CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

イロト イポト イヨト イヨト

CSci 127 (Hunter)

Lecture 10

14 November 2018 1 / 47

3

From lecture slips & recitation sections.

• When is the final?

From lecture slips & recitation sections.

• When is the final? Wednesday, 19 December, 9am-11am.

From lecture slips & recitation sections.

- When is the final? Wednesday, 19 December, 9am-11am.
- I have another final then. What do I do?

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From lecture slips & recitation sections.

- When is the final? Wednesday, 19 December, 9am-11am.
- I have another final then. What do I do?
 We are arranging an alternative time (most likely reading day).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

From lecture slips & recitation sections.

- When is the final? Wednesday, 19 December, 9am-11am.
- I have another final then. What do I do?
 We are arranging an alternative time (most likely reading day).
- Do I have to take the final?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

From lecture slips & recitation sections.

- When is the final? Wednesday, 19 December, 9am-11am.
- I have another final then. What do I do?
 We are arranging an alternative time (most likely reading day).
- Do I have to take the final? Yes, you have to pass the final (60 out of 100 points) to the pass the class.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

From lecture slips & recitation sections.

- When is the final? Wednesday, 19 December, 9am-11am.
- I have another final then. What do I do?
 We are arranging an alternative time (most likely reading day).
- Do I have to take the final? Yes, you have to pass the final (60 out of 100 points) to the pass the class.
- Can I take the course No Credit/Credit?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

From lecture slips & recitation sections.

- When is the final? Wednesday, 19 December, 9am-11am.
- I have another final then. What do I do?
 We are arranging an alternative time (most likely reading day).
- Do I have to take the final? Yes, you have to pass the final (60 out of 100 points) to the pass the class.
- Can I take the course No Credit/Credit? Yes. We'll have forms ready after Thanksgiving Break.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

From lecture slips & recitation sections.

- When is the final? Wednesday, 19 December, 9am-11am.
- I have another final then. What do I do?
 We are arranging an alternative time (most likely reading day).
- Do I have to take the final? Yes, you have to pass the final (60 out of 100 points) to the pass the class.
- Can I take the course No Credit/Credit? Yes. We'll have forms ready after Thanksgiving Break.
- I'd like to take more computer science. What's next?

= nac

From lecture slips & recitation sections.

- When is the final? Wednesday, 19 December, 9am-11am.
- I have another final then. What do I do?
 We are arranging an alternative time (most likely reading day).
- Do I have to take the final? Yes, you have to pass the final (60 out of 100 points) to the pass the class.
- Can I take the course No Credit/Credit? Yes. We'll have forms ready after Thanksgiving Break.
- I'd like to take more computer science. What's next? Fabulous! The next courses are:
 - CSci 135/136: Programming in C++.
 Lecture: M, W, Th, 12:10-1pm; Sections: see schedule.
 - CSci 150: Discrete structures (math for computing). Lecture: M, Th, 1:10-2:25pm; Sections: see schedule.

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Today's Topics

- Recap: folium and indefinite loops
- Design Patterns: Searching Data
- Data Representation
- Machine Language

Э

990

```
In Pairs or Triples:
What does this code do?
  import folium
  import pandas as pd
  cuny = pd.read_csv('cunyLocations.csv')
  mapCUNY = folium.Map(location=[40.75, -74.125])
  for index,row in cuny.iterrows():
      lat = row["Latitude"]
      lon = row["Lonaitude"]
      name = row["Campus"]
      if row["College or Institution Type"] == "Senior Colleges":
           collegeIcon = folium.Icon(color="purple")
      else:
           collegeIcon = folium.Icon(color="blue")
      newMarker = folium.Marker([lat, lon], popup=name, icon=collegeIcon)
      newMarker.add_to(mapCUNY)
```

```
mapCUNY.save(outfile='cunyLocationsSenior.html')
```

CSci 127 (Hunter)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

folium example

What does this code do?

```
import folium
import pandas as pd
cuny = pd.read_csv('cunyLocations.csv')
mapCUNY = folium.Map(location=[40.75, -74.125])
for index,row in cuny.iterrows():
    lat = row["Latitude"]
    lan = row["Latitude"]
    name = row["Campus"]
    if row["College or Institution Type"] == "Senior Colleges":
        collegeIcon = folium.Icon(color="purple")
    else:
        collegeIcon = folium.Icon(color="blue")
    newMarker = folium.Marker([lat, lon], popup=name, icon=collegeIcon)
    newMarker.add_to(mapCUNY)
```

mapCUNY.save(outfile='cunyLocationsSenior.html')

3

200

folium example

What does this code do?

```
import folium
import pandas as pd

cuny = pd.read_csy('cunyLocations.csy')
mapCUNY = folium.Map(location=[40.75, -74.125])

for index,row in cuny.iterrows():
    lat = row["Longitude"]
    lon = row["Compus"]
    if row["College or Institution Type"] == "Senior (olleges":
        collegeIcon = folium.Icon(color="purple")
    else:
        collegeIcon = folium.Icon(color="blue")
        newMarker = folium.Marker([lat, lon], popup=name, icon=collegeIcon)
        newMarker.add_to(mapCUNY)
```

```
mapCUNY.save(outfile='cunyLocationsSenior.html')
```


• A module for making HTML maps.

