
Answer Key: CMP 167 Final Exam, Version 3, Spring 2015

1. What will the following code print:
s = "haskell::curry::utrecht::glasgow"

a = s[0:3]

print(a.upper())

names = s.split("::")

print(names)

b,c,d = names[1],names[2],names[3]

print(c,d)

print(a[0] + b.upper())

print("versions:", c.title(),d.capitalize())

print(’main = putStrLn "’, names[0],’"’)

Answer Key:

HAS

[’haskell’, ’curry’, ’utrecht’, ’glasgow’]

utrecht glasgow

hCURRY

versions: Utrecht Glasgow

main = putStrLn " haskell "

2. Write a complete program to calculate how much something will weigh on Jupiter. Your program
should prompt the user for the weight on the Earth and then print out the weight on Jupiter. For
example, if the user enters 100, your program should print out 254.

The weight of an item on Jupiter is 254% of its weight on earth.

Answer Key:

#Computes weights on Jupiter

def main():

earthWeight = eval(input(’Enter earth weight: ’))

jupiterWeight = earthWeight * 2.54

print(’The weight on Jupiter is:’, jupiterWeight)

main()

3. What is output of the code below:

def prob4(paul, john):

if paul > 2:

print("Easy case")

yoko = -1

else:

print("Complex case")

yoko = helper(paul,john)

return(yoko)

def helper(ringo,george):

s = ""

for j in range(ringo):

print(j, ": ", george[j])

if j % 2 == 0:

s = s + george[j]

print("Building s:", s)

return(s)

1



(a)
r = prob4(6, "city")

print("Return: ", r)

Output:

Answer Key:

Small case

Return: -1

(b)
r = prob4(2,"university")

print("Return: ", r)

Output:

Answer Key:

Complex case

0 : u

Building s: u

1 : n

Return: u

(c)
r = prob4(4,"new york")

print("Return: ", r)

Output:

Answer Key:

Complex case

0 : n

Building s: n

1 : e

2 : w

Building s: nw

3 :

Return: nw

4. Given the following program and input file, what is printed:

def prob5V1():

c = 0

infile=open("places.txt","r")

for line in infile.readlines():

if len(line) > 9:

print("Long Line: ", end ="")

c = c + 1

print(line)

print("Num long lines is", c)

prob5V1()

places.txt

Santo Domingo

Santiago

San Cristobal

Puerta Plata

La Vega

La Altagracia

2



Output:

Answer Key:

Long Line: Santo Domingo

Santiago

Long Line: San Cristobal

Long Line: Puerta Plata

La Vega

Long Line: La Altagracia

Num long lines is 4

5. (a) Write a function that takes number between 1 and 7 as a parameter and returns the corresponding
number as a string. For example, if the parameter is 1, your function should return "one". If the
parameter is 2, your function should "two", etc. If the parameter is not between 1 and 7, your
function should return the empty string.

Answer Key:

def returnNumString(num):

if num == 1:

return "one"

elif num == 2:

return "two"

elif num == 3:

return "three"

elif num == 4:

return "four"

elif num == 5:

return "five"

elif num == 6:

return "six"

elif num == 7:

return "seven"

else:

return ""

(b) Write a main() that allows the user to enter a number and calls your function to show that it
works.

Answer Key:

#intro comment

def main():

num = eval(input("Enter a number"))

3



test1 = returnNumString(num)

print ("Testing my function:", num, "is", test1)

main()

6. Complete the following program, which sets up a graphics window and turtle, draws two squares to
the window, and then prints a closing message and closes the graphics window when mouse is clicked.
That is, write the functions setUp(), draw2Squares(), and conclusion():

import turtle

def main():

w,t = setUp() #sets up a graphics window and turtle

draw2Squares(t) #draws 2 squares using the turtle

conclusion(w) #prints goodbye and closes window on click

main()

Answer Key:

def setUp():

trey = turtle.Turtle()

win = turtle.Screen()

return(win,trey)

def draw2Squares(t):

for i in range(4):

t.forward(100)

t.right(360/4)

left(90)

for i in range(4):

t.forward(100)

t.right(360/4)

def conclusion(w):

print("Goodbye!")

w.exitonclick()

7. (a) Write a complete program that prompts the user for a file name and prints the number of lines
in the file.

Answer Key:

#some comments

def main():

fileName = input(’Enter file name: ’)

infile = open(fileName)

data = infile.read()

print("Number of lines:", data.count("\n"))

4



infile.close()

(b) Write a complete program that prints the population stored in a data file. Your program should
open the file, cityData.csv and sum the last values in the lines (the populations). Note that
the first line should not be used since it contains the column headers and not data. The data is
separated by commas (“,”). Your program should print the running sum that you calculated.

cityData.csv:

Borough, County, Population

Bronx, Bronx, 1385108

Brooklyn, Kings, 2504700

Manhattan, New York, 1585873

Queens, Queens, 2230722

Staten Island, Richmond, 468730

Answer Key:

#some comments

def main():

sum = 0

infile = open("population.csv")

infile.readline() #Ignore first line, since no numbers

lines = infile.readlines()

for l in lines:

cells = l.split(’,’)

sum = sum + eval(cells[2])

print("Total population:", sum)

infile.close()

8. Write the Python code for the algorithms below:

(a) getInput()

Ask user for a positive number

Until they enter a positive number

Print error message

Ask user for a positive number

Return the positive number entered

Answer Key:

def getInput()

x = int(eval(’Enter a positive number: ’))

while x <= 0:

print(’Not an positive number!’)

x = int(eval(’Enter a positive number: ’))

return(x)

5



(b) sort(ls)

Set L to be the length of the list ls.

