CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

イロト イポト イヨト イヨト

CSci 127 (Hunter)

Lecture 5

3 10 October 2018 1 / 31

Announcements

• Google Engineering Info Session: Today, 1:30pm, 614HW

Sac

イロト イポト イラト イラト 一支

Announcements

- Google Engineering Info Session: Today, 1:30pm, 614HW
- CS Survey:
 - Melina Diaconis, WiTNY

Sac

Announcements

- Google Engineering Info Session: Today, 1:30pm, 614HW
- CS Survey:
 - Melina Diaconis, WiTNY
 - Lily Caplan, president, Hunter ACM Student Chapter

イロト イポト イヨト イヨト

Sac

From lecture slips & recitation sections.

From lecture slips & recitation sections.

• Where is the final? When are we taking it?

From lecture slips & recitation sections.

• Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.

三 つくぐ

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib?

= nar

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.

Jac.

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it?

200

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."

200

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.

200

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math?

Jac.

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus).

Jac.

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.

E Sac

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?

≡ ∽ar

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?

CSci 127 (Hunter)

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables? Strings are surrounded by quotes (either single or double).

CSci 127 (Hunter)

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables? Strings are surrounded by quotes (either single or double). Variables names (identifiers) for memory locations are not.

CSci 127 (Hunter)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From lecture slips & recitation sections.

- Where is the final? When are we taking it? Wednesday, 19 December, 9-11am, 118 North.
- Can we do more on colors, images, numpy & matplotlib? Yes, we will in Labs 6-9 & Lectures 6-9. Today, we'll focus on decisions, and logical expressions & circuits.
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What was that % symbol? Why is that math? It's the symbol for remainder (or modulus). Ex: 11 % 5 is 1.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables? Strings are surrounded by quotes (either single or double). Variables names (identifiers) for memory locations are not. Ex: 'num' vs. num.

CSci 127 (Hunter)

From lecture slips & recitation sections.

From lecture slips & recitation sections.

• Why all the fuss about women in computer science? There's lots of women.

From lecture slips & recitation sections.

• Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*

From lecture slips & recitation sections.

• Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*

Source: National Science Foundation, American Bar Association, American Association of Medical Colleges Credit: Quoctrung Bu/NPR

(PlanetMoney)

CSci 127 (Hunter)

토 ► < 토 ► 토 ∽ < < 10 October 2018 4 / 31

From lecture slips & recitation sections.

• Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys.

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. *Not compared to other schools.*

E Sac

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates).

≡ ∽ar

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.

200

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me?

200

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me? *Redesigned CSci 127:*

200

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me? *Redesigned CSci 127:*
 - ► Following Harvard: a rigorous & practical course to attract everyone.

200

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me? *Redesigned CSci 127:*
 - ► Following Harvard: a rigorous & practical course to attract everyone.
 - Automated grading to give immediate feedback.

Jac.

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me? *Redesigned CSci 127:*
 - ► Following Harvard: a rigorous & practical course to attract everyone.
 - Automated grading to give immediate feedback.
 - ► Redirected resources to be student-focused (e.g. UTAs).

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me? *Redesigned CSci 127:*
 - ► Following Harvard: a rigorous & practical course to attract everyone.
 - Automated grading to give immediate feedback.
 - ► Redirected resources to be student-focused (e.g. UTAs).
 - Dedicated lab space & new computers.
Frequently Asked Questions

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me? *Redesigned CSci 127:*
 - ► Following Harvard: a rigorous & practical course to attract everyone.
 - Automated grading to give immediate feedback.
 - ► Redirected resources to be student-focused (e.g. UTAs).
 - Dedicated lab space & new computers.

More students means more variety in upper division electives,

Frequently Asked Questions

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me? *Redesigned CSci 127:*
 - ► Following Harvard: a rigorous & practical course to attract everyone.
 - Automated grading to give immediate feedback.
 - ► Redirected resources to be student-focused (e.g. UTAs).
 - Dedicated lab space & new computers.

More students means more variety in upper division electives, more students with interests similar to yours,

CSci 127 (Hunter)

Frequently Asked Questions

From lecture slips & recitation sections.

- Why all the fuss about women in computer science? There's lots of women. *Well, actually, there's not.*
- Yes, but I'm a guy. There's lots of guys. Not compared to other schools. Across CUNY there were < 1000 students graduating with a tech degree (out of 24,000 annual graduates). Versus Stanford where 90% take a CS course & half major in computer science.
- And how does this help me? *Redesigned CSci 127:*
 - ► Following Harvard: a rigorous & practical course to attract everyone.
 - Automated grading to give immediate feedback.
 - ► Redirected resources to be student-focused (e.g. UTAs).
 - Dedicated lab space & new computers.

