Name:	Question 1	
Exam 1 CMP 416/685: Computability Theory Lehman College—CUNY, 28 February 2008	Question 2	
	Question 3	
	•	
	Question 4	
	Question 5	
Directions:	Question 6	
• Write each answer on a separate piece of paper.	Question 7	
• Undergraduates: do any 5 of the problems.	Question 8	
• Graduates: Do 5 of the problems.	Overtion	
At least 2 problems must be chosen from Part II.	Question 9	
•	Question 10	
• If you complete more than 5 questions.	& descroit 10	

Total

Part I: Undergraduate Questions

- 1. Define the following terms:
 - (a) finite state automaton
 - (b) regular language
 - (c) Given a finite set Σ , define Σ^*
 - (d) Given a string s, define |s|
 - (e) Given finite sets Σ_1 , Σ_2 , define $\Sigma_1 \circ \Sigma_2$
- 2. Give the state diagrams of deterministic finite state automata (**DFAs**) recognizing the following languages. In all parts, $\Sigma = \{a, b\}$.
 - (a) $\{w \mid w \text{ has at least three a's and has at least two b's}\}$

the highest scores will be used to calculate your grade.

- (b) $\{w \mid w \text{ starts with an a and has at most one b}\}$
- (c) $\{w \mid w \text{ has even number of a's and one or two b's}\}$
- 3. Give the state diagrams for nondeterministic finite state automata (**NFAs**) with the specified number of states recognizing the following languages. In all parts, $\Sigma = \{0, 1\}$.
 - (a) $\{w \mid w \text{ contains the substring 0101}\}\$ with five states
 - (b) The language 0^* with one state
 - (c) The language {0} with two states
- 4. Give the state diagrams of deterministic finite state automata (**DFAs**) recognizing the following languages. In all parts, $\Sigma = \{0, 1\}$.
 - (a) $\{w \mid w \text{ begins with 1 and ends with a 0}\}$
 - (b) $\{w \mid w \text{ contains exactly two 1's}\}$
 - (c) the union of the two languages: $\{w \mid w \text{ begins with 1 and ends with a 0, or } w \text{ contains exactly two 1's}\}$

- 5. Give the state diagrams for nondeterministic finite state automata (**NFAs**) recognizing the following languages. In all parts, $\Sigma = \{a, b\}$.
 - (a) $\{w \mid w \text{ contains the substring abab}\}$
 - (b) $\{w \mid w \text{ does not contains the substring abab}\}$
 - (c) $\{w \mid w \text{ is a string in (abab)}^*\}$
- 6. Give the state diagrams for nondeterministic finite state automata (**NFAs**) recognizing the following languages. In all parts, $\Sigma = \{0, 1\}$.
 - (a) $(00)^*$
 - (b) (101) \cup 1*
 - (c) $(00)^*((101) \cup 1^*)$

Part II: Graduate Questions

- 7. Give the state diagrams for nondeterministic finite state automata (**NFAs**) recognizing the following languages. In all parts, the alphabet is $\Sigma = \{a, b, c, d, \dots, x, y, z\}$, the 26 lowercase letters.
 - (a) $\{w \mid w \text{ contains the substring } yellow\}$
 - (b) $\{w \mid w \text{ is of even length or ends with the substring } bye\}$
- 8. In certain programming languages, comments appear between delimiters such as /# and #/. Let C be the language of all valid delimited comment strings. A member of C must begin with /# and end with #/ but have no intervening #/. For simplicity, we'll say that the comments themselves are written with only the symbols a and b; hence the alphabet of C is Σ = {a, b, /, *}.
 - (a) Give a DFA that recognizes C.
 - (b) Give a regular expression that generates C
- 9. Prove that the class of regular languages is closed under the star operator.
- 10. Prove that every NFA can be converted to an equivalent one that has a single accept state.