CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

イロト イポト イヨト イヨト

CSci 127 (Hunter)

Lecture 2

12 September 2018 1 / 37

3

From lecture slips & recitation sections.

From lecture slips & recitation sections.

• Who is Henriette Avram?

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm?

There is no midterm. Instead there's 14 in-class quizzes.

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final?

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.
- Can I submit late homework?

E SQC

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.
- Can I submit late homework?
 No. Instead we drop the 5 lowest grades.

E SQC

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.
- Can I submit late homework?
 No. Instead we drop the 5 lowest grades.
- I missed class. Do you need documentation?

E SQC

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.
- Can I submit late homework? No. Instead we drop the 5 lowest grades.
- I missed class. Do you need documentation?
 No. Missing lecture & quiz grades are replaced by your final exam score.
 If you will miss ≥ 3 weeks (> 20%), see us about taking this in a future term.

= nac

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.
- Can I submit late homework? No. Instead we drop the 5 lowest grades.
- I missed class. Do you need documentation?
 No. Missing lecture & quiz grades are replaced by your final exam score.
 If you will miss ≥ 3 weeks (> 20%), see us about taking this in a future term.
- Why do I have to work in groups?

= nac

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.
- Can I submit late homework? No. Instead we drop the 5 lowest grades.
- I missed class. Do you need documentation?
 No. Missing lecture & quiz grades are replaced by your final exam score.
 If you will miss ≥ 3 weeks (> 20%), see us about taking this in a future term.
- Why do I have to work in groups? It's great practice to explain technical work to others.

CSci 127 (Hunter)

= nac

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.
- Can I submit late homework? No. Instead we drop the 5 lowest grades.
- I missed class. Do you need documentation?
 No. Missing lecture & quiz grades are replaced by your final exam score.
 If you will miss ≥ 3 weeks (> 20%), see us about taking this in a future term.
- Why do I have to work in groups? It's great practice to explain technical work to others.
- Can I work ahead?

CSci 127 (Hunter)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From lecture slips & recitation sections.

- Who is Henriette Avram?
 Pioneering computer programmer & Hunter Alumna.
- When is the midterm? There is no midterm. Instead there's 14 in-class quizzes.
- When is the final? Wednesday, 19 December, 9-11am.
- Can I submit late homework? No. Instead we drop the 5 lowest grades.
- I missed class. Do you need documentation?
 No. Missing lecture & quiz grades are replaced by your final exam score.
 If you will miss ≥ 3 weeks (> 20%), see us about taking this in a future term.
- Why do I have to work in groups? It's great practice to explain technical work to others.
- Can I work ahead? Yes! All programs are available, on gradescope, 4 weeks before the deadline.

CSci 127 (Hunter)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Today's Topics

- For-loops
- range()
- Variables: ints and strings
- Lists
- Strings

Э

999

<ロト <回ト < 回ト < 回ト

In Pairs or Triples...

Some review and some novel challenges:

	8
1	<pre>#Predict what will be printed:</pre>
2	<pre>for i in range(4):</pre>
3	<pre>print('The world turned upside down')</pre>
4	for j in [0,1,2,3,4,5]:
5	print(j)
6	<pre>for count in range(6):</pre>
7	<pre>print(count)</pre>
8	<pre>for color in ['red', 'green', 'blue']:</pre>
9	<pre>print(color)</pre>
10	<pre>for i in range(2):</pre>
11	<pre>for j in range(2):</pre>
12	<pre>print('Look around,')</pre>
13	<pre>print('How lucky we are to be alive!')</pre>

1

999

Python Tutor

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 3 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): 7 print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around,') 13 print('How lucky we are to be alive!')

(Demo with pythonTutor)

イロト 不良 トイヨト イヨト ヨー のくや

• A **variable** is a reserved memory location for storing a value.

