CSci 127: Introduction to Computer Science

CSci 127 (Hunter)

hunter.cuny.edu/csci
o
Lecture 7

DA
24 October 2018 1/32

Announcements

o Each lecture includes a survey of computing
research and tech in NYC.

CSci 127 (Hunter)

Lecture 7

A
24 October 2018

2/32

Announcements

o Each lecture includes a survey of computing
research and tech in NYC.

Today: Adrienne Schmoeker & Albert Webber
NYC OpenData Initiative
Mayor’s Office

o) E E 9ace
CSci 127 (Hunter) Lecture 7 24 October 2018 2/32

Announcements

o Each lecture includes a survey of computing
research and tech in NYC.

Today: Adrienne Schmoeker & Albert Webber
NYC OpenData Initiative
Mayor’s Office

o 11:10am: Informal Q&A with Adrienne &
Albert in 1203 Hunter East.

=] 5 = £ DA
CSci 127 (Hunter) Lecture 7 24 October 2018 2/32

Frequently Asked Questions

From lecture slips & recitation sections.

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.

9@ | didn't get the torus-based islands & pools from last time!

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.

9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.

9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?

CSci 127 (Hunter) Lecture 7

24 October 2018

3/32

Frequently Asked Questions

From lecture slips & recitation sections.
9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.
9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

@ Please, more time on circuits/logical expressions/truth tables/decisions!

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.

9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

@ Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.
9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

@ Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

O | turned in a lecture slip, but it's not showing up on Gradescope.

CSci 127 (Hunter) Lecture 7 24 October 2018

3/32

Frequently Asked Questions

From lecture slips & recitation sections.
9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

@ Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

O | turned in a lecture slip, but it's not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.

9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

@ Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

O | turned in a lecture slip, but it's not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we'll search for it.

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.

9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

@ Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

O | turned in a lecture slip, but it's not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we'll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.

Qo

o

| didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

| turned in a lecture slip, but it's not showing up on Gradescope.

We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we'll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Frequently Asked Questions

From lecture slips & recitation sections.

9@ | didn't get the torus-based islands & pools from last time!
No worries— we'll talk about it first.

@ Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

@ Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

O | turned in a lecture slip, but it's not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we'll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

O For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.

CSci 127 (Hunter) Lecture 7 24 October 2018 3/32

Today's Topics

o Recap: Prof. Saad’s torus-land
o Introduction to Functions
o NYC Open Data

CSci 127 (Hunter)

Lecture 7

DA
24 October 2018 4 /32

Recap: Living on a Torus

A random torus with
5 islands and 2 pools
[|

o How many pools and how many

islands does each version have?
(Collect all 5!)

CSci 127 (Hunter)

Lecture 7

24 October 2018

D

5/ 32

Recap: Living on a Torus

A random torus with

5 islands and 2 pools

o How many pools and how many
islands does each version have?
(Collect all 5!)

o Design an algorithm that will count
the number of islands.

CSci 127 (Hunter) Lecture 7

Recap: Count the number of islands

A random torus with
5 islands and 2 pools

CSci 127 (Hunter)

Lecture 7

24 October 2018

D

6/ 32

Recap: Count the number of islands

9 Input:
A random torus with

5 islands and 2 pools

CSci 127 (Hunter)

Lecture 7

24 October 2018

D

6/ 32

Recap: Count the number of islands.

O Input: A 2D grid (array) filled with shaded
and blank squares.

A random torus with

5 islands and 2 pools

CSci 127 (Hunter)

Lecture 7

24 October 2018

D

6/ 32

Recap: Count the number of islands.

O Input: A 2D grid (array) filled with shaded
and blank squares.
0 Output:
A random torus with
5 islands and 2 pools
[|

CSci 127 (Hunter)

Lecture 7

24 October 2018

D

6/ 32

Recap: Count the number of islands.

O Input: A 2D grid (array) filled with shaded
and blank squares.
@ OQOutput: The number of islands.
A random torus with
5 islands and 2 pools
[|

CSci 127 (Hunter)

Lecture 7

24 October 2018

D

6/ 32

Recap: Count the number of islands.

O Input: A 2D grid (array) filled with shaded
and blank squares.

@ OQOutput: The number of islands.
A random torus with

. o Design:
5 islands and 2 pools g

= =) E E E 9ace
CSci 127 (Hunter) Lecture 7 24 October 2018 6 /32

Recap: Count the number of islands.

