
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 7 24 October 2018 1 / 32

Announcements

Each lecture includes a survey of computing
research and tech in NYC.

Today: Adrienne Schmoeker & Albert Webber
NYC OpenData Initiative
Mayor’s Office

11:10am: Informal Q&A with Adrienne &
Albert in 1203 Hunter East.

CSci 127 (Hunter) Lecture 7 24 October 2018 2 / 32

Announcements

Each lecture includes a survey of computing
research and tech in NYC.

Today: Adrienne Schmoeker & Albert Webber
NYC OpenData Initiative
Mayor’s Office

11:10am: Informal Q&A with Adrienne &
Albert in 1203 Hunter East.

CSci 127 (Hunter) Lecture 7 24 October 2018 2 / 32

Announcements

Each lecture includes a survey of computing
research and tech in NYC.

Today: Adrienne Schmoeker & Albert Webber
NYC OpenData Initiative
Mayor’s Office

11:10am: Informal Q&A with Adrienne &
Albert in 1203 Hunter East.

CSci 127 (Hunter) Lecture 7 24 October 2018 2 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!

No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?

The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!

We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.

We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.

Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.

p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?

When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3 / 32

Today’s Topics

Recap: Prof. Saad’s torus-land

Introduction to Functions

NYC Open Data

CSci 127 (Hunter) Lecture 7 24 October 2018 4 / 32

Recap: Living on a Torus

A random torus with
5 islands and 2 pools

How many pools and how many
islands does each version have?
(Collect all 5!)

Design an algorithm that will count
the number of islands.

CSci 127 (Hunter) Lecture 7 24 October 2018 5 / 32

Recap: Living on a Torus

A random torus with
5 islands and 2 pools

How many pools and how many
islands does each version have?
(Collect all 5!)

Design an algorithm that will count
the number of islands.

CSci 127 (Hunter) Lecture 7 24 October 2018 5 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input:

A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output:

The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design:

Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.

F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).

F If it has any neighbors that are
land, mark those as purple.

F Keep checking neighbors, until all
are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.

F Keep checking neighbors, until all
are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.

CSci 127 (Hunter) Lecture 7 24 October 2018 6 / 32

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 7 / 32

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 7 / 32

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 7 / 32

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 7 / 32

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 7 / 32

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 7 / 32

Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 7 / 32

“Hello, World!” with Functions

CSci 127 (Hunter) Lecture 7 24 October 2018 8 / 32

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 24 October 2018 9 / 32

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 7 24 October 2018 10 / 32

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 24 October 2018 11 / 32

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 24 October 2018 12 / 32

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 24 October 2018 12 / 32

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 24 October 2018 12 / 32

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 24 October 2018 12 / 32

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 24 October 2018 12 / 32

Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

CSci 127 (Hunter) Lecture 7 24 October 2018 13 / 32

In Pairs or Triples:
Circle the actual parameters and underline the formal parameters:

CSci 127 (Hunter) Lecture 7 24 October 2018 14 / 32

In Pairs or Triples:
Circle the actual parameters and underline the formal parameters:

CSci 127 (Hunter) Lecture 7 24 October 2018 15 / 32

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 7 24 October 2018 16 / 32

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 24 October 2018 17 / 32

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 7 24 October 2018 18 / 32

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 7 24 October 2018 19 / 32

In Pairs or Triples:

Fill in the missing code:

CSci 127 (Hunter) Lecture 7 24 October 2018 20 / 32

IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 7 24 October 2018 21 / 32

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 7 24 October 2018 22 / 32

IDLE

(Demo with IDLE)

CSci 127 (Hunter) Lecture 7 24 October 2018 23 / 32

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 24 October 2018 25 / 32

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 24 October 2018 25 / 32

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 24 October 2018 25 / 32

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 24 October 2018 25 / 32

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.

CSci 127 (Hunter) Lecture 7 24 October 2018 25 / 32

Example: Reading in CSV Files

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

Example: Reading in CSV Files

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

Example: Reading in CSV Files

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

Example: Reading in CSV Files

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

Example: Reading in CSV Files

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

CS Survey: Adrienne Schmoeker & Albert Webber

Adrienne Schmoeker & Albert Webber
NYC Mayor’s Office of Data Analytics

CSci 127 (Hunter) Lecture 7 24 October 2018 27 / 32

Design Question

Design an algorithm that finds the closest collision.
(Sample NYC OpenData collision data file on back of lecture slip.)

CSci 127 (Hunter) Lecture 7 24 October 2018 28 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).

2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.

3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.

4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.

5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 24 October 2018 30 / 32

Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 24 October 2018 30 / 32

Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 24 October 2018 30 / 32

Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 24 October 2018 30 / 32

Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,

which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 24 October 2018 30 / 32

Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 24 October 2018 30 / 32

Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 24 October 2018 30 / 32

Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

CSci 127 (Hunter) Lecture 7 24 October 2018 30 / 32

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31 / 32

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31 / 32

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31 / 32

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31 / 32

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31 / 32

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31 / 32

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31 / 32

Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31 / 32

Writing Boards

Return writing boards as you leave...

CSci 127 (Hunter) Lecture 7 24 October 2018 32 / 32

