
CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 1 / 36

Lecture Slips: tinyurl.com/ycrcn3k6

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 2 / 36

Announcements

There’s 7 additional sections for the second
semester programming lab CSci 136 open for
next term.

Today’s lecturers include:

I Prof. Sakas (department chair),
I Genady Maryash (adjunct coordinator),
I Katherine Howitt (tutor coordinator).

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 3 / 36

Announcements

There’s 7 additional sections for the second
semester programming lab CSci 136 open for
next term.

Today’s lecturers include:

I Prof. Sakas (department chair),
I Genady Maryash (adjunct coordinator),
I Katherine Howitt (tutor coordinator).

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 3 / 36

Today’s Topics

Recap of Low-Level Programming

Introducing C++

Hello, World in C++

I/O and Definite Loops in C++

Final Exam Overview

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 4 / 36

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.

Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 5 / 36

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages

(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 5 / 36

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).

Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 5 / 36

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.

Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 5 / 36

Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.
Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 5 / 36

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 6 / 36

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 6 / 36

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 6 / 36

Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 6 / 36

“Hello World!” in Simplified Machine Language

(WeMIPS)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 7 / 36

In Pairs or Triples:

Predict what the code will do:

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 8 / 36

WeMIPS

(Demo with WeMIPS)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 9 / 36

In Pairs or Triples:

Write a complete Python program that converts kilograms to
pounds.

Predict what the code will do:

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 10 / 36

Python Tutor
Write a complete Python program that converts kilograms to
pounds.

(Write from scratch in pythonTutor.)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 11 / 36

onlinegdb demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 12 / 36

Introduction to C++

C++ is a popular programming
language that extends C.

Produces fast, efficient, and powerful.

Used for systems programming (and
future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 13 / 36

Introduction to C++

C++ is a popular programming
language that extends C.

Produces fast, efficient, and powerful.

Used for systems programming (and
future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 13 / 36

Introduction to C++

C++ is a popular programming
language that extends C.

Produces fast, efficient, and powerful.

Used for systems programming (and
future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 13 / 36

Introduction to C++

C++ is a popular programming
language that extends C.

Produces fast, efficient, and powerful.

Used for systems programming (and
future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 13 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:

int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:

cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:

cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:

#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 14 / 36

In Pairs or Triples:
Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 15 / 36

C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 16 / 36

In Pairs or Triples:

Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 17 / 36

C++ Demo

(Demo with C++)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 18 / 36

Definite loops

General format:

for (initialization ; test ; updateAction)
{

command1;
command2;
command3;
...

}

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 19 / 36

Final Overview (Cont’d from Last Lecture)
For each question below, first write the function header (name &
inputs) and return values (often called the Application Programming
Interface (API)). Then write the complete function:

Write a function that takes a whole number and returns the
corresponding binary number as a string.

Write a function that takes a weight in kilograms and returns the
weight in pounds.

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

Write a function that takes a string and returns its length.

(Hint: highlight key words, make list of inputs, list of outputs, then put
together.)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 20 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 21 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

binStr = ""

while (num > 0):

#Divide by 2, and add the remainder to the string

r = num %2

binString = str(r) + binStr

num = num / 2

return(binStr)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 22 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 23 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg):

...

return(lbs)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 24 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg)

lbs = kg * 2.2

return(lbs)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 25 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 26 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

...

return(min)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 27 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

mM = df[’Manhattan’].min()

return(mM)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 28 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 29 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

....

return(payment)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 30 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

(Some formula for payment)

return(payment)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 31 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 32 / 36

Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

length = len(str)

return(length)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 33 / 36

Recap: C++

C++ is a popular programming language
that extends C.

Input/Output (I/O):

I cin >>
I cout <<

Definite loops:
for (i = 0; i < 10; i++)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 34 / 36

Recap: C++

C++ is a popular programming language
that extends C.

Input/Output (I/O):

I cin >>
I cout <<

Definite loops:
for (i = 0; i < 10; i++)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 34 / 36

Recap: C++

C++ is a popular programming language
that extends C.

Input/Output (I/O):

I cin >>
I cout <<

Definite loops:
for (i = 0; i < 10; i++)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 34 / 36

Lecture Slips: tinyurl.com/ycrcn3k6

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 35 / 36