CSci 127 (Hunter)

Lecture 10

14 November 2018 6 / 47

E

990

- A module for making HTML maps.
- It's a Python interface to the popular leaflet.js.

١

Folium

Э

990

- A module for making HTML maps.
- It's a Python interface to the popular leaflet.js.
- Outputs .html files which you can open in a browser.

Folium

3

- A module for making HTML maps.
- It's a Python interface to the popular leaflet.js.
- Outputs .html files which you can open in a browser.
- An extra step:

Folium

3

- A module for making HTML maps.
- It's a Python interface to the popular leaflet.js.
- Outputs .html files which you can open in a browser.
- An extra step:

Write	\rightarrow	Run	\rightarrow	Open .html
code.		program.		in browser.

Folium

3

Collect all five stars (locations randomly generated):

• Possible approaches:

3

∃ → - - =

990

- Possible approaches:
 - Randomly wander until all 5 collected, or

-

- Possible approaches:
 - ▶ Randomly wander until all 5 collected, or
 - Start in one corner, and systematically visit every point.

< 🗇 🕨

- Possible approaches:
 - ► Randomly wander until all 5 collected, or
 - Start in one corner, and systematically visit every point.
- Input: The map of the 'world.'

- Possible approaches:
 - ▶ Randomly wander until all 5 collected, or
 - Start in one corner, and systematically visit every point.
- Input: The map of the 'world.'
- Output: Time taken and/or locations of the 5 stars.

- Possible approaches:
 - ▶ Randomly wander until all 5 collected, or
 - Start in one corner, and systematically visit every point.
- Input: The map of the 'world.'
- **Output:** Time taken and/or locations of the 5 stars.
- How to store locations? Use numpy array with -1 everywhere.

- Possible approaches:
 - ▶ Randomly wander until all 5 collected, or
 - Start in one corner, and systematically visit every point.
- Input: The map of the 'world.'
- **Output:** Time taken and/or locations of the 5 stars.
- How to store locations? Use numpy array with -1 everywhere.
- Possible algorithms: while numStars < 5:

- Possible approaches:
 - ▶ Randomly wander until all 5 collected, or
 - Start in one corner, and systematically visit every point.
- Input: The map of the 'world.'
- **Output:** Time taken and/or locations of the 5 stars.
- How to store locations? Use numpy array with -1 everywhere.
- Possible algorithms: while numStars < 5:
 - Move forward.
 - ► If wall, mark 0 in map, randomly turn left or right.
 - ► If star, mark 1 in map and add 1 to numStars.
 - Otherwise, mark 2 in map that it's an empty square.
- If only turned left when you ran into a wall, what would happen?

CSci 127 (Hunter)

In Pairs or Triples:

Predict what the code will do:

```
#Random search
import turtle
import random
tess = turtle.Turtle()
tess.color('steelBlue')
tess.shape('turtle')
tess.penup()
#Start off screen:
tess.goto(-250,-250)
#Remember: abs(x) < 25 means absolute value: -25 < x < 25
while abs(tess.xcor()) > 25 or abs(tess.ycor()) > 25:
  x = random.randrange(-200, 200)
  y = random.randrange(-200, 200)
  tess.goto(x,y)
  tess.stamp()
  print(tess.xcor(), tess.ycor())
print('Found the center!')
```

≡ ∽ar

Python Tutor

#Random search import turtle import random

 tess = units.Turits.

 tess.andrec?insellan")

 tess.andrec?insellan")

 tess.andrec?insellan")

 tess.andrec?insellan")

 tess.andrec?insellan")

 tess.andrec?insellan")

 manuari:
 (andre andreaded andreaded

(Demo with trinket)

#Random search

import turtle import random tess = turtle.Turtle() tess.color('steelBlue') tess.shape('turtle') tess.penup() #Start off screen tess.goto(-250,-250) #Remember: abs(x) < 25 means absolute value: -25 < x < 25 while abs(tess.xcor()) > 25 or abs(tess.ycor()) > 25: x = random.randrange(-200,200) y = random.randrange(-200,200) tess.goto(x,y) tess.stomo() print(tess.xcor(), tess.ycor()) print('Found the center!')