For i = 0,1,...,L-2:

For j = 0,1,...,L-2:

If ls[j] is bigger than ls[j+1], swap the values

Return the list, ls.

Answer Key:

def sort(ls):

L = len(ls)

for i in range(L-1):

for j in range(L-1):

if ls[j] > ls[j+1]:

ls[j],ls[j+1] = ls[j+1],ls[j]

return ls

9. In lab, we wrote a Tic-Tac-Toe program. Modify the program to stop the game when someone has
won. Your program should check for a winner each move. Your program should continue playing until
there is a winner or until all squares are filled.

Clearly mark your changes to the design below:

#Second Version of Tic-Tac-Toe

from turtle import *

def setUp():

win, tic = Screen(), Turtle()

tic.speed(10)

win.setworldcoordinates(-0.5,-0.5,3.5, 3.5)

for i in range(1,3):

tic.up()

tic.goto(0,i)

tic.down()

tic.forward(3)

tic.left(90)

for i in range(1,3):

tic.up()

tic.goto(i,0)

tic.down()

tic.forward(3)

tic.up()

board = [["","",""],["","",""],["","",""]]

return(win,tic,board)

def playGame(tic,board):

for i in range(4):

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

x,y = eval(input("Enter x, y coordinates for O’s move: "))

tic.goto(x+.25,y+.25)

tic.write("O",font=(’Arial’, 90, ’normal’))

6



board[x][y] = "O"

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

def checkWinner(board):

for x in range(3):

if board[x][0] != "" and (board[x][0] == board[x][1] == board[x][2]):

return(board[x][0]) #we have a non-empty row that’s identical

for y in range(3):

if board[0][y] != "" and (board[0][y] == board[1][y] == board[2][y]):

return(board[0][y]) #we have a non-empty column that’s identical

if board[0][0] != "" and (board[0][0] == board[1][1] == board[2][2]):

return(board[0][0])

if board[2][0] != "" and (board[2][0] == board[1][1] == board[2][0]):

return(board[2][0])

return("No winner")

def main():

win,tic,board = setUp() #Set up the window and game board

playGame(tic,board) #Ask the user for the moves and display

print("\nThe winner is", checkWinner(board)) #Check for winner

Answer Key:

#Second Version of Tic-Tac-Toe

from turtle import *

def setUp():

win, tic = Screen(), Turtle()

tic.speed(10)

win.setworldcoordinates(-0.5,-0.5,3.5, 3.5)

for i in range(1,3):

tic.up()

tic.goto(0,i)

tic.down()

tic.forward(3)

tic.left(90)

for i in range(1,3):

tic.up()

tic.goto(i,0)

tic.down()

tic.forward(3)

tic.up()

board = [["","",""],["","",""],["","",""]]

return(win,tic,board)

def playGame(tic,board):

numMoves = 0 ###ADDED

while checkWinner == "No Winner" and numMoves < 9:###ADDED

numMoves += 1 ###ADDED

if numMoves % 2 == 0: ###ADDED

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

7



board[x][y] = "X"

else: ###ADDED

x,y = eval(input("Enter x, y coordinates for O’s move: "))

tic.goto(x+.25,y+.25)

tic.write("O",font=(’Arial’, 90, ’normal’))

board[x][y] = "O"

if checkWinner != "No Winner": ###ADDED

print("There was a winner!") ###ADDED

else: ###ADDED

print("Game Over: No winner!") ###ADDED

def checkWinner(board):

for x in range(3):

if board[x][0] != "" and (board[x][0] == board[x][1] == board[x][2]):

return(board[x][0]) #we have a non-empty row that’s identical

for y in range(3):

if board[0][y] != "" and (board[0][y] == board[1][y] == board[2][y]):

return(board[0][y]) #we have a non-empty column that’s identical

if board[0][0] != "" and (board[0][0] == board[1][1] == board[2][2]):

return(board[0][0])

if board[2][0] != "" and (board[2][0] == board[1][1] == board[2][0]):

return(board[2][0])

return("No winner")

def main():

win,tic,board = setUp() #Set up the window and game board

playGame(tic,board) #Ask the user for the moves and display

print("\nThe winner is", checkWinner(board)) #Check for winner

10. (a) Write a complete class that keeps tracks of information about apartment. Your class, Apartment
should contain instance variables for the apartmentNumber, rent, area and floor, and should
have a constructor method as well as a method, pricePerSquareFoot(), that returns the price
(rent/area) for the price per square foot of the apartment and a method, getFloor(), that
returns the floor on which the apartment is located.

Answer Key:

class Apartment:

def __init__(self, apartmentNumber, rent, area, floor):

self.apartmentNumber = apartmentNumber

self.rent = rent

self.area = area

self.floor = floor

def pricePerSquareFoot(self):

return self.rent / self.area

def getFloor(self):

return self.floor

(b) Write a function that takes as input a list of Apartments, called building, and the best value
apartment in the building (i.e. the minimum of all the pricePerSquareFoot of the apartments in
the inputted list):

8



def bestValue(building):

Answer Key:

def bestValue(building):

best = 0

for a in building:

if a.pricePerSquareFoot() < best:

best = a.pricePerSquareFoot()

return best

9


