
Answer Key: CMP 167 Final Exam, Version 4, Spring 2015

1. What will the following code print:

s = "List’(Processing’(John’(McCarthy"

a = s[0:3]

print(a.lower())

names = s.split("’(")

print(names)

b = names[1]

c = names[-1]

print(c,b)

d = a + b[0]

print(’(print "’, d.upper(),’")’)

Answer Key:

lis

[’List’, ’Processing’, ’John’, ’McCarthy’]

McCarthy Processing

(print " LISP ")

2. Write a complete program to calculate how much something will weigh on Saturn. Your program
should prompt the user for the weight on the Earth and then print out the weight on Saturn. For
example, if the user enters 100, your program should print out 108.

The weight of an item on Saturn is 108% of its weight on earth.

Answer Key:

#Computes weights on Saturn

def main():

earthWeight = eval(input(’Enter earth weight: ’))

saturnWeight = earthWeight*1.08

print(’The weight on Saturn is:’, saturnWeight)

main()

3. What is output of the code below:

def prob4(washington, adams):

if washington < 2:

print("Small case")

monroe = -1

else:

print("Complex case")

monroe = helper(washington,adams)

return(monroe)

def helper(jefferson,madison):

s = ""

for j in range(jefferson):

print(j, ": ", madison[j])

if j % 2 == 0:

s = s + madison[j]

print("Building s:", s)

return(s)

1



(a)
r = prob4(0,"city")

print("Return: ", r)

Output:

Answer Key:

Small case

Return: -1

(b)
r = prob4(2,"university")

print("Return: ", r)

Output:

Answer Key:

Complex case

0 : u

Building s: u

1 : n

Return: u

(c)
r = prob4(4,"new york")

print("Return: ", r)

Output:

Answer Key:

Complex case

0 : n

Building s: n

1 : e

2 : w

Building s: nw

3 :

Return: nw

4. Given the following program and input file, what is printed:

def prob5V1():

c = 0

infile = open("places.txt","r")

for line in infile.readlines():

if len(line) < 7:

print("Short Line: ", end ="")

c = c + 1

print(line)

print("Num short lines is", c)

prob5V1()

places.txt

Greene

Clinton

Warren

Montgomery

Miami

Preble

2



Output:

Answer Key:

Short Line: Greene

Clinton

Short Line: Warren

Montgomery

Short Line: Miami

Short Line: Preble

Num short lines is 4

5. (a) Write a function that takes number between 1 and 4 as a parameter and returns the corresponding
season as a string. For example, if the parameter is 1, your function should return "winter". If
the parameter is 2, your function should "spring", etc. If the parameter is not between 1 and 4,
your function should return the empty string.

Answer Key:

def returnSeason(num):

if num == 1:

return "winter"

elif num == 2:

return "spring"

elif num == 3:

return "summer"

elif num == 4:

return "fall"

else:

return ""

(b) Write a main() that allows the user to enter a number and calls your function to show that it
works.

Answer Key:

#intro comment

def main():

num = eval(input("Enter a number"))

test1 = returnSeason(num)

print ("Testing my function:", num, "is", test1)

main()

6. Complete the following program, which sets up a graphics window and turtle, draws a decagon (10-
sided figure) to the window, and then prints a closing message and closes the graphics window when
mouse is clicked. That is, write the functions setUp(), drawDecagon(), and conclusion():

3



import turtle

def main():

w,t = setUp() #sets up a graphics window and turtle

drawDecagon(t) #draws a decagon using the turtle

conclusion(w) #prints goodbye and closes window on click

main()

Answer Key:

def setUp():

trey = turtle.Turtle()

win = turtle.Screen()

return(win,trey)

def drawDecagon(t):

for i in range(10):

t.forward(100)

t.right(360/10)

def conclusion(w):

print("Goodbye!")

w.exitonclick()

7. (a) Write a complete program that prompts the user for a file name and prints the number of lines
in the file.

Answer Key:

#some comments

def main():

fileName = input(’Enter file name: ’)

infile = open(fileName)

data = infile.read()

print("Number of lines:", data.count("\n"))

infile.close()

(b) Write a complete program that prints the total area for cities stored in a data file. Your program
should open the file, cityData.csv and sum the areas (the area is the last value in each line).
Note that the first line should not be used since it contains the column headers and not data. The
data is separated by commas (“,”). Your program should print the total that you calculated.

4



cityData.csv:

Borough, County, Area (square miles)

Bronx, Bronx, 42

Brooklyn, Kings, 71

Manhattan, New York, 23

Queens, Queens, 109

Staten Island, Richmond, 58

Answer Key:

#some comments

def main():

sum = 0

infile = open("cityData.csv")

infile.readline() #Ignore first line, since no numbers

lines = infile.readlines()

for l in lines:

cells = l.split()

sum = sum + eval(cells[2])

print("Total area:", sum)

infile.close()

8. Write the Python code for the algorithms below:

(a) getInput()

Ask user for a string

Until they enter a non-empty string

Print error message

Ask user for a non-empty string

Return the string entered

Answer Key:

def getInput()

s = eval(’Enter a string: ’)

while s == "":

print(’Error! Empty String!’)

s = eval(’Enter a string: ’)

return(s)

(b) sort(ls)

Set L to be the length of the list ls.