O Input: A 2D grid (array) filled with shaded
and blank squares.

@ OQOutput: The number of islands.
A random torus with

. O Design: Lots of ways to do this. Here's one:
5 islands and 2 pools

=} = = DQAC
24 October 2018 6 /32

CSci 127 (Hunter) Lecture 7

Recap: Count the number of islands.

o Input: A 2D grid (array) filled with shaded
and blank squares.

@ OQOutput: The number of islands.
A random torus with

) @ Design: Lots of ways to do this. Here's one:
5 islands and 2 pools

» Set up a variable count to hold the
number of islands (set to 0).

=} = = DQAC
24 October 2018 6 /32

CSci 127 (Hunter) Lecture 7

Recap: Count the number of islands.

o Input: A 2D grid (array) filled with shaded
and blank squares.

@ OQOutput: The number of islands.
A random torus with

) @ Design: Lots of ways to do this. Here's one:

5 islands and 2 pools _

» Set up a variable count to hold the
number of islands (set to 0).

» For each square (start in upper left
corner). If it's shaded & unvisited:

o = = DA™
24 October 2018 6 /32

CSci 127 (Hunter) Lecture 7

Recap: Count the number of islands.

o Input: A 2D grid (array) filled with shaded
and blank squares.

@ OQOutput: The number of islands.
A random torus with

) @ Design: Lots of ways to do this. Here's one:
5 islands and 2 pools _
» Set up a variable count to hold the
number of islands (set to 0).
» For each square (start in upper left
corner). If it's shaded & unvisited:
* Add one to the count of islands.

o = = DA™
24 October 2018 6 /32

CSci 127 (Hunter) Lecture 7

Recap: Count the number of islands.

o Input: A 2D grid (array) filled with shaded
and blank squares.

@ OQOutput: The number of islands.
A random torus with

) @ Design: Lots of ways to do this. Here's one:
5 islands and 2 pools _
» Set up a variable count to hold the
number of islands (set to 0).
» For each square (start in upper left
corner). If it's shaded & unvisited:
* Add one to the count of islands.
* Mark it as visited (color it purple).

o = = DA™
24 October 2018 6 /32

CSci 127 (Hunter) Lecture 7

Recap: Count the number of islands.

o Input: A 2D grid (array) filled with shaded
and blank squares.

@ OQOutput: The number of islands.
A random torus with

) @ Design: Lots of ways to do this. Here's one:
5 islands and 2 pools

» Set up a variable count to hold the
number of islands (set to 0).
» For each square (start in upper left
corner). If it's shaded & unvisited:
* Add one to the count of islands.
* Mark it as visited (color it purple).
* If it has any neighbors that are
land, mark those as purple.

=} = = = PN G
24 October 2018 6 /32

CSci 127 (Hunter) Lecture 7

Recap: Count the number of islands.

A random torus with
5 islands and 2 pools

CSci 127 (Hunter)

o Input: A 2D grid (array) filled with shaded

and blank squares.

@ OQOutput: The number of islands.

@ Design: Lots of ways to do this. Here's one:

» Set up a variable count to hold the
number of islands (set to 0).
» For each square (start in upper left
corner). If it's shaded & unvisited:
* Add one to the count of islands.
* Mark it as visited (color it purple).
* If it has any neighbors that are
land, mark those as purple.
* Keep checking neighbors, until all
are marked.

PN e

[m] = = =
Lecture 7 24 October 2018 6 /32

Recap: Count the number of islands.

o Input: A 2D grid (array) filled with shaded
and blank squares.

@ OQOutput: The number of islands.
A_ random torus with @ Design: Lots of ways to do this. Here's one:
5 islands and 2 pools _
» Set up a variable count to hold the
number of islands (set to 0).
» For each square (start in upper left
corner). If it's shaded & unvisited:
* Add one to the count of islands.
* Mark it as visited (color it purple).
* If it has any neighbors that are
land, mark those as purple.
* Keep checking neighbors, until all
are marked.

» Return count.

