Name:

Exam 2 CMP 416/685: Computability Theory Lehman College- CUNY, 29 April 2004

Directions:

- Write each answer on a separate piece of paper.
- Undergraduates: do any 5 of the problems.
- Graduates: Do 5 of the problems.
- At least 2 problems must be chosen from Part II.
- If you complete more than 5 questions,
- the highest scores will be used to calculate your grade.

Part I: Undergraduate Questions

- 1. (a) Define the following terms:
 - regular language
 - context free language
 - decidable language
 - (b) Is every regular language context-free? Why or why not?
 - (c) Is every decidable language context-free? Why or why not?
- 2. Show, by induction, that $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$.
- 3. (a) Write the context free grammar (CFG) for the following:

 $\{w \mid w \text{ starts and ends with the same symbol}\}$

- (b) Is your grammar in Chomsky Normal Form? If so, why? If not, write an equivalent grammar that is.
- 4. Let $\Sigma = \{a, b\}$. For each machine below, give full implementation-level details.
 - (a) Build a Turing Machine that halts if and only if the input string begins with 00. (That is, show that the language $\{w \mid w \text{ contains a } 0\}$ is Turing-recognizable.
 - (b) Build a Turing machine adds one to its input (that is, if the input number is x, the output would be x + 1.)
- 5. (a) State the pumping lemma for context-free languages.
 - (b) Use the pumping lemma to show that the language $B = \{a^n b^n c^n \mid n \ge 0\}$ is not context free.

Part II: Graduate Questions

- 1. Show that the collection of decidable languages is closed under complementation.
- 2. Let $B_n = \{a^k \mid \text{where } k \text{ is a multiple of } n\}$. Using induction on n, show that for $n \ge 1$, the language B_n is regular.
- 3. (a) Give a context-free grammar that generates the language

 $A = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and either } i = j \text{ or } j = k\}$

(b) Is your grammar ambiguous? Why or why not?

Question I.1	
Question I.2	
Question I.3	
Question I.4	
Question I.5	
Question II.1	
Question II.2	
Question II.3	
Total	