For i = 0,1,...,L-2:

For j = 0,1,...,L-2:

If ls[j] is smaller than ls[j+1], swap the values

Return the list, ls.

5



Answer Key:

def sort(ls):

L = len(ls)

for i in range(L-1):

for j in range(L-1):

if ls[j] < ls[j+1]:

ls[j],ls[j+1] = ls[j+1],ls[j]

return ls

9. In lab, we wrote a Tic-Tac-Toe program. Modify the program to check for a winner after each move and
keep track of the number of times this occurs. Your program should print out a message if someone has
a winning configuration, print out the total winning configurations seen so far, and continue playing.

Clearly mark your changes to the design below:

#Second Version of Tic-Tac-Toe

from turtle import *

def setUp():

win, tic = Screen(), Turtle()

tic.speed(10)

win.setworldcoordinates(-0.5,-0.5,3.5, 3.5)

for i in range(1,3):

tic.up()

tic.goto(0,i)

tic.down()

tic.forward(3)

tic.left(90)

for i in range(1,3):

tic.up()

tic.goto(i,0)

tic.down()

tic.forward(3)

tic.up()

board = [["","",""],["","",""],["","",""]]

return(win,tic,board)

def playGame(tic,board):

for i in range(4):

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

x,y = eval(input("Enter x, y coordinates for O’s move: "))

tic.goto(x+.25,y+.25)

tic.write("O",font=(’Arial’, 90, ’normal’))

board[x][y] = "O"

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

def checkWinner(board):

for x in range(3):

if board[x][0] != "" and (board[x][0] == board[x][1] == board[x][2]):

return(board[x][0]) #we have a non-empty row that’s identical

for y in range(3):

6



if board[0][y] != "" and (board[0][y] == board[1][y] == board[2][y]):

return(board[0][y]) #we have a non-empty column that’s identical

if board[0][0] != "" and (board[0][0] == board[1][1] == board[2][2]):

return(board[0][0])

if board[2][0] != "" and (board[2][0] == board[1][1] == board[2][0]):

return(board[2][0])

return("No winner")

def main():

win,tic,board = setUp() #Set up the window and game board

playGame(tic,board) #Ask the user for the moves and display

print("\nThe winner is", checkWinner(board)) #Check for winner

Answer Key:

#Second Version of Tic-Tac-Toe

from turtle import *

def setUp():

win, tic = Screen(), Turtle()

tic.speed(10)

win.setworldcoordinates(-0.5,-0.5,3.5, 3.5)

for i in range(1,3):

tic.up()

tic.goto(0,i)

tic.down()

tic.forward(3)

tic.left(90)

for i in range(1,3):

tic.up()

tic.goto(i,0)

tic.down()

tic.forward(3)

tic.up()

board = [["","",""],["","",""],["","",""]]

return(win,tic,board)

def playGame(tic,board):

numWinners = 0 ###ADDED

for i in range(4):

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

if checkWinner(board): ###ADDED

print(’X has a winning configuration!’) ###ADDED

numWinners = numWinners + 1 ###ADDED

x,y = eval(input("Enter x, y coordinates for O’s move: "))

tic.goto(x+.25,y+.25)

tic.write("O",font=(’Arial’, 90, ’normal’))

board[x][y] = "O"

if checkWinner(board): ###ADDED

print(’O has a winning configuration!’) ###ADDED

numWinners = numWinners + 1 ###ADDED

7



x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

if checkWinner(board): ###ADDED

print(’X has a winning configuration!’) ###ADDED

numWinners = numWinners + 1 ###ADDED

def checkWinner(board):

for x in range(3):

if board[x][0] != "" and (board[x][0] == board[x][1] == board[x][2]):

return(board[x][0]) #we have a non-empty row that’s identical

for y in range(3):

if board[0][y] != "" and (board[0][y] == board[1][y] == board[2][y]):

return(board[0][y]) #we have a non-empty column that’s identical

if board[0][0] != "" and (board[0][0] == board[1][1] == board[2][2]):

return(board[0][0])

if board[2][0] != "" and (board[2][0] == board[1][1] == board[2][0]):

return(board[2][0])

return("No winner")

def main():

win,tic,board = setUp() #Set up the window and game board

playGame(tic,board) #Ask the user for the moves and display

print("\nThe winner is", checkWinner(board)) #Check for winner

10. (a) Write a complete class that keeps tracks of information about chocolate. Your class, Chocolate
should contain instance variables for the name, pricePerPound, weight and countryOfOrigin,
and should have a constructor method as well as a method, cost(), that returns the price
(pricePerPound * weight) for the chocolate and a method, getWeight(), that returns the
weight for the chocolate.

Answer Key:

class Chocolate:

def __init__(self, name, pricePerPound, weight, countryOfOrigin):

self.name = name

self.pricePerPound = pricePerPound

self.weight = weight

self.countryOfOrigin = countryOfOrigin

def cost(self):

return self.pricePerPound * self.weight

def getWeight(self):

return self.weight

(b) Write a function that takes as input a list of chocolate, called shoppingList, and returns the
most expensive chocolate in the list (i.e. the maximum of all the costs of the chocolate in the
inputted list):

def maxWeight(shoppingList):

8



Answer Key:

def maxWeight(shoppingList):

maxCost = 0

for c in shoppingList:

if c.cost() > maxCost:

maxCost = c.cost()

return maxCost

9