PN e

CSci 127 (Hunter) Lecture 7 24 October 2018 6 /32

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here

#Date: October 2017
#This program, uses functions,

says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 24 October 2018 7/32

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R

#This program, uses functions, organlzed with functions.

says hello to the world!

def mainQ):

print("Hello, World!™)

if __name__ == "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 24 October 2018 7/32

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here O Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
def mainQ):
print("Hello, World!™)

if __name__ == "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 24 October 2018 7/32

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here O Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
The opening function is often called main()

def mainQ):

print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:

mainQ)

CSci 127 (Hunter) Lecture 7 24 October 2018 7/32

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
The opening function is often called main()

def mainQ):

print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:

main© Example: print("Hello", "World")

CSci 127 (Hunter) Lecture 7 24 October 2018 7/32

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
F mainQ:
print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:
main© Example: print("Hello", "World")

@ Can write, or define your own functions,

CSci 127 (Hunter) Lecture 7 24 October 2018 7/32

Functions

@ Functions are a way to break code into pieces,
that can be easily reused.

#Name: your name here @ Many languages require that all code must be
#Date: October 2017 . . R
#This program, uses functions, organlzed with functions.
says hello to the world! . . .
@ The opening function is often called main()
F mainQ:
print("Hello, World!") @ You call or invoke a function by typing its name,
if __name__ = "__main__": followed by any inputs, surrounded by parenthesis:
main© Example: print("Hello", "World")

@ Can write, or define your own functions,
which are stored, until invoked or called.

CSci 127 (Hunter) Lecture 7 24 October 2018 7/32

“Hello, World!" with Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

says hello to the world!
def main(Q):
print("Hello, World!™)
if __name__ == "__main__":
main()

CSci 127 (Hunter) Lecture 7 24 October 2018

z 9ace

8/ 32

Python Tutor

#Name: your name here
#Date: October 2017
#This program, uses functions,

says hello to the world!
def mainQ): (Demo with pythonTutor)
print("Hello, World!™)
if __name__ == "__main__":
main()
=] (=) E z
CSci 127 (Hunter)

Lecture 7 24 October 2018 9 /32

In Pairs or Triples:

Predict what the code will do:

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: "))
dTip = float{input('Enter dinner tip:")
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

Q>

=}) = E DQAC
CSci 127 (Hunter) Lecture 7 24 October 2018 10 / 32

Python Tutor

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax

total = total + tip
return(total)

lunch = float(input('Enter lunch total: ')) .
1Tip = float(input('Enter lunch tip:')) D h
1Total - totalWithTax(lunch, 1Tip) (emo wit PYthonTUtor
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: ')
dTip = float(input('Enter dinner tip:')
dTotal - totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 24 October 2018 11 /32

Input Parameters & Return Values

o Functions can have input
parameters.

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 24 October 2018 12 / 32

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))

1Tip = float(input("Enter lunch tip:"))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total:
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

2

o Functions can have input
parameters.

o Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

Lecture 7 24 October 2018

12/ 32

Input Parameters & Return Values

o Functions can have input

parameters.
o Surrounded by parentheses,
O i epTaxCFood, kipd: both in the function definition,
tax - 0.0875 . .
total ~ food + food * tax and in the function call
total = total + tip
return(total) (invocation).
%unch :F{louz(inpué('Enterllun;h totul;)')) “ "o.
Tip = t t("Ent tip:"'
e ooy e b o The “placeholders™ in the

print('Lunch total is', 1Total)

function definition: formal
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:')) parameters

dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter) Lecture 7 24 October 2018 12 / 32

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Lecture 7 24 October 2018

12/ 32

Input Parameters & Return Values

def totalWithTax(food,tip):
total = @
tax = 0.0875
total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Enter lunch tip:'))
1Total = totalWithTax(lunch, 1Tip)
print('Lunch total is', 1Total)

dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:'))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)

CSci 127 (Hunter)

o Functions can have input

parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.

Lecture 7 24 October 2018

12/ 32

def tntaIWithTa

total = @
tax - 0.0875 Formal Parameters

total = food + food * tax
total = total + tip
return(total)

lunch = float(input('Enter lunch total: "))
1Tip = float(input('Ente ach tip:'))
1Total = totalWithTax P
print('Lunch total is', otd
Actual Parameters
dinner= float(input('Enter dmner to{al)}
dTip = float(input('Enter.d tip:'))
dTotal = totalWithTax
print('Dinner total is', @

CSci 127 (Hunter)

Input Parameters & Return Values

o Functions can have input

parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters.