Э

900

- A **variable** is a reserved memory location for storing a value.
- Different kinds, or **types**, of values need different amounts of space:
 - ▶ int: integer or whole numbers

3

- A variable is a reserved memory location for storing a value.
- Different kinds, or **types**, of values need different amounts of space:
 - ▶ int: integer or whole numbers
 - float: floating point or real numbers

- A variable is a reserved memory location for storing a value.
- Different kinds, or **types**, of values need different amounts of space:
 - ▶ int: integer or whole numbers
 - float: floating point or real numbers
 - string: sequence of characters

- A **variable** is a reserved memory location for storing a value.
- Different kinds, or **types**, of values need different amounts of space:
 - ▶ int: integer or whole numbers
 - float: floating point or real numbers
 - ► string: sequence of characters
 - ► list: a sequence of items

- A **variable** is a reserved memory location for storing a value.
- Different kinds, or **types**, of values need different amounts of space:
 - ► int: integer or whole numbers
 - float: floating point or real numbers
 - ► string: sequence of characters
 - list: a sequence of items e.g. [3, 1, 4, 5, 9] or ['violet', 'purple', 'indigo']

- A **variable** is a reserved memory location for storing a value.
- Different kinds, or **types**, of values need different amounts of space:
 - ► int: integer or whole numbers
 - float: floating point or real numbers
 - string: sequence of characters
 - list: a sequence of items e.g. [3, 1, 4, 5, 9] or ['violet', 'purple', 'indigo']
 - class variables: for complex objects, like turtles.

• There's some rules about valid names for variables.

1

999

- There's some rules about valid names for variables.
- Can use the underscore ('_'), upper and lower case letters.

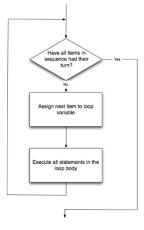
E 990

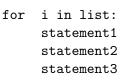
- There's some rules about valid names for variables.
- Can use the underscore ('_'), upper and lower case letters.
- Can also use numbers, just can't start a name with a number.

≡ nar

- There's some rules about valid names for variables.
- Can use the underscore ('_'), upper and lower case letters.
- Can also use numbers, just can't start a name with a number.
- Can't use symbols (like '+' or '*') since used for arithmetic.

3

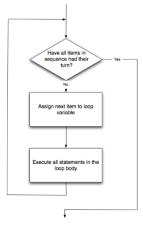


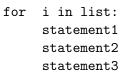

There's some rules about valid names for variables.

- Can use the underscore ('_'), upper and lower case letters.
- Can also use numbers, just can't start a name with a number.
- Can't use symbols (like '+' or '*') since used for arithmetic.
- Can't use some words that Python has reserved for itself (e.g. for). (List of reserved words in *Think CS*, §2.5.)

= nac

for-loop




How to Think Like CS, §4.5

CSci 127 (Hunter)

for-loop

How to Think Like CS, §4.5

where list is a list of items:

- stated explicitly (e.g. [1,2,3]) or
- generated by a function, e.g. range().

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In Pairs or Triples...

Some review and some novel challenges:

```
#Predict what will be printed:
 1
 2
 3
   for num in [2,4,6,8,10]:
 4
        print(num)
 5
 6
    sum = 0
 7
   for x in range(0, 12, 2):
 8
        print(x)
 9
        SUM = SUM + X
10
11
    print(x)
12
   for c in "ABCD":
13
        print(c)
14
```

CSci 127 (Hunter)

3

596

Python Tutor

```
1 #Predict what will be printed:
2
3 for num in [2,4,6,8,10]:
       print(num)
 4
 5
 6
  sum = 0
 7
   for x in range(0,12,2):
 8
       print(x)
 9
       sum = sum + x
10
11 print(x)
12
13 for c in "ABCD":
14
       print(c)
```

(Demo with pythonTutor)

= 990

Simplest version:
 range(stop)

12 September 2018 11 / 37

Ξ

イロト イロト イヨト イヨト

Simplest version:

- range(stop)
- Produces a list: [0,1,2,3,...,stop-1]

E 990

Simplest version:

- range(stop)
- Produces a list: [0,1,2,3,...,stop-1]
- For example, if you want the list [0,1,2,3,...,100], you would write:

3

Sac

Simplest version:

- range(stop)
- Produces a list: [0,1,2,3,...,stop-1]
- For example, if you want the list [0,1,2,3,...,100], you would write:

range(101)

= nar

What if you wanted to start somewhere else:

1

990

< □ > < □ > < □ > < Ξ > < Ξ >

What if you wanted to start somewhere else:

```
• range(start, stop)
```


E IQC

What if you wanted to start somewhere else:

• range(start, stop)

 Produces a list: [start,start+1,...,stop-1]

= nar

What if you wanted to start somewhere else:

- range(start, stop)
- Produces a list: [start,start+1,...,stop-1]
- For example, if you want the list [10,11,...,20] you would write:

3

200

◆ロト ◆聞ト ◆ヨト ◆ヨト

What if you wanted to start somewhere else:

- range(start, stop)
- Produces a list: [start,start+1,...,stop-1]
- For example, if you want the list [10,11,...,20] you would write:

イロト イポト イヨト イヨト

12 September 2018

E ∽QQ

12 / 37

range(10,21)

What if you wanted to count by twos, or some other number:

3

990

What if you wanted to count by twos, or some other number:

• range(start, stop, step)

E IQC

What if you wanted to count by twos, or some other number:

- range(start, stop, step)
- Produces a list: [start,start+step,start+2*step...,last] (where last is the largest start+k*step less than stop)

Sac

What if you wanted to count by twos, or some other number:

- range(start, stop, step)
- Produces a list:

[start,start+step,start+2*step...,last] (where last is the largest start+k*step less than stop)

• For example, if you want the list [5,10,...,50] you would write:

200

What if you wanted to count by twos, or some other number:

- range(start, stop, step)
- Produces a list:

[start,start+step,start+2*step...,last] (where last is the largest start+k*step less than stop)

• For example, if you want the list [5,10,...,50] you would write:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

12 September 2018

13 / 37

range(5,51,5)

The three versions:

The three versions:
 range(stop)

E IQC

◆ロト ◆聞ト ◆ヨト ◆ヨト

The three versions:

- range(stop)
- range(start, stop)

E IQC

The three versions:

- range(stop)
- o range(start, stop)
- range(start, stop, step)

E SQC

Standardized Code for Characters

American Standard Code for Information Interchange (ASCII), 1960.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Standardized Code for Characters

American Standard Code for Information Interchange (ASCII), 1960. (New version called: Unicode).

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Standardized Code for Characters

American Standard Code for Information Interchange (ASCII), 1960. (New version called: Unicode).

	J										
Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	(SPACE)	64	40	0	96	60	×
1	1	[START OF HEADING]	33	21	1.1	65	41	A	97	61	а
2	2	[START OF TEXT]	34	22	1.00	66	42	в	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	с	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1.00	105	69	1
10	Α	[LINE FEED]	42	2A	*	74	4A	J.	106	6A	j –
11	в	[VERTICAL TAB]	43	2B	+	75	4B	ĸ	107	6B	k
12	С	[FORM FEED]	44	2C		76	4C	L .	108	6C	1.
13	D	[CARRIAGE RETURN]	45	2D	- C.	77	4D	M	109	6D	m
14	E	(SHIFT OUT)	46	2E	1.00	78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	1.00	90	5A	z	122	7A	z
27	1B	[ESCAPE]	59	3B	1	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

ASCII TABLE

(wiki)

CSci 127 (Hunter)

Lecture 2

12 September 2018 15 / 37

Sac

(There is an ASCII table on the back of today's lecture slip.)

3

Sar

(There is an ASCII table on the back of today's lecture slip.)

	Margaret .		10			
8.			8			
Ξ.		ā.				
	And a state of the					201

.

• ord(c): returns Unicode (ASCII) of the character.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

(There is an ASCII table on the back of today's lecture slip.)

	Margaret .		11	2			
				÷.,	***		
				*	201		
				3		8	
11							
						120	
2			2	2			
Ξ.							

- ord(c): returns Unicode (ASCII) of the character.
- Example: ord('a') returns 97.

Sac

(There is an ASCII table on the back of today's lecture slip.)

- ord(c): returns Unicode (ASCII) of the character.
- Example: ord('a') returns 97.
- chr(x): returns the character whose Unicode is x.

< □ > < 同 >

ヨト - ヨト

(There is an ASCII table on the back of today's lecture slip.)

- ord(c): returns Unicode (ASCII) of the character.
- Example: ord('a') returns 97.
- chr(x): returns the character whose Unicode is x.

< □ > < 同 >

• Example: chr(97) returns 'a'.

