 4 / 41

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 9 7 November 2018 5 / 41

In Pairs or Triples:

Write the missing functions for the program:

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 7 November 2018 6 / 41

Group Work: Fill in Missing Pieces

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 7 November 2018 7 / 41

Group Work: Fill in Missing Pieces

1 Write import statements.

import turtle

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 7 November 2018 8 / 41

Third Part: Fill in Missing Pieces

1 Write import statements.

2 Write down new function names and inputs.

import turtle

def setUp():

#FILL IN

def getInput():

#FILL IN

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 7 November 2018 9 / 41

Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

import turtle

def setUp():

#FILL IN

return(newTurtle)

def getInput():

#FILL IN

return(x,y)

def markLocation(t,x,y):

#FILL IN

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.

CSci 127 (Hunter) Lecture 9 7 November 2018 10 / 41

Third Part: Fill in Missing Pieces
1 Write import statements.

2 Write down new function names and inputs.

3 Fill in return values.

4 Fill in body of functions.

import turtle

def setUp():

newTurtle = turtle.Turtle()
newTurtle.penup()
return(newTurtle)

def getInput():

x = int(input(’Enter x: ’))
y = int(input(’Enter y: ’))
return(x,y)

def markLocation(t,x,y):

t.goto(x,y)
t.stamp()

def main():

tess = setUp() #Returns a purple turtle with pen up.

for i in range(5):

x,y = getInput() #Asks user for two numbers.

markLocation(tess,x,y) #Move tess to (x,y) and stamp.CSci 127 (Hunter) Lecture 9 7 November 2018 11 / 41

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 7 November 2018 12 / 41

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 7 November 2018 12 / 41

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 7 November 2018 12 / 41

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 7 November 2018 12 / 41

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 7 November 2018 12 / 41

Top-Down Design

The last example demonstrates
top-down design: breaking into
subproblems, and implementing each
part separately.

I Break the problem into tasks for a
“To Do” list.

I Translate list into function names &
inputs/returns.

I Implement the functions, one-by-one.

Excellent approach since you can then
test each part separately before adding
it to a large program.

Very common when working with a
team: each has their own functions to
implement and maintain.

CSci 127 (Hunter) Lecture 9 7 November 2018 12 / 41

From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 7 November 2018 13 / 41

From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 7 November 2018 13 / 41

From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 7 November 2018 13 / 41

From Last Time: koalas

http://koalastothemax.com

CSci 127 (Hunter) Lecture 9 7 November 2018 13 / 41

From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with
function calls.

CSci 127 (Hunter) Lecture 9 7 November 2018 14 / 41

From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with
function calls.

CSci 127 (Hunter) Lecture 9 7 November 2018 14 / 41

From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 9 7 November 2018 15 / 41

From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 9 7 November 2018 15 / 41

From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 9 7 November 2018 15 / 41

From Last Time: koalas

Top-down design puzzle:
I What does koalastomax do?
I What does each circle represent?

Write a high-level design for it.

Translate into a main() with function calls.

CSci 127 (Hunter) Lecture 9 7 November 2018 15 / 41

From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 7 November 2018 16 / 41

From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 7 November 2018 16 / 41

From Last Time: koalas

The main() is written for you.

Only fill in two functions: average() and setRegion().

CSci 127 (Hunter) Lecture 9 7 November 2018 16 / 41

From Last Time: koalas

Process:

Get template → Fill in missing → Test locally → Submit to
from github → functions → idle3/python3 → Gradescope

CSci 127 (Hunter) Lecture 9 7 November 2018 17 / 41

Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Loops

CS Survey

CSci 127 (Hunter) Lecture 9 7 November 2018 18 / 41

Folium

CSci 127 (Hunter) Lecture 9 7 November 2018 19 / 41

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 7 November 2018 20 / 41

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 7 November 2018 20 / 41

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 7 November 2018 20 / 41

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 7 November 2018 20 / 41

Folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 9 7 November 2018 20 / 41

Demo

(Map created by Folium.)

CSci 127 (Hunter) Lecture 9 7 November 2018 21 / 41

Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 7 November 2018 22 / 41

Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 7 November 2018 22 / 41

Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 7 November 2018 22 / 41

Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 7 November 2018 22 / 41

Folium

To use:

import folium

Create a map:

myMap = folium.Map()

Make markers:

newMark = folium.Marker([lat,lon],popup=name)

Add to the map:

newMark.add to(myMap)

Many options to customize background map (“tiles”)
and markers.

CSci 127 (Hunter) Lecture 9 7 November 2018 22 / 41

Demo

(Python program using Folium.)

CSci 127 (Hunter) Lecture 9 7 November 2018 23 / 41

In Pairs of Triples

Predict which each line of code does:

(example from Folium documentation)

CSci 127 (Hunter) Lecture 9 7 November 2018 24 / 41

Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Loops

CS Survey

CSci 127 (Hunter) Lecture 9 7 November 2018 25 / 41

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 9 7 November 2018 26 / 41

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 9 7 November 2018 27 / 41

Indefinite Loops

CSci 127 (Hunter) Lecture 9 7 November 2018 28 / 41

Indefinite Loops

CSci 127 (Hunter) Lecture 9 7 November 2018 28 / 41

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 9 7 November 2018 29 / 41

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 9 7 November 2018 29 / 41

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 9 7 November 2018 29 / 41

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 9 7 November 2018 29 / 41

Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 7 November 2018 30 / 41

Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 7 November 2018 30 / 41

Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 7 November 2018 30 / 41

Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 7 November 2018 30 / 41

Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 7 November 2018 30 / 41

Python’s random package

Python has a built-in package for generating
pseudo-random numbers.