Functions can also return
values to where it was called.

Lecture 7 24 October 2018

13 /32

In Pairs or Triples:

Circle the actual parameters and underline the formal parameters:

def

def

def

prob4 () :

verse = "jam tomorrow and jam yesterday,"

print("The rule is,")

¢ = mystery(verse)

W = enigma(verse,c)

print(c,w)

mystery(v):

print(v)

c = v.count("jam"}

return{c)

enigma(v,c):

print("but never", v[-1])

for i in range(c):
print("jam")

return("day.")

prob4 ()

CSci 127 (Hunter) Lecture 7

24 October 2018

14 /32

In Pairs or Triples:

Circle the actual parameters and underline the formal parameters:

def

def

prob4():
vers "jam tomorrow and jam yesterday,"
pring("The rule is,")

return{c)
enigma(v,c):
print("but never", v[-1])
for i in range(c):
print("jam")
return("day.")

Formal
Parameters

prob4 ()

CSci 127 (Hunter) Lecture 7 24 October 2018

D

15 / 32

In Pairs or Triples:

Predict what the code will do:

def

probd () :

verse = "jam tomorrow and jam yesterday,"
print("The rule is,")

c = mystery(verse)

W = enigma(verse,c)

print(c,w)

def mystery(v):
print(v)
c = v.count("jam")
return(c)

def enigma(v,c):
print("but never", v[-1])
for 1 in range(c):

print("jam")

return("day.")

prob4()

CSci 127 (Hunter) Lecture 7

#Fall 2013 Final Exam, 5

def kuwae(inlst):
tot = 1
for item in inlst:
tot = tot * item
return tot

def foo(inLst):
if (inLst([-1] > inLst[©]):
return kuwae(inlst)
else:
return -1

foo([2, 4, 6, 8])

foo([4802, 328, 457, 1])

24 October 2018 16 / 32

Python Tutor

def proba():
verse = "jan tomorrow and jam yesterday,"
print("The rule is,")
< = mystery(verse)
w = enigma(verse,c)
print(c,w)
def mystery(v):
print(v)
¢ = v.count("jam")
return(c)
def enigna(v.c):
print("but never", v(-1])
for i in range(c):
print("jan")
return("day.")
proba ()

#Fall 2013 Final Exam, 5

def kuwae(inLst):
tot =1
for item in inLst:
tot = tot * item
return tot

def foo(inlst):
if (inLst[-1] > inLst[@]):
return kuwae(inlst)
else:
return -1

foo((2, 4, 6, 8])

foo([4002, 328, 457, 1])

CSci 127 (Hunter)

(Demo with pythonTutor)

24 October 2018

17 / 32

In Pairs or Triples:

Predict what the code will do:

#Greet loop example

def greetlLoop(person):
print("Greetings")
for i in range(5):

print("Helle", person)

greetLoop("Thomas")

CSci 127 (Hunter)

From "Teaching with Python" by John Zelle

def

def

happy () :
print("Happy Birthday to you!")

sing(P):
happy (O
happy ()
print("Happy Birthday dear " + P + "I")
happy ()

sing("Fred")
sing("Thomas")
sing("Hunter")

Lecture 7

24 October 2018

18 / 32

Python Tutor

#Greet loop example

def greetlLoop(person):

print("Greetings")

for i in range(5):
print("Hello", person)

greetLoop("Thomas")

From "Teaching with Python” by John Zelle (Demo Wlth pythOnTut Or)

def happy () :
print("Happy Birthday to you!")

def sing(P):
happy ()
happy ()
print("Happy Birthday dear " + P + "!")
happy ()

sing("Fred")
sing("Thomas")
sing("Hunter")

CSci 127 (Hunter) Lecture 7 24 October 2018 19 / 32

In Pairs or Triples:

Fill in the missing code:

def monthString(monthNum):

Takes as input a number, monthNum, and

returns the corresponding month name as a string.
Example: monthString(1l) returns "January".