#Random search

import turtle import random tess = turtle.Turtle() tess.color('steelBlue') tess.shape('turtle') tess.penup() #Start off screen tess.goto(-250,-250) #Remember: abs(x) < 25 means absolute value: -25 < x < 25 while dbs(tess.xcor()) > 25 or dbs(tess.ycor()) > 25: x = random.randrange(-200,200) y = random, randrange(-200, 200) tess.goto(x,y) tess.stomo() print(tess.xcor(), tess.ycor()) print('Found the center!')

#Random search

import turtle import random tess = turtle.Turtle() tess.color('steelBlue') tess.shape('turtle') tess.penup() #Start off screen tess.goto(-250,-250) #Remember: abs(x) < 25 means absolute value: -25 < x < 25 while abs(tess.xcor()) > 25 or abs(tess.ycor()) > 25: x = random.randrange(-200,200) y = random.randrange(-200,200) tess.goto(x,y) tess.stomo() print(tess.xcor(), tess.ycor()) print('Found the center!')

#Random search import turtle import random tess = turtle.Turtle() tess.color('steelBlue') tess.shape('turtle') tess.penup() #Start off screen: tess.goto(-250,-250) #Remember: abs(x) < 25 means absolute value: -25 < x < 25 while abs(tess.xcor()) > 25 or abs(tess.ycor()) > 25: x = random.randrange(-200,200) y = random, randrange(-200, 200) tess.goto(x,y) tess.stomo() print(tess.xcor(), tess.ycor()) print('Found the center!')

• Indefinite loops repeat as long as the condition is true.

Sac

<ロト < 団ト < 団ト < 団ト < 団ト = 三</p>

- Indefinite loops repeat as long as the condition is true.
- Could execute the body of the loop zero times, 10 times, infinite number of times.

14 November 2018 12 / 47

3
Indefinite Loops

#Random search import turtle import random tess = turtle.Turtle() tess.color('steelBlue') tess.shape('turtle') tess.penup() #Start off screen: tess.goto(-250,-250) #Remember: abs(x) < 25 means absolute value: -25 < x < 25 while abs(tess,xcor()) > 25 or abs(tess,vcor()) > 25: x = random.randrange(-200,200) v = random, randrange(-200, 200) tess.goto(x,y) tess.stomo() print(tess.xcor(), tess.ycor()) print('Found the center!')

Result	III Instructions	
***	* * *	
1 H H		
· · ·	* ***	
H	** * _*	
u ** *	**	
**************************************	34 - 34-	
E	1. A A	
	Hong Hange	
(158.0, 133.0)		0
(-189.0, -151.0) (20.0, 7.0)		
Found the denter!		

- Indefinite loops repeat as long as the condition is true.
- Could execute the body of the loop zero times, 10 times, infinite number of times.
- The condition determines how many times.

3

Sar

Indefinite Loops

- Indefinite loops repeat as long as the condition is true.
- Could execute the body of the loop zero times, 10 times, infinite number of times.
- The condition determines how many times.
- Very useful for checking input, simulations, and games.

Today's Topics

- Recap: folium and indefinite loops
- Design Patterns: Searching Data
- Data Representation
- Machine Language

3

Sac

In Pairs or Triples:

Answer the following questions on your lecture slip:

Of the students in the room,

- Whose name comes first alphabetically?
- Whose name comes last alphabetically?
- Is there someone in the room with your initials?

CSci 127 (Hunter)

In Pairs or Triples:

イロト イロト イヨト イ

Design a program that takes a CSV file and a set of initials:

- Whose name comes first alphabetically?
- Whose name comes last alphabetically?
- Is there someone in the room with your initials?

CSci 127 (Hunter)

• In Pandas, lovely built-in functions:

CSci 127 (Hunter)

Lecture 10

14 November 2018 16 / 47

-

イロト イロト イヨト イ

- A - N

TH 1.

• In Pandas, lovely built-in functions:

- b df.sort_values('First Name') and
- b df['First Name'].min()

CSci 127 (Hunter)

Lecture 10

14 November 2018 16 / 47

- In Pandas, lovely built-in functions:
 - df.sort_values('First Name') and
 - df['First Name'].min()
- What if you don't have a CSV and DataFrame, or data not ordered?

CSci 127 (Hunter)

Lecture 10

• What if you don't have a CSV and DataFrame, or data not ordered?

18 I.S.

< □ > < 同 >

• What if you don't have a CSV and DataFrame, or data not ordered?

• Useful *Design Pattern*: min/max

< 口 > < 同

• What if you don't have a CSV and DataFrame, or data not ordered?

- Useful Design Pattern: min/max
 - ► Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").

< □ > < 同 >

• What if you don't have a CSV and DataFrame, or data not ordered?

- Useful Design Pattern: min/max
 - ► Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
 - For each item, X, in the list:

CSci 127 (Hunter)

Lecture 10

14 November 2018 17 / 47

イロト イロト イヨト イ

- What if you don't have a CSV and DataFrame, or data not ordered?
- Useful Design Pattern: min/max
 - ► Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
 - For each item, X, in the list:
 - ★ Compare X to your variable.

