
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 10 14 November 2018 1 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?

Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?

We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?

Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?

Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Frequently Asked Questions

From lecture slips & recitation sections.

When is the final?
Wednesday, 19 December, 9am-11am.

I have another final then. What do I do?
We are arranging an alternative time (most likely reading day).

Do I have to take the final?
Yes, you have to pass the final (60 out of 100 points) to the pass the class.

Can I take the course No Credit/Credit?
Yes. We’ll have forms ready after Thanksgiving Break.

I’d like to take more computer science. What’s next?

Fabulous! The next courses are:

I CSci 135/136: Programming in C++.
Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.

I CSci 150: Discrete structures (math for computing).
Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter) Lecture 10 14 November 2018 2 / 47

Today’s Topics

Recap: folium and indefinite loops

Design Patterns: Searching Data

Data Representation

Machine Language

CSci 127 (Hunter) Lecture 10 14 November 2018 3 / 47

In Pairs or Triples:
What does this code do?

CSci 127 (Hunter) Lecture 10 14 November 2018 4 / 47

folium example

What does this code do?

CSci 127 (Hunter) Lecture 10 14 November 2018 5 / 47

folium example

What does this code do?

CSci 127 (Hunter) Lecture 10 14 November 2018 5 / 47

folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 14 November 2018 6 / 47

folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 14 November 2018 6 / 47

folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 14 November 2018 6 / 47

folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 14 November 2018 6 / 47

folium

A module for making HTML maps.

It’s a Python interface to the popular
leaflet.js.

Outputs .html files which you can open in a
browser.

An extra step:

Write → Run → Open .html
code. program. in browser.

CSci 127 (Hunter) Lecture 10 14 November 2018 6 / 47

From Last Time: Design Challenge

Collect all five stars (locations randomly generated):

CSci 127 (Hunter) Lecture 10 14 November 2018 7 / 47

From Last Time: Design Challenge

Possible approaches:

I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 14 November 2018 8 / 47

From Last Time: Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or

I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 14 November 2018 8 / 47

From Last Time: Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 14 November 2018 8 / 47

From Last Time: Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 14 November 2018 8 / 47

From Last Time: Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 14 November 2018 8 / 47

From Last Time: Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 14 November 2018 8 / 47

From Last Time: Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:

I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 14 November 2018 8 / 47

From Last Time: Design Challenge

Possible approaches:
I Randomly wander until all 5 collected, or
I Start in one corner, and systematically visit every point.

Input: The map of the ‘world.’

Output: Time taken and/or locations of the 5 stars.

How to store locations? Use numpy array with -1 everywhere.

Possible algorithms: while numStars < 5:
I Move forward.
I If wall, mark 0 in map, randomly turn left or right.
I If star, mark 1 in map and add 1 to numStars.
I Otherwise, mark 2 in map that it’s an empty square.

If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter) Lecture 10 14 November 2018 8 / 47

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 10 14 November 2018 9 / 47

Python Tutor

(Demo with trinket)

CSci 127 (Hunter) Lecture 10 14 November 2018 10 / 47

Indefinite Loops

CSci 127 (Hunter) Lecture 10 14 November 2018 11 / 47

Indefinite Loops

CSci 127 (Hunter) Lecture 10 14 November 2018 11 / 47

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 14 November 2018 12 / 47

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 14 November 2018 12 / 47

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 14 November 2018 12 / 47

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 14 November 2018 12 / 47

Indefinite Loops

Indefinite loops repeat as long as the
condition is true.

Could execute the body of the loop
zero times, 10 times, infinite number
of times.

The condition determines how many
times.

Very useful for checking input,
simulations, and games.

CSci 127 (Hunter) Lecture 10 14 November 2018 12 / 47

Today’s Topics

Recap: folium and indefinite loops

Design Patterns: Searching Data

Data Representation

Machine Language

CSci 127 (Hunter) Lecture 10 14 November 2018 13 / 47

In Pairs or Triples:

Answer the following questions on your lecture slip:

Of the students in the room,

Whose name comes first alphabetically?

Whose name comes last alphabetically?

Is there someone in the room with your initials?

CSci 127 (Hunter) Lecture 10 14 November 2018 14 / 47

In Pairs or Triples:

Design a program that takes a CSV file and a set of initials:

Whose name comes first alphabetically?

Whose name comes last alphabetically?

Is there someone in the room with your initials?