Assumes that input is an integer ranging from 1 to 12

monthString =

FILL IN YOUR CODE HERE

Other than your name above,

this is the only section

you change in this program.

it
i
it
HH#

return(monthString)

def mainQ):

n = int(input('Enter the number of the month: "))

mString = monthString(n)
print('The month is', mString)

CSci 127 (Hunter)

Lecture 7

24 October 2018

DA
20 / 32

IDLE

def monthString(nonthNum):

Takes as input a number, monthium, and

Feturns the corresponding nonth name as a string
Exanple: monthString(1) returns “January

Assunes that input is an integer ranging from 1 to 12

ronthString =

o (Demo with IDLE)
s

def main():
n = intCinput('Enter the number of the month: '))

mString = ronthString(n)
printC'The ronth is', mString)

DA
24 October 2018 21 /32

CSci 127 (Hunter) Lecture 7

In Pairs or Triples:

Predict what the code will do:

#(CSci 127 Teaching Staff
#Triangles two ways...
import turtle

def setUp(t, dist, col):
t.penup(Q)
t.forward(dist)
t.pendown()
t.color(col)

def nestedTriangle(t, side):
if side > 10:
for i in range(3):
t.forward(side)
t.left(120)
nestedTriangle(t, side/2)

def fractalTriangle(t, side):
if side > 10:
for i in range(3):
t.forward(side)
t.left(120)

fractalTriangle(t, side/2)

CSci 127 (Hunter)

[def main():

t

if _

Lecture 7

nessa = turtle.Turtle()
setUp(nessa, 100, "violet")
nestedTriangle(nessa, 160)

frank = turtle.Turtle()
setUp(frank, -100, "red")
fractalTriangle(frank, 160)

_name__ == "__main__":

main()

24 October 2018

22 /32

IDLE

#CSci 127 Teaching Staff
#Triangles two ways.
import turtle

def setUp(t, dist, col):
t.penup()
t. forward(dist)
t.pendown()
t.color(col)

def nestedTriangle(t, side): .

if side > 10:
O e (Demo with IDLE)

t.forward(side)

t.1eft(120)

nestedTriangle(t, side/2)

def fractalTriangle(t, side):
f side > 10:

for i in range(3):
t. forward(side)
t.1eft(120)

fractalTriangleCt, side/2)

CSci 127 (Hunter)

Lecture 7

24 October 2018 23 /32

Recap: Functions

@ Functions are a way to break code into pieces,
#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world!
def mainQ):
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
print("Hello, World!™)
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
printC"Hello, World!™) Example: print("Hello", "World")
if __name__ = "__main__":
mainQ)

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Recap: Functions

@ Functions are a way to break code into pieces,

#Name: your name here

#Date: October 2017 that can be easily reused.
#This program, uses functions,
says hello to the world! @ You call or invoke a function by typing its name,
def main(): followed by any inputs, surrounded by parenthesis:
printC"Hello, World!™) Example: print("Hello", "World")
if __name__ == "__main__": . . .
mainGy @ Can write, or define your own functions,

CSci 127 (Hunter) Lecture 7 24 October 2018 24 / 32

Recap: Functions

#Name: your name here
#Date: October 2017
#This program, uses functions,

#

if

says hello to the world!

F mainQ:

print("Hello, World!™)

__name__ == "__main__":
main()

CSci 127 (Hunter)

@ Functions are a way to break code into pieces,
that can be easily reused.

@ You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

@ Can write, or define your own functions,
which are stored, until invoked or called.

Lecture 7 24 October 2018 24 /32

Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

.
"(;‘V*

o Freely available source of data

CSci 127 (Hunter)

Lecture 7

A
24 October 2018

25 /32

Accessing Structured Data: NYC Open Data
Open Data for

All New Yorkers

/=i..y
aQ -
Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.

"(;‘V*

o Maintained by the NYC data analytics team.

CSci 127 (Hunter)

Lecture 7

A
24 October 2018

25 /32

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

o Freely available source of data.

o Maintained by the NYC data analytics team.

o We will use several different ones for this class

CSci 127 (Hunter)

Lecture 7

A
24 October 2018

25 /32

Accessing Structured Data: NYC Open Data

Open Data for Qa .

