Name:	
	Question 1
Exam 1	Question 2
CMP 416/685: Computability Theory Lehman College—CUNY, 11 March 2004	Question 3
	Question 4
Directions:	Question 5
• Write each answer on a separate piece of paper.	Question 6
• Undergraduates: Do any 5 of the problems.	Question 7
• Graduates: Do 5 of the problems, at least	Question 8
2 problems must be chosen from Part II.	Question e

Total

Part I: Undergraduate Questions

• If you complete more than 5 questions, the highest scores will be used to calculate your grade.

- 1. Define the following terms:
 - (a) finite state automaton (give formal definition of either DFA or NFA)
 - (b) regular language
 - (c) Given a finite set Σ , define Σ^*
 - (d) Given a string s, define |s|
 - (e) Given finite sets Σ_1, Σ_2 , define $\Sigma_1 \circ \Sigma_2$
- 2. Give the state diagrams of deterministic finite state automata (DFAs) recognizing the following languages:
 - (a) $A = \{w \mid w \text{ begins with a 1 and ends with a 0}\}$
 - (b) $B = \{w \mid \text{ every odd position of } w \text{ is a } 1\}$
 - (c) $A \circ B$
- 3. Give state diagrams for nondeterministic finite state automata (NFAs) recognizing the following languages:
 - (a) $C = \{w \mid w \text{ ends with a } 00\}$
 - (b) $D = C^*$
 - (c) E = 0*1010*
- 4. For each of the following, justify your answer:
 - (a) What is the difference between an DFA and an NFA?
 - (b) Is every DFA also an NFA?
 - (c) Is every NFA also an DFA?
 - (d) Is every language that is recognizable by an DFA, also recognizable by an NFA?
 - (e) Is every language that is recognizable by an NFA, also recognizable by an DFA?
- 5. Use the pumping lemma to show that the following language is not regular:

$$F = \{ w \mid 0^{n} 1^{2n} n \ge 0 \}$$