イロト イボト イヨト イヨ

- What if you don't have a CSV and DataFrame, or data not ordered?
- Useful Design Pattern: min/max
 - ► Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
 - For each item, X, in the list:
 - ★ Compare X to your variable.
 - ★ If better, update your variable to be X.

CSci 127 (Hunter)

イロト イロト イヨト イ

- What if you don't have a CSV and DataFrame, or data not ordered?
- Useful Design Pattern: min/max
 - ► Set a variable to worst value (i.e. maxN = 0 or first = "ZZ").
 - ► For each item, X, in the list:
 - ★ Compare X to your variable.
 - ★ If better, update your variable to be X.
 - Print/return X.

CSci 127 (Hunter)

Lecture 10

14 November 2018 17 / 47

イロト イボト イヨト イヨ

イロト イボト イヨト イヨ

• How do we stop, if we find a match?

CSci 127 (Hunter)

Lecture 10

14 November 2018 18 / 47

イロト イロト イヨト イ

- How do we stop, if we find a match?
- Change the loop to be indefinite (i.e. while loop):
 - Set a variable to found = False

- How do we stop, if we find a match?
- Change the loop to be indefinite (i.e. while loop):
 - Set a variable to found = False
 - while there are items in the list and not found

CSci 127 (Hunter)

Lecture 10

14 November 2018 18 / 47

- How do we stop, if we find a match?
- Change the loop to be indefinite (i.e. while loop):
 - Set a variable to found = False
 - while there are items in the list and not found
 - ★ If item matches your value, set found = True

CSci 127 (Hunter)

Lecture 10

- How do we stop, if we find a match?
- Change the loop to be indefinite (i.e. while loop):
 - Set a variable to found = False
 - while there are items in the list and not found

★ If item matches your value, set found = True

► Print/return value.

CSci 127 (Hunter)

14 November 2018 18 / 47

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter)

Lecture 10

14 November 2018 19 / 47

イロト 不得 トイヨト イヨト ヨー のくや

Python Tutor

```
nums = [1,4,10,6,5,42,9,8,12]
maxNum = 0
for n in nums:
    if n > maxNum:
        maxNum = n
print('The max is', maxNum)
```

(Demo with pythonTutor)

イロト 不良 トイヨト イヨト ヨー のくや

In Pairs or Triples:

Predict what the code will do:

```
def search(nums, locate):
    found = False
    i = 0
    while not found and i < len(nums):</pre>
        print(nums[i])
        if locate == nums[i]:
             found = True
        else:
            i = i+1
    return(found)
nums = [1, 4, 10, 6, 5, 42, 9, 8, 12]
if search(nums,6):
    print('Found it! 6 is in the list!')
else:
    print('Did not find 6 in the list.')
```

CSci 127 (Hunter)

Lecture 10

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Python Tutor

```
def search(nums, locate):
    found = Folie
    i = 0
    while not found and i < len(nums):
        print(nums[i])
        if locate = nums[i]:
        found = True
        else:
        return(found)
nums=[1,4,18,6,5,42,8,8,12]
        if search(nums,6):
        print('Found it! 6 is in the list!')
else:
```

print('Did not find 6 in the list.')

(Demo with pythonTutor)

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ - のの⊙

In Pairs or Triples:

• Write a function that asks a user for number after 2000 but before 2018. The function should repeatedly ask the user for a number until they enter one within the range and return the number.

• Write a function that asks a user for number after 2000 but before 2018. The function should repeatedly ask the user for a number until they enter one within the range and return the number..

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Write a function that asks a user for number after 2000 but before 2018. The function should repeatedly ask the user for a number until they enter one within the range and return the number.

def getYear():

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Write a function that asks a user for number after 2000 but before 2018. The function should repeatedly ask the user for a number until they enter one within the range and return the number.

def getYear():

return(num)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

• Write a function that asks a user for number after 2000 but before 2018. The function should repeatedly ask the user for a number until they enter one within the range and return the number.

```
def getYear():
    num = 0
```

return(num)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Write a function that asks a user for number after 2000 but before 2018. The function should repeatedly ask the user for a number until they enter one within the range and return the number.

```
def getYear():
    num = 0
    while num <= 2000 or num >= 2018:
```

return(num)

イロト 不得 トイヨト イヨト ヨー のくや

• Write a function that asks a user for number after 2000 but before 2018. The function should repeatedly ask the user for a number until they enter one within the range and return the number.

```
def getYear():
    num = 0
    while num <= 2000 or num >= 2018:
        num = int(input('Enter a number > 2000 & < 2018'))</pre>
```

return(num)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Today's Topics

- Recap: folium and indefinite loops
- Design Patterns: Searching Data
- Data Representation
- Machine Language