∃ ► < ∃ ►</p>

(There is an ASCII table on the back of today's lecture slip.)

- ord(c): returns Unicode (ASCII) of the character.
- Example: ord('a') returns 97.
- chr(x): returns the character whose Unicode is x.

- Example: chr(97) returns 'a'.
- What is chr(33)?

(4) E (4) E (4)

In Pairs or Triples...

Some review and some novel challenges: 1 #Predict what will be printed: 2 3 for c in range(65,90): 4 print(chr(c)) 5 6 message = "I love Python" 7 newMessage = 8 for c in message: 9 print(ord(c)) #Print the Unicode of each number 10 print(chr(ord(c)+1)) #Print the next character 11 newMessage = newMessage + chr(ord(c)+1) #add to the new message12 print("The coded message is", newMessage) 13 word = "zebra" 14 15 codedWord = "" 16 for ch in word: 17 offset = ord(ch) - ord('a') + 1 #how many letters past 'a' 18 wrap = offset % 26 #if larger than 26, wrap back to 0 19 newChar = chr(ord('a') + wrap) #compute the new letter 20 print(wrap, chr(ord('a') + wrap)) #print the wrap & new lett 21 codedWord = codedWord + newChar #add the newChar to the coded w22 23 print("The coded word (with wrap) is", codedWord) CSci 127 (Hunter) Lecture 2 12 September 2018 17 / 37

Sar

Python Tutor

1 #Predict what will be printed: for c in range(65,90): print(chr(c)) 6 message - "I love Python" 7 newMessage -8 for c in messope: 9 print(ord(c)) #Print the Unicode of each number print(chr(ord(c)+1)) #Print the next character 10 11 newMessage - newMessage + chr(ord(c)+1) #add to the new message 12 print("The coded message is", newMessage) 13 14 word - "zebra" 15 codedWord = " 16 for ch in word: 17 offset = ord(ch) - ord('a') + 1 #how many letters past 'a' 18 wrap - offset % 26 #if larger than 26, wrap back to 0 19 newChar = chr(ord('a') + wrap) #compute the new letter 20 print(wrap, chr(ord('a') + wrap)) #print the wrap & new lett 21 codedNord - codedNord + newChar #add the newChar to the coded w 23 print("The coded word (with wrap) is", codedWord)

(Demo with pythonTutor)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ - のの⊙

User Input

Covered in detail in Lab 2:

```
1 mess = input('Please enter a message: ')
2 print("You entered", mess)
```

(Demo with pythonTutor)

CSci 127 (Hunter)

Lecture 2

12 September 2018 19 / 37

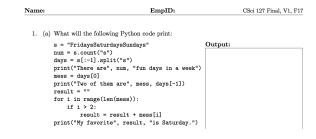
• x = 3 + 5 stores the number 8 in memory location x.

- x = 3 + 5 stores the number 8 in memory location x.
- x = x + 1 increases x by 1.

- x = 3 + 5 stores the number 8 in memory location x.
- x = x + 1 increases x by 1.
- s = "hi" + "Mom" stores "hiMom" in memory locations s.

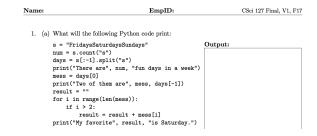
3

Sac


- x = 3 + 5 stores the number 8 in memory location x.
- x = x + 1 increases x by 1.
- s = "hi" + "Mom" stores "hiMom" in memory locations s.
- s = s + "A" adds the letter "A" to the end of the strings s.

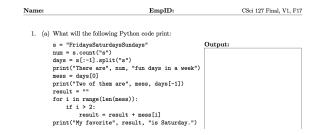
3

Sac

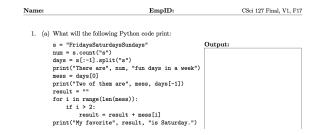

Ended last class with Final Exam, Fall 2017, Version 1, #1:

Name:	EmpID:	CSci 127 Final, V1, F1
1. (a)	What will the following Python code print:	
	<pre>s = "FridaysSaturdaysSundays" num = s.count("s") days = s[:-1].split("s") print("There are", num, "fun days in a week") mess = days[0] print("Two of them are", mess, days[-1]) result = "" for i in range(len(mess)): if i > 2: result = result + mess[i] print("My favorite", result, "is Saturday.")</pre>	Output:

• Some we have seen before, some we haven't.