CSci 127 (Hunter) Lecture 10 14 November 2018 15 / 47

Design Question: Find first alphabetically

In Pandas, lovely built-in functions:

I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 14 November 2018 16 / 47

Design Question: Find first alphabetically

In Pandas, lovely built-in functions:
I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 14 November 2018 16 / 47

Design Question: Find first alphabetically

In Pandas, lovely built-in functions:
I df.sort values(’First Name’) and
I df[’First Name’].min()

What if you don’t have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter) Lecture 10 14 November 2018 16 / 47

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 14 November 2018 17 / 47

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max

I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 14 November 2018 17 / 47

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").

I For each item, X, in the list:
F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 14 November 2018 17 / 47

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 14 November 2018 17 / 47

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.

F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 14 November 2018 17 / 47

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 14 November 2018 17 / 47

Design Question: Find first alphabetically

What if you don’t have a CSV and DataFrame, or data not ordered?

Useful Design Pattern: min/max
I Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
I For each item, X, in the list:

F Compare X to your variable.
F If better, update your variable to be X.

I Print/return X.

CSci 127 (Hunter) Lecture 10 14 November 2018 17 / 47

Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False
I while there are items in the list and not found

F If item matches your value, set found = True

I Print/return value.

CSci 127 (Hunter) Lecture 10 14 November 2018 18 / 47

Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False

I while there are items in the list and not found
F If item matches your value, set found = True

I Print/return value.

CSci 127 (Hunter) Lecture 10 14 November 2018 18 / 47

Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False
I while there are items in the list and not found

F If item matches your value, set found = True

I Print/return value.

CSci 127 (Hunter) Lecture 10 14 November 2018 18 / 47

Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False
I while there are items in the list and not found

F If item matches your value, set found = True

I Print/return value.

CSci 127 (Hunter) Lecture 10 14 November 2018 18 / 47

Design Question: Find Matching Initials

How do we stop, if we find a match?

Change the loop to be indefinite (i.e. while loop):
I Set a variable to found = False
I while there are items in the list and not found

F If item matches your value, set found = True

I Print/return value.

CSci 127 (Hunter) Lecture 10 14 November 2018 18 / 47

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 10 14 November 2018 19 / 47

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 10 14 November 2018 20 / 47

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 10 14 November 2018 21 / 47

Python Tutor

(Demo with pythonTutor)

CSci 127 (Hunter) Lecture 10 14 November 2018 22 / 47

In Pairs or Triples:

Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

CSci 127 (Hunter) Lecture 10 14 November 2018 23 / 47

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number..

CSci 127 (Hunter) Lecture 10 14 November 2018 24 / 47

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

CSci 127 (Hunter) Lecture 10 14 November 2018 25 / 47

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

return(num)

CSci 127 (Hunter) Lecture 10 14 November 2018 26 / 47

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

return(num)

CSci 127 (Hunter) Lecture 10 14 November 2018 27 / 47

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

while num <= 2000 or num >= 2018:

return(num)

CSci 127 (Hunter) Lecture 10 14 November 2018 28 / 47

Coding
Write a function that asks a user for number after 2000 but before
2018. The function should repeatedly ask the user for a number until
they enter one within the range and return the number.

def getYear():

num = 0

while num <= 2000 or num >= 2018:

num = int(input(’Enter a number > 2000 & < 2018’))

return(num)

CSci 127 (Hunter) Lecture 10 14 November 2018 29 / 47

Today’s Topics

Recap: folium and indefinite loops

Design Patterns: Searching Data

Data Representation

Machine Language

CSci 127 (Hunter) Lecture 10 14 November 2018 30 / 47

Recall: Decimal & Hexadecimal Numbers

Counting with 10 digits:

(from i-programmer.info)

CSci 127 (Hunter) Lecture 10 14 November 2018 31 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Decimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

CSci 127 (Hunter) Lecture 10 14 November 2018 32 / 47

Recall: Decimal & Hexadecimal Numbers

Counting with 16 digits:

(from i-programmer.info)

CSci 127 (Hunter) Lecture 10 14 November 2018 33 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Hexadecimal

(from i-programmer.info)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

CSci 127 (Hunter) Lecture 10 14 November 2018 34 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1

0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23

+1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s:

0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0

1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1

10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10

11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11

100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100

101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101

110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110

111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Binary Numbers

0 1 0 1
0 · 23 +1 · 22 + 0 · 21 + 1 · 20 = 5

Only have two digits: 0 and 1.

Can view as a series of switches that are either off (0) or on (1).