3

Recall: Decimal & Hexadecimal Numbers

Counting with 10 digits:

(from i-programmer.info)

CSci 127 (Hunter)

Lecture 10

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Decimal

(from i-programmer.info)

CSci 127 (Hunter)

Lecture 10

14 November 2018 32 / 47

Decimal

00 01 02 03 04 05 06 07 08 09

(from i-programmer.info)

CSci 127 (Hunter)

Lecture 10

14 November 2018 32 / 47

=

990

Decimal

(from i-programmer.info)

CSci 127 (Hunter)

Lecture 10

14 November 2018 32 / 47

3

990

(from i-programmer.info)

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

 20
 21
 22
 23
 24
 25
 26
 27
 28
 29

CSci 127 (Hunter)

Lecture 10

14 November 2018 32 / 47

3

Sac

イロト イポト イヨト イヨト

- 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
- 20 21 22 23 24 25 26 27 28 29
- 30 31 32 33 34 35 36 37 38 39

イロト イポト イヨト イヨト

(from i-programmer.info)

(from i-programmer.info)

- 00 01 02 03 04 05 06 07 08 09
- 10 11 12 13 14 15 16 17 18 19
- 20 21 22 23 24 25 26 27 28 29
- 30 31 32 33 34 35 36 37 38 39
- 40 41 42 43 44 45 46 47 48 49

イロト イポト イヨト イヨト

3

(from i-programmer.info)

00	01	02	03	04	05	06	07	08	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59

Lecture 10

(from i-programmer.info)

00	01	02	03	04	05	06	07	80	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69

Lecture 10

(from i-programmer.info)

00	01	02	03	04	05	06	07	08	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79

CSci 127 (Hunter)

Lecture 10

14 November 2018 32 / 47

(from i-programmer.info)

00	01	02	03	04	05	06	07	80	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89

(from i-programmer.info)

00	01	02	03	04	05	06	07	80	09
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
	00 10 20 30 40 50 60 70 80 90	0001101120213031404150516061707180819091	000102101112202122303132404142505152606162707172808182909192	00010203101112132021222330313233404142435051525360616263707172738081828390919293	0001020304101112131420212223243031323334404142434450515253546061626364707172737480818283849091929394	00 01 02 03 04 05 10 11 12 13 14 15 20 21 22 23 24 25 30 31 32 33 34 35 40 41 42 43 44 45 50 51 52 53 54 55 60 61 62 63 64 65 70 71 72 73 74 75 80 81 82 83 84 85 90 91 92 93 94 95	00010203040506101112131415162021222324252630313233343536404142434445465051525354555660616263646566707172737475768081828384858690919293949596	00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97	00 01 02 03 04 05 06 07 08 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 56 57 58 60 61 62 63 64 65 66 67 68 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98

Lecture 10

Recall: Decimal & Hexadecimal Numbers

Counting with 16 digits:

(from i-programmer.info)

イロト イポト イヨト イヨト

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

(from i-programmer.info)

CSci 127 (Hunter)

Lecture 10

14 November 2018 34 / 47

00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F

(from i-programmer.info)

<ロト < 団 > < 臣 > < 臣 > 三 = のへで

00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F

(from i-programmer.info)

<ロト < 団 > < 臣 > < 臣 > 三 = のへで

00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F
30	31	32	33	34	35	36	37	38	39	ЗA	3B	3C	3D	3E	3F

(from i-programmer.info)

三

590

メロト メロト メヨト メヨト

00	01	02	03	04	05	06	07	08	09	OA	0B	0C	OD	0E	0F
10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F
30	31	32	33	34	35	36	37	38	39	ЗA	ЗB	ЗC	ЗD	3E	3F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

(from i-programmer.info)

<ロト < 団 > < 臣 > < 臣 > 三 = のへで

(from i-programmer.info)

14 November 2018 34 / 47

3

596

イロト イロト イヨト イヨト

(from i-programmer.info)

 00
 01
 02
 03
 04
 05
 06
 07
 08
 02
 08
 0C
 0D
 0C
 DD
 0E
 0F

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 1A
 1B
 1C
 1D
 1E
 1F

 20
 21
 22
 32
 24
 25
 26
 27
 28
 20
 2D
 2E
 2D
 2E
 2F
 20
 32
 22
 2E
 3E
 34
 35
 36
 37
 38
 39
 3A
 3B
 3C
 3D
 3E
 3F

 40
 41
 42
 43
 44
 45
 46
 47
 48
 44
 48
 4C
 4D</td

CSci 127 (Hunter)

Lecture 10

14 November 2018 34 / 47

3

200

イロト イロト イヨト イヨト

(from i-programmer.info)

CSci 127 (Hunter)

Lecture 10

14 November 2018 34 / 47

3

イロト イロト イヨト イヨト

(from i-programmer.info)