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

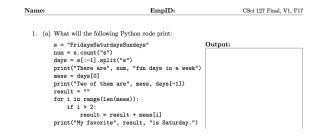
• Some we have seen before, some we haven't.


Don't leave it blank- write what you know & puzzle out as much as possible.

= nar

- Some we have seen before, some we haven't.
- Don't leave it blank- write what you know & puzzle out as much as possible.
- First, go through and write down what we know:

= nar



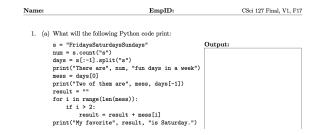
- Some we have seen before, some we haven't.
- Don't leave it blank- write what you know & puzzle out as much as possible.
- First, go through and write down what we know:
 - ► There are 3 print().

3

Sac

イロト イポト イヨト イヨト

- Some we have seen before, some we haven't.
- Don't leave it blank- write what you know & puzzle out as much as possible.
- First, go through and write down what we know:
 - ► There are 3 print().
 - Output will have at least:

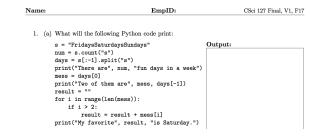

CSci 127 (Hunter)

イロト イポト イヨト イヨト

12 September 2018

3

22 / 37



- Some we have seen before, some we haven't.
- On't leave it blank- write what you know & puzzle out as much as possible.
- First, go through and write down what we know:
 - ► There are 3 print().
 - Output will have at least: There are ??? fun days in a week

CSci 127 (Hunter)

イロト イポト イヨト イヨト

3

- Some we have seen before, some we haven't.
- On't leave it blank- write what you know & puzzle out as much as possible.
- First, go through and write down what we know:
 - ► There are 3 print().


```
    Output will have at least:
There are ??? fun days in a week
Two of them are ???
```

CSci 127 (Hunter)

12 September 2018 22 / 37

E Sac

イロト イポト イヨト イヨト

- Some we have seen before, some we haven't.
- On't leave it blank- write what you know & puzzle out as much as possible.
- First, go through and write down what we know:
 - ► There are 3 print().

```
    Output will have at least:
There are ??? fun days in a week
Two of them are ???
My favorite ??? is Saturday.
```

イロト イポト イヨト イヨト

3

200

- Some we have seen before, some we haven't.
- Don't leave it blank- write what you know & puzzle out as much as possible.
- First, go through and write down what we know:
 - ► There are 3 print().

```
    Output will have at least:
There are ??? fun days in a week
Two of them are ???
My favorite ??? is Saturday.
```

• Will get 1/3 to 1/2 points for writing down the basic structure.

CSci 127 (Hunter)

```
s = "FridaysSaturdaysSundays"
num = s.count("s")
```

• The first line creates a variable, called s, that stores the string: "FridaysSaturdaysSundays"

```
s = "FridaysSaturdaysSundays"
num = s.count("s")
```

- The first line creates a variable, called s, that stores the string: "FridaysSaturdaysSundays"
- There are many useful functions for strings (more in Lab 2).

```
s = "FridaysSaturdaysSundays"
num = s.count("s")
```

- The first line creates a variable, called s, that stores the string: "FridaysSaturdaysSundays"
- There are many useful functions for strings (more in Lab 2).
- s.count(x) will count the number of times the pattern, x, appears in s.

```
s = "FridaysSaturdaysSundays"
num = s.count("s")
```

- The first line creates a variable, called s, that stores the string: "FridaysSaturdaysSundays"
- There are many useful functions for strings (more in Lab 2).
- s.count(x) will count the number of times the pattern, x, appears in s.
 - ▶ s.count("s") counts the number of lower case s that occurs.

```
s = "FridaysSaturdaysSundays"
num = s.count("s")
```

- The first line creates a variable, called s, that stores the string: "FridaysSaturdaysSundays"
- There are many useful functions for strings (more in Lab 2).
- s.count(x) will count the number of times the pattern, x, appears in s.
 - s.count("s") counts the number of lower case s that occurs.
 - num = s.count("s") stores the result in the variable num, for later.