4-bit number uses 4 binary digits and ranges from 0000 or 0 to
1111 or 23 + 22 + 21 + 20 = 8 + 4 + 2 + 1 = 15

Counting by 2’s: 0 1 10 11 100 101 110 111...

At the lowest level, information (data, commands, programs, etc.) on
most computers is stored in binary.

Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter) Lecture 10 14 November 2018 35 / 47

Today’s Topics

Recap: folium and indefinite loops

Design Patterns: Searching Data

Data Representation

Machine Language

CSci 127 (Hunter) Lecture 10 14 November 2018 36 / 47

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.

Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 10 14 November 2018 37 / 47

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages

(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 10 14 November 2018 37 / 47

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).

Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 10 14 November 2018 37 / 47

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.

Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 10 14 November 2018 37 / 47

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 10 14 November 2018 37 / 47

Machine Language

(Ruth Gordon & Ester Gerston programming the ENIAC, UPenn)

CSci 127 (Hunter) Lecture 10 14 November 2018 38 / 47

Machine Language

(wiki)

CSci 127 (Hunter) Lecture 10 14 November 2018 39 / 47

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 10 14 November 2018 40 / 47

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 10 14 November 2018 40 / 47

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 10 14 November 2018 40 / 47

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 10 14 November 2018 40 / 47

“Hello World!” in Simplified Machine Language

(WeMIPS)

CSci 127 (Hunter) Lecture 10 14 November 2018 41 / 47

WeMIPS

(Demo with WeMIPS)

CSci 127 (Hunter) Lecture 10 14 November 2018 42 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed.

Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:

add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3

(Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.

addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100

(Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.

j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done

(Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

MIPS Commands

Registers: locations for storing information that can be quickly
accessed. Names start with ‘$’: $s0, $s1, $t0, $t1,...

R Instructions: Commands that use data in the registers:
add $s1, $s2, $s3 (Basic form: OP rd, rs, rt)

I Instructions: instructions that also use intermediate values.
addi $s1, $s2, 100 (Basic form: OP rd, rs, imm)

J Instructions: instructions that jump to another memory location.
j done (Basic form: OP label)

CSci 127 (Hunter) Lecture 10 14 November 2018 43 / 47

In Pairs or Triples:

Write a program that prints out the alphabet: a b c d ... x y z

CSci 127 (Hunter) Lecture 10 14 November 2018 44 / 47

WeMIPS

(Demo with WeMIPS)

CSci 127 (Hunter) Lecture 10 14 November 2018 45 / 47

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

We use different base numbers (i.e. binary and
hexadecimal) to represent data.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 14 November 2018 46 / 47

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

We use different base numbers (i.e. binary and
hexadecimal) to represent data.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 14 November 2018 46 / 47

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

We use different base numbers (i.e. binary and
hexadecimal) to represent data.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 14 November 2018 46 / 47

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

We use different base numbers (i.e. binary and
hexadecimal) to represent data.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 14 November 2018 46 / 47

Recap

On lecture slip, write down a topic you wish we
had spent more time (and why).

Searching through data is a common task– built-in
functions and standard design patterns for this.

We use different base numbers (i.e. binary and
hexadecimal) to represent data.

Programming languages can be classified by the
level of abstraction and direct access to data.

Pass your lecture slips to the aisles for the UTAs
to collect.

CSci 127 (Hunter) Lecture 10 14 November 2018 46 / 47

Practice Quiz & Final Questions

Lightning rounds:

I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Data Representation! Starting with F17, Mock, #2 and #3.

CSci 127 (Hunter) Lecture 10 14 November 2018 47 / 47

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;

I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Data Representation! Starting with F17, Mock, #2 and #3.

CSci 127 (Hunter) Lecture 10 14 November 2018 47 / 47

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and

I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Data Representation! Starting with F17, Mock, #2 and #3.

CSci 127 (Hunter) Lecture 10 14 November 2018 47 / 47

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Data Representation! Starting with F17, Mock, #2 and #3.

CSci 127 (Hunter) Lecture 10 14 November 2018 47 / 47

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Data Representation! Starting with F17, Mock, #2 and #3.

CSci 127 (Hunter) Lecture 10 14 November 2018 47 / 47

Practice Quiz & Final Questions

Lightning rounds:
I write as much you can for 60 seconds;
I followed by answer; and
I repeat.

Past exams are on the webpage (under Final Exam Information).

Theme: Data Representation! Starting with F17, Mock, #2 and #3.

CSci 127 (Hunter) Lecture 10 14 November 2018 47 / 47