®
All New Yorkers S

i
#

Search Open Data for things like 311, Buildings, Crime¢ ' l ;‘ N7_ ‘

o Freely available source of data.
o Maintained by the NYC data analytics team.
o We will use several different ones for this class.

o Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

= = = E E DA
CSci 127 (Hunter) Lecture 7 24 October 2018 25 /32

Accessing Structured Data: NYC Open Data

Open Data for
All New Yorkers

Search Open Data for things like 311, Buildings, Crime¢

Freely available source of data.
Maintained by the NYC data analytics team.
We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

©

Lab 7 covers accessing and downloading NYC OpenData datasets.
=} (=) = E E DA
CSci 127 (Hunter) Lecture 7 24 October 2018 25 /32

Example: Reading in CSV Files

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111
Tirol Canens afior the consoiidntion of the'tive boressterrsir

‘{c«:x,Munhuun,Brwwklyn.Vuwn:,szunx,ﬂubcn Toland,Total

27,49447

1890, 1441216, 838547, 87050, 88908, 51693, 2507414
1900, 1850093, 1166583, 152959, 200507 7021, 3437202

1500, 1428285, 2830936, 1091375, 168972, xsil:x Toniess
1990, 1497536, 2300664, 1951598, 1203789, 3709777322564
2010, 1585873, 2504700, 2230772, 1365109, 468730, 8175133
2015, 1644510, 2636735, 2339150, 1455444, 474556, 8550405

nycHistPop.csv

In Lab 6

CSci 127 (Hunter) Lecture 7

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

Firol Canens afior the consoiidntion of the'Tive boresdherrs

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111

Teax, Hanhattan, Brooklyn, Quoens, Bronx, Staten Tsland,Total
el T

179033131, 4549, 6155 ,1701, 3827 49447
s ses1s srie, tsu nss et

90 scsrsae aso0sedriasison,aosTes 37800y Tszases

2070,1383873, 2504700, 2230722, 1385109, 468730, 0175133
D06, 1e4as10, 2636758, 2390150, 1455404, 474538, 8550408

nycHistPop.csv

In Lab 6

CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

Souroer butpau/Jan-wikipedia.org/vixi /Demographicn o ow tork City 111
fior the consoiantion of the'Eive boressherrrr s

Teax, Hanhattan, Brooklyn, Quoens, Bronx, Staten Tsland,Total
1698,4937,2017,,,727, 7651

T0is,Seass1a, 2656798, 1939150, 45841, 74558, 8550108

nycHistPop.csv

In Lab 6

CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

Sourca: neeps://on.wixipedia.org/uiki /Denogeaphice_of Now_York
nous aftor the consolidation of the Eive boroughe,,,...

s e pl t.show ()

pop.plot(x="Year")

nycHistPop.csv

In Lab 6

CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

Example: Reading in CSV Files

import matplotlib.pyplot as plt
import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

n-iipeats-org/uixi/pemopcaphicn of_tow York cio
Firol Canens aftor the consoiidation of the'five boresshe.

&éuil«,n:tﬁ Brvwklyn;?::n:,szunx,ﬂuhcn Toland,Total plt .show ()

pop.plot(x="Year")

9000000
:3:3 1123532 Bus«z o, — Manhattan
8000000 —— Brooklyn
— Queens
Bronx.
7000000 Staten Island
~—— Total
2010, 1585873, 2504700, 2230722, 1385108, 468730, 8175133 6000000
S01S, Leassra. 2006795, 2539150, 1450044, 474558, 8550405
5000000
nycHistPop.csv 4000000
In Lab 6 3000000
2000000
1000000
0 —
1698 1820 1870 1920 1970 2015

Year

[m] = = =
CSci 127 (Hunter) Lecture 7 24 October 2018 26 / 32

CS Survey: Adrienne Schmoeker & Albert Webber

Open Data for @
All New Yorkers 9
o)

¢ X

o Adrienne Schmoeker & Albert Webber

NYC Mayor's Office of Data Analytics

CSci 127 (Hunter)

Lecture 7

A
24 October 2018

27 /32

Design Question
¢
29

9
%/ 8 o’
% g « 4%

v

Design an algorithm that finds the closest collision.

(Sample NYC OpenData collision data file on back of lecture sli%)
CSci 127 (Hunter)

¢

Qe

Lecture 7

DA
24 October 2018 28 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.
How to approach this:

o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.

o Read through the problem, and break it into “To Do" items.

o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.

o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 / 32

Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:
o Create a “To Do" list of what your program has to accomplish.
o Read through the problem, and break it into “To Do" items.
o Don't worry if you don't know how to do all the items you write down.
o Example:

@ Find data set (great place to look: NYC OpenData).
@ Ask user for current location.