3

イロト イポト イヨト イヨト

(from i-programmer.info)

Lecture 10

(from i-programmer.info)

Lecture 10

990

(from i-programmer.info)

Lecture 10

14 November 2018 34 / 47

イロト イポト イヨト イヨト

(from i-programmer.info)

Lecture 10

14 November 2018 34 / 47

◆ロト ◆信 ト ◆注 ト ◆注 ト

(from i-programmer.info)

Lecture 10

14 November 2018 34 / 47

(日) (四) (三) (三) (三)

Lecture 10

14 November 2018 34 / 47

(日) (四) (三) (三) (三)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Lecture 10

14 November 2018 34 / 47

イロト イポト イヨト イヨト

E IQC

E IQC

E IQC

• Only have two digits: 0 and 1.

E SQC

ヘロト 人間ト 人注ト 人注ト

$$\begin{array}{c} 0 & 1 & 0 & 1 \\ 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 \end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).

$$\begin{array}{c} 0 & 1 & 0 & 1 \\ 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 \end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$

イロト 不得 トイヨト イヨト ヨー のくや

$$\begin{array}{c} 0 & 1 & 0 & 1 \\ 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 \end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's:

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

$$\begin{array}{c}
0 & 1 & 0 & 1 \\
0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5
\end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

$$\begin{array}{c}
0 & 1 & 0 & 1 \\
0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5
\end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

$$\begin{array}{c} 0 & 1 & 0 & 1 \\ 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 \end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1 10

CSci 127 (Hunter)

イロト 不得 トイヨト イヨト ヨー のくや

$$\begin{array}{c}
0 & 1 & 0 & 1 \\
0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5
\end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1 10 11

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~
$$\begin{array}{c} 0 & 1 & 0 & 1 \\ 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 \end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1 10 11 100

CSci 127 (Hunter)

14 November 2018 35 / 47

$$\begin{array}{c}
0 & 1 & 0 & 1 \\
0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5
\end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1 10 11 100 101

CSci 127 (Hunter)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

$$\begin{array}{c}
0 & 1 & 0 & 1 \\
0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5
\end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1 10 11 100 101 110

CSci 127 (Hunter)

$$\begin{array}{c} 0 & 1 & 0 & 1 \\ 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 \end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1 10 11 100 101 110 111...

CSci 127 (Hunter)

$$\begin{array}{c} 0 & 1 & 0 & 1 \\ 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 \end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1 10 11 100 101 110 111...
- At the lowest level, information (data, commands, programs, etc.) on most computers is stored in binary.

CSci 127 (Hunter)

$$\begin{array}{c} 0 & 1 & 0 & 1 \\ 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 \end{array}$$

- Only have two digits: 0 and 1.
- Can view as a series of switches that are either off (0) or on (1).
- 4-bit number uses 4 binary digits and ranges from 0000 or 0 to 1111 or $2^3 + 2^2 + 2^1 + 2^0 = 8 + 4 + 2 + 1 = 15$
- Counting by 2's: 0 1 10 11 100 101 110 111...
- At the lowest level, information (data, commands, programs, etc.) on most computers is stored in binary.
- Lecture slip: fill in the missing decimal, hex, and binary numbers.

CSci 127 (Hunter)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Today's Topics

- Recap: folium and indefinite loops
- Design Patterns: Searching Data
- Data Representation
- Machine Language

3

• Can view programming languages on a continuum.

= nar

- Can view programming languages on a continuum.
- Those that directly access machine instructions & memory and have little abstraction are **low-level languages**

- Can view programming languages on a continuum.
- Those that directly access machine instructions & memory and have little abstraction are **low-level languages** (e.g. machine language, assembly language).

- Can view programming languages on a continuum.
- Those that directly access machine instructions & memory and have little abstraction are **low-level languages** (e.g. machine language, assembly language).
- Those that have strong abstraction (allow programming paradigms independent of the machine details, such as complex variables, functions and looping that do not translate directly into machine code) are called **high-level languages**.

CSci 127 (Hunter)

Lecture 10

- Can view programming languages on a continuum.
- Those that directly access machine instructions & memory and have little abstraction are **low-level languages** (e.g. machine language, assembly language).
- Those that have strong abstraction (allow programming paradigms independent of the machine details, such as complex variables, functions and looping that do not translate directly into machine code) are called **high-level languages**.
- Some languages, like C, are in between- allowing both low level access and high level data structures.