More students means more variety in upper division electives, more students with interests similar to yours, and more links to research and industry.

Today's Topics

- CS Survey
- Recap: Indexing, Slicing, & Decisions
- Logical Expressions
- Oircuits

Э

900

イロト イポト イヨト イヨト

CS Survey

You see a woman. We see the future of tech.

We Are Digital Enthusiasts

Jump start your future this January with a three-week Winternship.

What's a Winternship?

A Winternship is a PAID, three-week internship in NYC, open to first- and second-year women at CUNY during their January academic recess.

Why should I apply for a Winternship? You'll learn more about job opportunities in tech and computing, build your resume, and expand your professional network.

Who can apply?

All first- and second-year women at CUNY who are interested in learning more about tech careers. You may be a computer science major, or you may not be. There are no academic requirements to apply. What are you waiting for?

Applications are now open for WiTNY Winternship!

IMPORTANT DATES October 5, 2018: Applications due

Mid-November- Placements announced

witny.org/students

· January 7-24, 2019: Winternships take place in NYC and the surrounding tri-state area

Questions? Maria DiKun. Program Coordinator. WiTNY | wit-nv@cornell.edu

Maria Dikun & Melina Diaconis, WITNY

CSci 127 (Hunter)

10 October 2018 7 / 31

CS Survey

You see a woman. We see the future of tech.

We Are Digital Enthusiasts

Jump start your future this January with a three-week Winternship.

What's a Winternship?

A Winternship is a PAID, three-week internship in NYC, open to first- and second-year women at CUNY during their January academic recess.

Why should I apply for a Winternship? You'll learn more about job opportunities in tech and computing, build your resume, and expand your professional network.

Who can apply?

All first- and second-year women at CUNY who are interested in learning more about tech careers. You may be a computer science major, or you may not be. There are no academic requirements to apply. What are you waiting for?

Applications are now open for WiTNY Winternship!

IMPORTANT DATES • October 5, 2018: Applications due

Mid-November: Placements announced

witny.org/students

 January 7-24, 2019: Winternships take place in NYC and the surrounding tri-state area

Questions? Maria DiKun, Program Coordinator, WiTNY | <u>wit-ny@cornell.edu</u>

- Maria Dikun & Melina Diaconis, WiTNY
- Lily Caplan, president, Hunter ACM Student Chapter

CSci 127 (Hunter)

10 October 2018 7 / 31

Lecture Slip: In Pairs or Triples...

Some review:

1

2

motto = "Mihi cura futuri" print(motto[2:4]) print(motto[2:4].upper())

ER = "The future belongs to those who believe in the beauty of their dreams." print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Sac

イロト イポト イヨト イヨト

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

	М	i	h	i		с	u	r	а		f	u	t	u	r	i
--	---	---	---	---	--	---	---	---	---	--	---	---	---	---	---	---

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		с	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		с	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		с	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Output:

hi

CSci 127 (Hunter)

10 October 2018 10 / 31

```
motto = "Mihi cura futuri"
print(motto[2:4])
print(motto[2:4].upper())
```

М	i	h	i		с	u	r	а		f	u	t	u	r	i
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Output:

hi

ΗI

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 0 < 0

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	e		f	u	t	u	r	е		b	е	I	0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 0 < 0

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	е		b	е	I	0	n	g	S
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	e		b	е		0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 0 < 0

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	e		b	е		0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - - - の Q ()~

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	e		b	e		0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	e		b	e		0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Output:

ER = "The future belongs to those who believe in the beauty of their dreams."
print(ER.upper()[2], ER[13], ER[2], "a", ER[15], ER[14], "r R.")

Т	h	е		f	u	t	u	r	e		b	e		0	n	g	s
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Output:

Eleanor R.

イロト 不良 トイヨト イヨト ヨー のくや

In Pairs or Triples...

Some challenges with types & decisions:

```
#What are the types:
y1 = 2017
y2 = "2018"
print(type(y1))
print(type("y1"))
print(type(2017))
print(type("2017"))
print(type(y2))
print(type(y1/4.0))
```

```
x = int(y2) - y1
if x < 0:
    print(y2)
else:
    print(y1)</pre>
```

```
cents = 432
dollars = cents // 100
change = cents % 100
if dollars > 0:
    print('$'+str(dollars))
if change > 0:
    quarters = change //| 25
    pennies = change % 25
    print(quarters, "quarters")
    print("and", pennies, "pennies")
```

Python Tutor

```
#What are the types:
y1 = 2017
y2 = "2018"
print(type(y1))
print(type('y1''))
print(type('2017))
print(type(2017))
print(type(y2))
print(type(y1/4.0))
x = int(y2) - y1
if x < 0:
print(y2)
```

print(y1)

else:

(Demo with pythonTutor)

Decisions

(programiz)