To use:

import random

Useful command to generate whole numbers:

random.randrange(start,stop,step)

which gives a number chosen randomly from
the specified range.

Useful command to generate real numbers:

random.random()

which gives a number chosen (uniformly) at
random from [0.0,1.0).

Very useful for simulations, games, and
testing.

CSci 127 (Hunter) Lecture 9 7 November 2018 30 / 41

Trinket

(Demo turtle
random walk)

CSci 127 (Hunter) Lecture 9 7 November 2018 31 / 41

Today’s Topics

Recap: Functions & Top Down Design

Mapping GIS Data

Loops

CS Survey

CSci 127 (Hunter) Lecture 9 7 November 2018 32 / 41

CS Survey Talk

Prof. Susan Epstein
(Machine Learning)

CSci 127 (Hunter) Lecture 9 7 November 2018 33 / 41

• Computational system implements decisions and actions on a physical
device

• A computational agent executes a perpetual sense-decide-act loop

• How to sense the world: infrared sonar radar Kinect
microphone camera

• Given a set of possible actions, an agent decides by selecting one

Do forever
Sense the world
Select an action
Execute that action

1/6Fall 2018 CSCI 127

CSci 127 (Hunter) Lecture 9 7 November 2018 34 / 41

• An AI agent doesn't have to be a robot (embodied in the world)
• An AI agent doesn't have to be autonomous (make decisions entirely

on its own)
• But it does have to be smart…
• That means it has to make smart decisions
• Artificial intelligence = simulation of intelligent (human) behavior by a

computational agent

2/33

Nest
• Controlled by Wi-Fi from a smartphone
• Reprograms itself based on human behavior

Do forever
Sense the world
Select an action
Execute that action

2/6Fall 2018 CSCI 127

CSci 127 (Hunter) Lecture 9 7 November 2018 35 / 41

• Tackles hard, interesting problems
Does this image show cancer?
Should I move this car through the intersection?
How do I get to that concert?

• Builds models of perception, thinking, and action
• Uses these models to build smarter programs

Our autonomous robot navigators
• Despite uncertainty, noise, and

constant changes in the world
• Learn models of their environment
• Make smart decisions with those

models

Apollo and ROSie

3/6Fall 2018 CSCI 127

CSci 127 (Hunter) Lecture 9 7 November 2018 36 / 41

• We built SemaFORR, a robot controller that makes decisions
autonomously

• First the robots learn to travel by building a model of the world we
put them in

• Then they prove they can find both hard and easy targets there

• Apollo has already done this on a small part of the 10th floor here
• And in simulation ROSie has traveled

• Through much of Hunter, The Graduate Center, and MOMA
• Through moving crowds of people
• Without collision and without coming too close to people
• And explained her behavior in natural language

4
4/6Fall 2018 CSCI 127

CSci 127 (Hunter) Lecture 9 7 November 2018 37 / 41

• Find good problems
• Start simple
• Run lots of experiments
• Analyze the results carefully
• …and repeat

5

Good re
asons

Learn
ing alg

orithm
s

Fun pr
oblem

s

5/6Fall 2018 CSCI 127

CSci 127 (Hunter) Lecture 9 7 November 2018 38 / 41

• Fall 2018: SCI 111 Brains, Minds, and Machines = cognitive
neuroscience + cognitive psychology + AI

• Fall 2019: CSCI 350 Artificial Intelligence
• Fall 2018: CSCI 353 Machine Learning

• …and then there’s my lab, where workstations run 24/7, learning
to be intelligent agents

Susan Epstein, Professor of Computer Science
1090C Hunter North

susan.epstein@hunter.cuny.edu
http://www.cs.hunter.cuny.edu/~epstein/

6
6/6Fall 2018 CSCI 127

CSci 127 (Hunter) Lecture 9 7 November 2018 39 / 41

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 7 November 2018 40 / 41

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 7 November 2018 40 / 41

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 7 November 2018 40 / 41

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 7 November 2018 40 / 41

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 7 November 2018 40 / 41

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 7 November 2018 40 / 41

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Top-down design: breaking into subproblems, and
implementing each part separately.

Excellent approach: can then test each part
separately before adding it to a large program.

When possible, design so that your code is flexible
to be reused (“code reuse”).

Introduced a Python library, Folium for creating
interactive HTML maps.

Introduced while loops for repeating commands
for an indefinite number of times.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 9 7 November 2018 40 / 41

Practice Quiz & Final Questions

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 7 November 2018 41 / 41

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 7 November 2018 41 / 41

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 7 November 2018 41 / 41

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 7 November 2018 41 / 41

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 7 November 2018 41 / 41

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions & Top-Down Design (Summer 18, #7 & #5).

CSci 127 (Hunter) Lecture 9 7 November 2018 41 / 41