@ Open up the CSV file.

@ Check distance to each to user's location.

® Save the location with the smallest distance.

CSci 127 (Hunter) Lecture 7 24 October 2018 29 /32

Recap

Open Data for
All New Yorkers

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

CSci 127 (Hunter)

Lecture 7

DA
24 October 2018 30/ 32

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

= =) E E E 9ace
CSci 127 (Hunter) Lecture 7 24 October 2018 30/ 32

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

= =) E E E 9ace
CSci 127 (Hunter) Lecture 7 24 October 2018 30/ 32

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

L % Example: print("Hello", "World")

o F = = £ DA

CSci 127 (Hunter) Lecture 7 24 October 2018 30/ 32

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Q
s @ o Can write, or define your own functions,
)

o F = = £ DA

CSci 127 (Hunter) Lecture 7 24 October 2018 30/ 32

Recap

@ On lecture slip, write down a topic you wish
we had spent more time (and why).

o Functions are a way to break code into
pieces, that can be easily reused.

Open Data for
All New Yorkers

@ You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

99" i Example: print("Hello", "World")
9
oD J & o Can write, or define your own functions,
99 Ve which are stored, until invoked or called.
]
o «F = = = 9ac

CSci 127 (Hunter) Lecture 7 24 October 2018 30/ 32

Recap

Open Data for
All New Yorkers

CSci 127 (Hunter)

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Q>

[m] = = =
Lecture 7 24 October 2018 30/ 32

Recap

Open Data for
All New Yorkers

CSci 127 (Hunter)

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:

Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.

=} = = DQAC
Lecture 7 24 October 2018 30/ 32

= 9aQ

Practice Quiz & Final Questions

#Name: your name here

#Date: October 2017

#This program, uses functions,
says hello to the world!

def mainQ):
print("Hello, World!")

if __name__ == "

__main__":
main()

def totalWithTaxCFood, ETD
total - 0

ol 7S Formal Parameters

returnCtotal)
Luch - FlostCimputCinter Lunch tol:)
1Tip - FloatCinput('En)
printC'Lunch total is’, TTOt
‘Actiial Parameters

dimer-= Float(inputC Enter dimner total: '3)

nter dinner tip:')
dTotal - totalWithTaxCd 3
print('Dinner total is™s2

aef provag);

prm (em) | pCye

Form
Parameters
print("but never

provs0)

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

CSci 127 (Hunter)

Lecture 7

5 =

24 October 2018 31/32

Practice Quiz & Final Questions

#Name: your name here def totalithTaToaH, HFT> aet provig);
versefk *jan tosorrou and jan yesterday.”
#Date: October 2017 el s Formal Parameters i jen y y
. total = food + food * tax
#This program, uses functions, fotal - total + tip
says hello to the world! returnCtotal)
Luneh - FlostCinputCnter lunch totals)
£ main0): 1Tip - Float(input
def main(): orel - sotethientod
print("Hello, World!™) printC'Lunch total is”, TrORD
dinmer- floot(input('Enter dimner total: '))
- dTip = float(input('Enter diner tip:' 3)
f —name__ == "__main__": dTotal - totalWithTaxt p
main() print('Dinner total is

provs0)

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in).

o & = =
CSci 127 (Hunter) Lecture 7 24 October 2018 31/32

Practice Quiz & Final Questions

#Name: your name here o o D ot -SRIV —
#Date: October 2017 oo TR 5.5
. total - food + P
#This program, uses functions, total - total + f?p ax
says hello to the world! return(total)

lunch = f\uat(mput(Enter \ur:h mtal))
Lo TTip = FloatCinput
def main(): Total - cumlw\tm

print("Hello, World!") prinkClunch total 15" TORET L ore

dimer- Float(input(Enter dimer total: 13)

f —-hame__ == "__main__": dTotal - totalWithTax(@ > return(*day.")
main() print(*Dinner total is'; aTow probtr

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).

o Lightning rounds:

CSci 127 (Hunter) Lecture 7 24 October 2018 31/32

Practice Quiz & Final Questions

#Name: your name here oy D palivies TP —
#Date: October 2017 oo TR 5.5
. total = food + *
#This program, uses functions, total - total + f?p ax
says hello to the world! return(total) pri
aet mysthey(n)

lunch = f\uat(mput(Enter \ur(h mtal))
Lo 1Tip - floatCinput
def main(): Total - emmnm

print("Hello, World!™) printC'Lunch total is" o

“Actilal Parameters
dinner= floot(input('Enter dimer total: '))
- dTip = float(input('Enter diner tip:' 3)
—Mame__ == ~__main_": dTotal - totalWithTaxCd D returncodsy

main() print(*Dinner total is'; aTow probtr

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).

o Lightning rounds:
» write as much you can for 60 seconds;

CSci 127 (Hunter) Lecture 7 24 October 2018 31/32

Practice Quiz & Final Questions

#Name: your name here o o D ot -SRIV —
#Date: October 2017 mx\@gw; o et 5.5
. total - food + P
#This program, uses functions, total - total + f?p ax
says hello to the world! return(total) prin(c..
aet mysthey(n)

lunch = f\uat(mput(Enter \ur(h tum\))
Lo Tip - FloatCinput
def main(): Total - tumlw\thﬁ

print("Hello, World!™) printC'Lunch total is" o

“Actilal Parameters
dinner= floot(input('Enter dimer total: '))
- dTip = float(input('Enter diner tip:' 3)
—Mame__ == ~__main_": dTotal - totalWithTaxCd D returncodsy

main() print(*Dinner total is'; aTow probtr

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).

o Lightning rounds:
» write as much you can for 60 seconds;
» followed by answer; and

CSci 127 (Hunter) Lecture 7 24 October 2018 31/32

Practice Quiz & Final Questions

#Name: your name here o o D ot -SRIV —
#Date: October 2017 mx\@gxd o et 5.5
. total - food + P
#This program, uses functions, total - total + f?p ax
says hello to the world! return(total) prin(c..
aet mysthey(n)

lunch = f\uat(mput(Enter \ur(h tum\))
Lo Tip - FloatCinput
def main(): otal - totalkithTa @
print("Hello, World!™) printCLunch total is”, TR@D ser
dinner= float(input('Enter dinner tetu\)}

- dTip - float(input(Enter diner tip:' 3)
—-name__ = "__main__": obal - SotshinToE ; I
main() print('Dinner total is", aTOtE arovee)

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).

o Lightning rounds:
» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

CSci 127 (Hunter) Lecture 7 24 October 2018 31/32

Practice Quiz & Final Questions

#Name: your name here ot totei o AT

Formal Parameters

#Date: October 2017 tax - 0.0875
. total = food + food * tax
#This program, uses functions, e total + tip
says hello to the world! returnCtotal)
*Enter unch total: "))
mainQ): T SR

print("Hello, World!")

“Actilal Parameters
Enter dinner total: '))
- dTip - floal Enter dinser tip:')
—-hame__ == "__matn__: dTotal - totalWithTaxCd 3
main() print('Dinner total is'; aTo

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.
o Pull out something to write on (not to be turned in).
o Lightning rounds:
» write as much you can for 60 seconds;
» followed by answer; and
> repeat.
o Past exams are on the webpage (under Final Exam Information).

CSci 127 (Hunter) Lecture 7 24 October 2018 31/32

Practice Quiz & Final Questions

#Name: your name here def ::t:}wltghﬁ:md.tw)

#Date: October 2017 e Formal Parameters
i total = food + food * tax

#This program, uses functions, horor b hemiiibeniiing

says hello to the world! returnCtotal)

3

“Enter lunch total: ')
mainQ): T SR
print("Hello, World!™ eal Parameters

Enter dinner total: '))
__name__ == "__main__": seLtip:'))

dTip = floa Enter d
4 dTotal - totalWithTaxCd
main(Q) print('Dinner total is', aTo

o Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

o Pull out something to write on (not to be turned in).

o Lightning rounds:

» write as much you can for 60 seconds;
» followed by answer; and
> repeat.

o Past exams are on the webpage (under Final Exam Information).

o Theme: Functions!

CSci 127 (Hunter) Lecture 7 24 October 2018 31/32

Writing Boards

o Return writing boards as you leave...

CSci 127 (Hunter)

Lecture 7

= E E DA
24 October 2018

32/ 32