CSci 127 (Hunter)

Lecture 5

10 October 2018 18 / 31

Side Note: Reading Flow Charts

(xkcd/518)

CSci 127 (Hunter)

10 October 2018 19 / 31

イロト 不良 トイヨト イヨト ヨー のくや

In Pairs or Triples

Predict what the code will do:

```
origin = "Indian Ocean"
winds = 100
if (winds > 74):
    print("Major storm, called a ", end="")
    if origin == "Indian Ocean" or origin == "South Pacific":
        print("cyclone.")
    elif origin == "North Pacific":
        print("typhoon.")
    else:
        print("hurricane.")
visibility = 0.2
winds = 40
conditions = "blowing snow"
if (winds > 35) and (visibility < 0.25) and \setminus
      (conditions == "blowing snow" or conditions == "heavy snow"):
    print("Blizzard!")
```

Python Tutor

```
origin - "Indian Ocean"

winds - 100

if (originations)

if originations atom, called a ", end-"")

if origin - Thism Ocean" or origin - "South Pacific":

print("cyclone.")

else:

print("cyclone.")

print("hurricane.")
```

```
visibility = 0.2
winds = 40
conditions = "blowing snow"
if (winds > 35) and (visibility < 0.25) and \
    (conditions == "blowing snow" or conditions == "heavy snow"):
    print("Bluzzard1")</pre>
```

(Demo with pythonTutor)

イロト 不良 トイヨト イヨト ヨー のくや

Logical Operators

and

	in2	returns:
and	False	False
and	True	False
and	False	False
and	True	True
	and and and and	in2 and False and True and False and True

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

or

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

or

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

not

	in1	returns:
not	False	True
not	True	False

10 October 2018 22 / 31

In Pairs or Triples

Predict what the code will do:

```
semHours = 18
reaHours = 120
if semHours >= 12:
     print('Full Time')
else:
     print('Part Time')
pace = reqHours // semHours
if reaHours % semHours != 0:
     pace = pace + 1
print('At this pace, you will graduate in', pace, 'semesters,')
yrs = pace / 2
print('(or', yrs, 'years).')
for i in range(1,20):
     if (i > 10) and (i \% 2 == 1):
          print('oddly large')
     else:
          print(i)
    CSci 127 (Hunter)
                                   Lecture 5
                                                            10 October 2018
```

Sac

23 / 31

Python Tutor

```
settors = 18
reducts = 12
(f settors >= 12);
reducts = 12:
print(*Dui Time')
alse print(*Dui Time')
poce = requires / isettors
print(*Dui time')
print(*It this poce, you will graduate in', poce, 'semesters,')
yrs = poce / por
print(*Con', yrs, 'years).')
for in range(1,20):
    if (i > 10) or d( i X 2 - 1):
        print(*Codd) large)
    ist;
    reduct
    ist
    ist
```

(Demo with pythonTutor)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のの⊙

Circuit Demo

(Demo with neuroproductions)

3

∃ → < ∃ →</p>

590

In Pairs or Triples

Predict when these expressions are true:

• not(in1 or in2):

• (in1 and in2) and in3:

CSci 127 (Hunter)

Lecture 5

- b 10 October 2018 26 / 31

3

イロト イロト イヨト イ

Circuit Demo

(Demo with neuroproductions)

Э

590

イロト イポト イヨト イヨト

Lecture Slip: In Pairs or Triples

Fill in the comments to describe the code (output below):

CSci 127 (Hunter)

990

• On lecture slip, write down a topic you wish we had spent more time (and why).

3

590

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:

3

590

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - Decisions
 - Logical Expressions
 - Circuits

3

Sac

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - Decisions
 - Logical Expressions
 - Circuits
- Pass your lecture slips to the aisles for the UTAs to collect.

Sac

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - Decisions
 - Logical Expressions
 - Circuits
- Pass your lecture slips to the aisles for the UTAs to collect.

Sac

• Since you must pass the final exam to pass the course, we end every lecture with final exam review.

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).

CSci 127 (Hunter)

- b

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:

CSci 127 (Hunter)

TH 1.

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;

CSci 127 (Hunter)

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and

CSci 127 (Hunter)

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - ► repeat.

CSci 127 (Hunter)

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - ► repeat.
- Past exams are on the webpage (under Final Exam Information).

CSci 127 (Hunter)

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - ▶ repeat.
- Past exams are on the webpage (under Final Exam Information).
- We're starting with Fall 2018, Version 1.

CSci 127 (Hunter)

Lecture 5

10 October 2018 30 / 31

4 D b 4 A

Writing Boards

• Return writing boards as you leave...

CSci 127 (Hunter)

Lecture 5

10 October 2018 31 / 31

Э

900

<ロト <回ト < 回ト < 回ト