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

s = "FridaysSaturdaysSundays"
num = s.count("s")

- The first line creates a variable, called s, that stores the string: "FridaysSaturdaysSundays"
- There are many useful functions for strings (more in Lab 2).
- s.count(x) will count the number of times the pattern, x, appears in s.
 - s.count("s") counts the number of lower case s that occurs.
 - num = s.count("s") stores the result in the variable num, for later.
 - What would print(s.count("sS")) output?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

```
s = "FridaysSaturdaysSundays"
num = s.count("s")
```

- The first line creates a variable, called s, that stores the string: "FridaysSaturdaysSundays"
- There are many useful functions for strings (more in Lab 2).
- s.count(x) will count the number of times the pattern, x, appears in s.
 - ▶ s.count("s") counts the number of lower case s that occurs.
 - num = s.count("s") stores the result in the variable num, for later.
 - What would print(s.count("sS")) output?
 - What about:

```
mess = "10 20 21 9 101 35"
mults = mess.count("0 ")
print(mults)
```

CSci 127 (Hunter)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

12 September 2018

23 / 37

1. (a) What will the following Python code print:

• Don't leave it blank- write what you know & puzzle out as much as possible:

CSci 127 (Hunter)

= nar

イロト イポト イヨト イヨト

1. (a) What will the following Python code print:

• Don't leave it blank- write what you know & puzzle out as much as possible:

```
There are 3 fun days in a week
Two of them are ???
My favorite ??? is Saturday.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

• Strings are made up of individual characters (letters, numbers, etc.)

200

イロト 不得 トイヨト イヨト 二日

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	у	S	S	а	 S	u	n	d	а	у	S

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	s
												-4	-3	-2	-1

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	у	S	S	а	 S	u	n	d	а	у	S
												-4	-3	-2	-1

● s[0] is

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	у	S	S	а	 S	u	n	d	а	у	S
												-4	-3	-2	-1

• s[0] is 'F'.

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	s
												-4	-3	-2	-1

• s[1] is

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	s
												-4	-3	-2	-1

• s[1] is 'r'.

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	S
												-4	-3	-2	-1

• s[-1] is

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	S
												-4	-3	-2	-1

● s[-1] is 's'.

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	s
												-4	-3	-2	-1

• s[3:6] is

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	S
												-4	-3	-2	-1

• s[3:6] is 'day'.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	s
												-4	-3	-2	-1

• s[:3] is

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	у	S	S	а	 S	u	n	d	а	у	S
												-4	-3	-2	-1

• s[:3] is 'Fri'.

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	У	s
												-4	-3	-2	-1

• s[:-1] is

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- Strings are made up of individual characters (letters, numbers, etc.)
- Useful to be able to refer to pieces of a string, either an individual location or a "substring" of the string.

0	1	2	3	4	5	6	7	8	 16	17	18	19	20	21	22
F	r	i	d	а	У	S	S	а	 S	u	n	d	а	у	S
												-4	-3	-2	-1

• s[:-1] is 'FridaysSaturdaysSunday'. (no trailing 's' at the end)

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

```
s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")
```

• split() divides a string into a list.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- split() divides a string into a list.
- Cross out the delimiter, and the remaining items are the list.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- split() divides a string into a list.
- Cross out the delimiter, and the remaining items are the list.

"FridayXSaturdayXSunday"

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- split() divides a string into a list.
- Cross out the delimiter, and the remaining items are the list.

```
"Friday<sup>X</sup>Saturday<sup>X</sup>Sunday"
days = ['Friday', 'Saturday', 'Sunday']
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- split() divides a string into a list.
- Cross out the delimiter, and the remaining items are the list.

"FridayXSaturdayXSunday"
days = ['Friday', 'Saturday', 'Sunday']

• Different delimiters give different lists:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- split() divides a string into a list.
- Cross out the delimiter, and the remaining items are the list.

"FridayXSaturdayXSunday"
days = ['Friday', 'Saturday', 'Sunday']

Different delimiters give different lists:
 days = s[:-1].split("day")

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- split() divides a string into a list.
- Cross out the delimiter, and the remaining items are the list.