CSci 127 (Hunter)

Lecture 10

14 November 2018 37 / 47

(Ruth Gordon & Ester Gerston programming the ENIAC, UPenn)

CSci 127 (Hunter)

Lecture 10

14 November 2018 38 / 47

Э

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>

<u>1 FUX 12:01a 23- 1</u> A 002000 C2 30 RED #ean
A 002002 18 CLC
A 002004 A9 34 12 LDA #\$1234
A 002007 69 21 43 ADC #\$4321 A 00200A AF 03 7F 01 STA \$012502
A 00200E D8 CLD
A 002011 00 BRK
H 2012
Γ ΡΒΡΟ Νυπχητέρο Αυγικός το το το
; 00 E012 00110000 0000 0000 0002 CFFF 0000 00 8 2000
BRFAK
PR PC NilmyDIZC 4 V U CD DD
; 00 2013 00110000 5555 0000 0002 CFF 0000 00
2007F03 55 55 00 00 00 00 00 00 00 00 00 00 00

(wiki)

CSci 127 (Hunter)

Lecture 10

Ξ

900

EWX 12:01a 23- 1
H 882888 C2 38 REP #\$38
H 002002 18 CLC
A 992994 40 24 12 124 minute
A 992992 60 21 42 400 44 231
A 88288A BE R3 7F R1 STA 6817582
A 88288E 08 CIN
A 002200F E2 30 SEP #\$30
H 002011 88 BRX
n 2012
F
PB PC MUncoll2C A X Y SP pP pp
7 00 E012 00110000 0000 0000 0000 CFFF 0000 00
8 1010
BREAK
00 00 Mile 0120 A H H H H H
: 88 2813 88118888 5555 8888 8882 FEFF 8888 88
n 7f83 7f83
X8877F83 55 55 68 68 68 68 68 68 68 68 68 68 68 68 68

(wiki)

 We will be writing programs in a simplified machine language, WeMIPS.

3

Sac

(wiki)

- We will be writing programs in a simplified machine language, WeMIPS.
- It is based on a reduced instruction set computer (RISC) design, originally developed by the MIPS Computer Systems.

(wiki)

- We will be writing programs in a simplified machine language, WeMIPS.
- It is based on a reduced instruction set computer (RISC) design, originally developed by the MIPS Computer Systems.
- Due to its small set of commands, processors can be designed to run those commands very efficiently.

⁽wiki)

- We will be writing programs in a simplified machine language, WeMIPS.
- It is based on a reduced instruction set computer (RISC) design, originally developed by the MIPS Computer Systems.
- Due to its small set of commands, processors can be designed to run those commands very efficiently.
- More in future architecture classes....

"Hello World!" in Simplified Machine Language

Line: 3 Go!	Show/Hide Demos							User Guide Unit	Tests Docs
	Addition Doubler	Stav Loop	ber Stack Test	Hello Worl	i				
	Code Gen Save Stri	ing Interact	ive Binary2 Dec	imal Deci	mal2 Binary				
	Debug								
1 # Store 'Hello worl	dl' at the top of	f the stack				Step	Run	 Enable auto switching 	
3 ADDI \$t0, \$zero, 72	# H					s	т	A V Stack Log	
5 ADDI \$t0, \$zero, 10	1#e							-	
7 ADDI \$t0, \$zero, 10	8 # 1						s0:	10	
8 SB \$t0, 2(\$sp) 9 ADDI \$t0, \$zero, 10	8 # 1						s1:	9	
10 SB \$t0, 3(\$sp)							s2:	9	
11 ADDI \$t0, \$zero, 11	1#0						s3:	22	
13 ADDI \$t0, \$zero, 32	# (space)						s4:	696	
14 SB \$t0, 5(\$sp) 15 ADDI \$t0, \$zero, 11	9 # w						s5:	976	
16 SB \$t0, 6(\$sp)							s6:	927	
17 ADDI \$t0, \$zero, 11	1#o						s7:	418	
19 ADDI \$t0, \$zero, 11	4 # r								
20 SB \$t0, 8(\$sp)	19 <i>M</i> 1								
22 SB \$t0, 9(\$sp)									
23 ADDI \$t0, \$zero, 10	0 # d								
25 ADDI \$t0, \$zero, 33	# 1								
26 SB \$t0, 11(\$sp)	# (mull)								
28 SB \$t0, 12(\$sp)	# (null)								
29									
30 ADDI \$V0, \$2ero, 4 31 ADDI \$a0, \$sp, 0	# 4 is for print	string							
32 syscall	# print to the 1	log							

(WeMIPS)

WeMIPS

14 November 2018 42 / 47

Registers: locations for storing information that can be quickly accessed.

• **Registers:** locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − ∽ Q (~

- **Registers:** locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- **R Instructions:** Commands that use data in the registers:

- **Registers:** locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- **R Instructions:** Commands that use data in the registers: add \$s1, \$s2, \$s3

- **Registers:** locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values.

CSci 127 (Hunter)

Lecture 10

- **Registers:** locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values. addi \$s1, \$s2, 100

CSci 127 (Hunter)

- **Registers:** locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values. addi \$s1, \$s2, 100 (Basic form: OP rd, rs, imm)
- J Instructions: instructions that jump to another memory location.

