Name:

Exam 1 CMP 416/685: Computability Theory Lehman College- CUNY, 29 September 2016

Directions:

- Write each answer on a separate piece of paper.
- Undergraduates: do any 5 of the problems.
- Graduates: Do 5 of the problems.
- At least 2 problems must be chosen from Part II.
- If you complete more than 5 questions,

the highest scores will be used to calculate your grade.

Part I: Undergraduate Questions

- 1. Define the following terms:
 - (a) deterministic finite automata
 - (b) nondeterministic finite automata
 - (c) Given a finite set Σ , define Σ^*
 - (d) Given finite sets Σ_1 , Σ_2 , define $\Sigma_1 \cup \Sigma_2$
 - (e) regular language
- 2. Give the state diagrams of deterministic finite state automata (DFAs) recognizing the following languages. In all parts, $\Sigma = \{0, 1\}$.
 - (a) $\{w \mid w \text{ starts with } 00\}$
 - (b) $\{w \mid w \text{ contains exactly 3 1's}\}$
 - (c) $\{w \mid w \text{ contains at most } 3 \text{ 1's}\}$
- 3. Give the state diagrams for nondeterministic finite state automata (NFAs) with the specified number of states recognizing the following languages. In all parts, $\Sigma = \{0, 1, 2, 3\}$.
 - (a) $\{w \mid w \text{ contains the substring 3210}\}$ with five states
 - (b) The language (02) with three states
 - (c) The language $(02)^*$ with three states
- 4. Give the state diagrams of deterministic finite state automata (**DFAs**) recognizing the following languages. In all parts, $\Sigma = \{0, 1\}$.
 - (a) $\{w \mid w \text{ begins with } 0 \text{ and ends with } 11\}$
 - (b) $\{w \mid w \text{ contains exactly one } 1's\}$
 - (c) the union of the two languages:
 {w | w begins with 0 and ends with 11, or w contains exactly one 1's}

Question 1	
Question 2	
Question 3	
Question 4	
Question 5	
Question 6	
Question 7	
Question 8	
Question 9	
Question 10	
Total	

- 5. Give the state diagrams for nondeterministic finite state automata (NFAs) recognizing the following languages. In all parts, $\Sigma = \{a, A\}$.
 - (a) $\{w \mid w \text{ contains the substring aAAa}\}$
 - (b) $\{w \mid w \text{ does not contains the substring aAAa}\}$
 - (c) $\{w \mid w \text{ is a string in (aAAa)}^*\}$
- 6. Show that the following languages are not regular. In all parts, $\Sigma = \{0, 1\}$.
 - (a) $\{w \mid w = 0^n 1^n, n \ge 0\}$
 - (b) $\{w \mid w \neq 0^n 1^n, n \ge 0\}$ (i.e., the complement of the language in the first part).

Part II: Graduate Questions

7. Let $\Sigma = \{0, 1, +, =\}$ and

 $ADD = \{x = y + z \mid x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}$

Show that ADD is not regular.

- 8. In certain programming languages, text appear between delimiters such as ' and '. Let T be the language of all valid delimited text strings. A member of T must begin with ' and end with ' but have no intervening '. For simplicity, we'll say that the text themselves are written with only the symbols a and b; hence the alphabet of C is $\Sigma = \{a, b, ', '\}$.
 - (a) Give a DFA that recognizes T.
 - (b) Give a regular expression that generates T
- 9. Prove that the class of regular languages is closed under concatenation.
- 10. Prove that every NFA can be converted to an equivalent one that has a single accept state.