"FridayXSaturdayXSunday"
days = ['Friday', 'Saturday', 'Sunday']

 Different delimiters give different lists: days = s[:-1].split("day") "FrixxxsSaturxxsSunxxx"

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More on Strings: Splits

s = "FridaysSaturdaysSundays"
days = s[:-1].split("s")

- split() divides a string into a list.
- Cross out the delimiter, and the remaining items are the list.

"FridayXSaturdayXSunday"
days = ['Friday', 'Saturday', 'Sunday']

• Different delimiters give different lists: days = s[:-1].split("day") "FriXXXsSaturXXXsSunXXX" days = ['Fri', 'sSatur', 'sSun']

CSci 127 (Hunter)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More on Strings...

1. (a) What will the following Python code print:

• Don't leave it blank- write what you know & puzzle out as much as possible:

CSci 127 (Hunter)

= nar

More on Strings...

1. (a) What will the following Python code print:

• Don't leave it blank- write what you know & puzzle out as much as possible:

```
There are 3 fun days in a week
Two of them are Friday Sunday
My favorite ??? is Saturday.
```

= nar

Lecture Slip

1. What is printed? Write your answer for each in the output box.

 months
 =
 ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec

 #Indices:
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

 #Or:

 -3
 -2
 -1

```
Output:
half = months[6]
print(half.upper())
print(months[-1].lower())
start = 9
print(months[start-1])
term = 3
print(months[(start+term-1)%12])
```

CSci 127 (Hunter)

Lecture 2

 On lecture slip, write down a topic you wish we had spent more time (and why).

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 3 4 for j in [0,1,2,3,4,5]: print(j) for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: print(color) 9 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

3

Sac

 On lecture slip, write down a topic you wish we had spent more time (and why).

• In Python, we introduced:

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 3 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

3

Sac

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 3 4 for j in [0,1,2,3,4,5]: print(j) for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - ► For-loops

3

Sac

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 3 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - For-loops
 - ▶ range()

3

Sac

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - For-loops
 - ▶ range()
 - Variables: ints and strings

3

Sac

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - For-loops
 - ▶ range()
 - Variables: ints and strings
 - Some arithmetic

3

Sac

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - For-loops
 - ▶ range()
 - Variables: ints and strings
 - Some arithmetic
 - String concatenation

3

Sac

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - For-loops
 - ▶ range()
 - Variables: ints and strings
 - Some arithmetic
 - String concatenation
 - Functions: ord() and char()

3

Sar

1 #Predict what will be printed: 2 for i in range(4): print('The world turned upside down') 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: print(color) 9 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - For-loops
 - ▶ range()
 - Variables: ints and strings
 - Some arithmetic
 - String concatenation
 - Functions: ord() and char()
 - String Manipulation

3

Sar

1 #Predict what will be printed: 2 for i in range(4) print('The world turned upside down') 4 for j in [0,1,2,3,4,5]: print(j) 6 for count in range(6): print(count) 8 for color in ['red', 'green', 'blue']: 9 print(color) 10 for i in range(2): 11 for j in range(2): 12 print('Look around.') 13 print('How lucky we are to be alive!')

- On lecture slip, write down a topic you wish we had spent more time (and why).
- In Python, we introduced:
 - For-loops
 - ▶ range()
 - Variables: ints and strings
 - Some arithmetic
 - String concatenation
 - Functions: ord() and char()
 - String Manipulation
- Pass your lecture slips to the end of the rows for the UTA's to collect.

イロト イポト イヨト イヨト

Sar

• Since you must pass the final exam to pass the course, we end every lecture with final exam review.

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and

CSci 127 (Hunter)

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - repeat.

CSci 127 (Hunter)

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - ► repeat.
- Past exams are on the webpage (under Final Exam Information).

CSci 127 (Hunter)

- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - ► repeat.
- Past exams are on the webpage (under Final Exam Information).
- We're starting with Spring 2018, Mock Exam.

CSci 127 (Hunter)

Writing Boards

• Return writing boards as you leave...

CSci 127 (Hunter)

Lecture 2

12 September 2018 37 / 37

Э

900

<ロト <回ト < 回ト < 回ト