CSci 127 (Hunter)

- **Registers:** locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values. addi \$s1, \$s2, 100 (Basic form: OP rd, rs, imm)
- J Instructions: instructions that jump to another memory location. j done

CSci 127 (Hunter)

- **Registers:** locations for storing information that can be quickly accessed. Names start with '\$': \$s0, \$s1, \$t0, \$t1,...
- R Instructions: Commands that use data in the registers: add \$s1, \$s2, \$s3 (Basic form: OP rd, rs, rt)
- I Instructions: instructions that also use intermediate values. addi \$s1, \$s2, 100 (Basic form: OP rd, rs, imm)
- J Instructions: instructions that jump to another memory location. j done (Basic form: OP label)

CSci 127 (Hunter)

In Pairs or Triples:

Line: 3 Go!	Show/Hide Demos							User Guide	e Unit Tests Docs
	Addition Doubler Sta	Looper	Stack Test H	lello World					
	Code Gen Save String	Interactive	Binary2 Decima	Decimal2 Binar	<i>(</i>				
	Debug								
1 # Store 'Hello worl	d!' at the top of th	e stack				Step	Run 🕑 Ena	ble auto switchin	9
3 ADDI \$t0, \$zero, 72 4 SB \$t0, 0(\$sp)	2 # H					s	ТА	V Stack	Log
5 ADDI \$t0, \$zero, 10 6 SB \$t0, 1(\$sp)	11 # e						n.	10	
7 ADDI \$t0, \$zero, 10 8 SB \$t0, 2(\$sp)	18 # 1					s	1:	9	
9 ADDI \$t0, \$zero, 10	18 # 1					s	2:	9	
11 ADDI \$t0, \$zero, 11	1#0					s	3:	22	
12 SB \$t0, 4(\$sp)	# (cpage)					s	4:	696	
14 SB \$t0, 5(\$sp)	# (bpace)						5.	976	
15 ADDI \$t0, \$zero, 11	.9 # w						e.	027	
17 ADDI \$t0, \$zero, 11	1 # 0							021	
18 SB \$t0, 7(\$sp)						5	/:	410	
19 ADDI \$t0, \$zero, 11 20 SB \$t0, 8(\$ep)	.4 # r								
21 ADDI \$t0, \$zero, 10	18 # 1								
22 SB \$t0, 9(\$sp)	10 # d								
24 SB \$t0, 10(\$sp)	w # u								
25 ADDI \$t0, \$zero, 33	1#1								
20 SB StU, 11(Ssp) 27 ADDI StO, Szero, 0	# (null)								
28 SB \$t0, 12(\$sp)									
30 ADDT \$v0, \$zero, 4	# 4 is for print sty	ing							
31 ADDI \$a0, \$sp, 0	· · · · · · · · · · · · · · · · · · ·	2.03							
32 syscall	# print to the log								

Write a program that prints out the alphabet: a b c d \ldots x y z

CSci 127 (Hunter)

Lecture 10

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

WeMIPS

14 November 2018 45 / 47

• On lecture slip, write down a topic you wish we had spent more time (and why).

Э

990

- On lecture slip, write down a topic you wish we had spent more time (and why).
- Searching through data is a common task- built-in functions and standard design patterns for this.

3

イロト イボト イヨト イヨ

- On lecture slip, write down a topic you wish we had spent more time (and why).
- Searching through data is a common task- built-in functions and standard design patterns for this.
- We use different base numbers (i.e. binary and hexadecimal) to represent data.

- On lecture slip, write down a topic you wish we had spent more time (and why).
- Searching through data is a common task- built-in functions and standard design patterns for this.
- We use different base numbers (i.e. binary and hexadecimal) to represent data.
- Programming languages can be classified by the level of abstraction and direct access to data.

- On lecture slip, write down a topic you wish we had spent more time (and why).
- Searching through data is a common task- built-in functions and standard design patterns for this.
- We use different base numbers (i.e. binary and hexadecimal) to represent data.
- Programming languages can be classified by the level of abstraction and direct access to data.
- Pass your lecture slips to the aisles for the UTAs to collect.

• Lightning rounds:

CSci 127 (Hunter)

Lecture 10

14 November 2018 47 / 47

3

- Lightning rounds:
 - write as much you can for 60 seconds;

イロト イポト イヨト イヨト

- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and

 $\exists \rightarrow$

- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - repeat.

イロト イポト イヨト イヨト

- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - repeat.
- Past exams are on the webpage (under Final Exam Information).

CSci 127 (Hunter)

Lecture 10

18 July 19

< □ > < 同 >

- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - repeat.
- Past exams are on the webpage (under Final Exam Information).
- Theme: Data Representation! Starting with F17, Mock, #2 and #3.

CSci 127 (Hunter)

Lecture 10