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Announcements

Each lecture includes a survey of computing
research and tech in NYC.

Today: Adrienne Schmoeker & Albert Webber
NYC OpenData Initiative
Mayor’s Office

11:10am: Informal Q&A with Adrienne &
Albert in 1203 Hunter East.
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Frequently Asked Questions

From lecture slips & recitation sections.

I didn’t get the torus-based islands & pools from last time!
No worries– we’ll talk about it first.

Why do we have design questions (like the torus-land)?
The design questions cover two of the course’s learning objectives: exposure to
advanced computer science topics & problem solving.

Please, more time on circuits/logical expressions/truth tables/decisions!
We will do a bit today, but much more in the following weeks.

I turned in a lecture slip, but it’s not showing up on Gradescope.
We always have a few with no name, only the first name, or are hard to read.
Send us email with the lecture number and your name, and we’ll search for it.
p.s. Including your EmplID (& printing your name) makes it much easier.

For the intrepid few that keep asking: When are you covering recursion?
When we cover functions. See today and next week’s lecture, and Program #40.
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Today’s Topics

Recap: Prof. Saad’s torus-land

Introduction to Functions

NYC Open Data
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Recap: Living on a Torus

  

A random torus with
5 islands and 2 pools

How many pools and how many
islands does each version have?
(Collect all 5!)

Design an algorithm that will count
the number of islands.
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Recap: Count the number of islands.

  

A random torus with
5 islands and 2 pools

Input: A 2D grid (array) filled with shaded
and blank squares.

Output: The number of islands.

Design: Lots of ways to do this. Here’s one:

I Set up a variable count to hold the
number of islands (set to 0).

I For each square (start in upper left
corner). If it’s shaded & unvisited:

F Add one to the count of islands.
F Mark it as visited (color it purple).
F If it has any neighbors that are

land, mark those as purple.
F Keep checking neighbors, until all

are marked.

I Return count.
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Functions

Functions are a way to break code into pieces,
that can be easily reused.

Many languages require that all code must be
organized with functions.

The opening function is often called main()

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.
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“Hello, World!” with Functions
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Python Tutor

(Demo with pythonTutor)
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In Pairs or Triples:

Predict what the code will do:
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Python Tutor

(Demo with pythonTutor)
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Input Parameters & Return Values

Functions can have input
parameters.

Surrounded by parentheses,
both in the function definition,
and in the function call
(invocation).

The “placeholders” in the
function definition: formal
parameters.

The ones in the function call:
actual parameters

Functions can also return
values to where it was called.
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In Pairs or Triples:
Circle the actual parameters and underline the formal parameters:
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In Pairs or Triples:

Predict what the code will do:
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Python Tutor

(Demo with pythonTutor)
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Python Tutor

(Demo with pythonTutor)
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In Pairs or Triples:

Fill in the missing code:
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IDLE

(Demo with IDLE)
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In Pairs or Triples:

Predict what the code will do:
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IDLE

(Demo with IDLE)
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Recap: Functions

Functions are a way to break code into pieces,
that can be easily reused.

You call or invoke a function by typing its name,
followed by any inputs, surrounded by parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.
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Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

We will use several different ones for this class.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

Lab 7 covers accessing and downloading NYC OpenData datasets.
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Example: Reading in CSV Files

nycHistPop.csv

In Lab 6

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()
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CS Survey: Adrienne Schmoeker & Albert Webber

Adrienne Schmoeker & Albert Webber
NYC Mayor’s Office of Data Analytics
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Design Question

Design an algorithm that finds the closest collision.
(Sample NYC OpenData collision data file on back of lecture slip.)
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Design Question

Design an algorithm that uses NYC OpenData collision data and computes
the closest collision to the location the user provides.

How to approach this:

Create a “To Do” list of what your program has to accomplish.

Read through the problem, and break it into “To Do” items.

Don’t worry if you don’t know how to do all the items you write down.

Example:

1 Find data set (great place to look: NYC OpenData).
2 Ask user for current location.
3 Open up the CSV file.
4 Check distance to each to user’s location.
5 Save the location with the smallest distance.
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Recap

On lecture slip, write down a topic you wish
we had spent more time (and why).

Functions are a way to break code into
pieces, that can be easily reused.

You call or invoke a function by typing its
name, followed by any inputs, surrounded by
parenthesis:
Example: print("Hello", "World")

Can write, or define your own functions,
which are stored, until invoked or called.

Accessing Formatted Data: NYC OpenData

Pass your lecture slips to the aisles for the
UTAs to collect.
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Practice Quiz & Final Questions

Since you must pass the final exam to pass the course, we end every
lecture with final exam review.

Pull out something to write on (not to be turned in).

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Functions!
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Writing Boards

Return writing boards as you leave...
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