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Announcements

There’s 7 additional sections for the second
semester programming lab CSci 136 open for
next term.

Today’s lecturers include:

I Prof. Sakas (department chair),
I Genady Maryash (adjunct coordinator),
I Katherine Howitt (tutor coordinator).
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Today’s Topics

Recap of Low-Level Programming

Introducing C++

Hello, World in C++

I/O and Definite Loops in C++

Final Exam Overview
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Low-Level vs. High-Level Languages

(codeCommit)

Can view programming languages on a continuum.

Those that directly access machine instructions & memory and have
little abstraction are low-level languages
(e.g. machine language, assembly language).
Those that have strong abstraction (allow programming paradigms
independent of the machine details, such as complex variables,
functions and looping that do not translate directly into machine
code) are called high-level languages.
Some languages, like C, are in between– allowing both low level
access and high level data structures.
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Machine Language

(wiki)

We will be writing programs in a
simplified machine language, WeMIPS.

It is based on a reduced instruction set
computer (RISC) design, originally
developed by the MIPS Computer
Systems.

Due to its small set of commands,
processors can be designed to run those
commands very efficiently.

More in future architecture classes....
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“Hello World!” in Simplified Machine Language

(WeMIPS)
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In Pairs or Triples:

Predict what the code will do:
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WeMIPS

(Demo with WeMIPS)
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In Pairs or Triples:

Write a complete Python program that converts kilograms to
pounds.

Predict what the code will do:
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Python Tutor
Write a complete Python program that converts kilograms to
pounds.

(Write from scratch in pythonTutor.)
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onlinegdb demo

(Demo with onlinegdb)
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Introduction to C++

C++ is a popular programming
language that extends C.

Produces fast, efficient, and powerful.

Used for systems programming (and
future courses!).

Today, we’ll introduce the basic
structure and simple input/output
(I/O) in C/C++.
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Introduction to C++

Programs are organized in functions.

Variables must be declared before
used:
int num;

Many types available: int, float,

char, ...

To print, we’ll use cout <<:
cout << "Hello!!"

To get input, we’ll use cin >>:
cin >> num

To use those I/O functions, we put at
the top of the program:
#include <iostream>
using namespace std;
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In Pairs or Triples:
Predict what the following pieces of code will do:
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C++ Demo

(Demo with onlinegdb)

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 16 / 36



In Pairs or Triples:

Predict what the following pieces of code will do:

CSci 127 (Hunter) Lecture 12: tinyurl.com/ycrcn3k6 22 November 2017 17 / 36



C++ Demo

(Demo with C++)
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Definite loops

General format:

for ( initialization ; test ; updateAction )
{

command1;
command2;
command3;
...

}
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Final Overview (Cont’d from Last Lecture)
For each question below, first write the function header (name &
inputs) and return values (often called the Application Programming
Interface (API)). Then write the complete function:

Write a function that takes a whole number and returns the
corresponding binary number as a string.

Write a function that takes a weight in kilograms and returns the
weight in pounds.

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

Write a function that takes a string and returns its length.

(Hint: highlight key words, make list of inputs, list of outputs, then put
together.)
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

...

return(bin)
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a whole number and returns the
corresponding binary number as a string.

def num2bin(num):

binStr = ""

while (num > 0):

#Divide by 2, and add the remainder to the string

r = num %2

binString = str(r) + binStr

num = num / 2

return(binStr)
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Final Overview
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Final Overview
For each question below, write the function header (name & inputs) and
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a weight in kilograms and returns the
weight in pounds.

def kg2lbs(kg)

lbs = kg * 2.2

return(lbs)
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

...

return(min)
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that, given a DataFrame, returns the minimal value
in the “Manhattan” column.

def getMin(df):

mM = df[’Manhattan’].min()

return(mM)
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that computes the total monthly payment when
given the initial loan amount, annual interest rate, number of years of
the loan.

def computePayment(loan,rate,year):

(Some formula for payment)

return(payment)
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

...

return(length)
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Final Overview
For each question below, write the function header (name & inputs) and
return values (often called the Application Programming Interface (API)):

Write a function that takes a string and returns its length.

def sLength(str):

length = len(str)

return(length)
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Recap: C++

C++ is a popular programming language
that extends C.

Input/Output (I/O):

I cin >>
I cout <<

Definite loops:
for (i = 0; i < 10; i++)
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