
Answer Key: CMP 167 Final Exam, Version 1, Spring 2015

1. What will the following code print:

s = "Ada=>Lovelace=>Charles=>Babbage"

a = s[0:3]

print(a.upper())

names = s.split("=>")

print(names)

b,c,d = names[1],names[2],names[3]

print(c,d)

print(b[-1]+"n"+d[-2]+"ine")

print(’Put_line: ("’, a.lower(),’")’)

Answer Key:

ADA

[’Ada’, ’Lovelace’, ’Charles’, ’Babbage’]

Charles Babbage

engine

Put_line: (" ada ")

2. Write a complete program to calculate how much something will weigh on Mars. Your program
should prompt the user for the weight on the Earth and then print out the weight on Mars. For
example, if the user enters 100, your program should print out 38.

The weight of an item on Mars is 38% of its weight on earth.

Answer Key:

#Computes weights on Mars

def main():

earthWeight = eval(input(’Enter earth weight: ’))

marsWeight = earthWeight * 0.38

print(’The weight on Mars is:’, marsWeight)

main()

1



3. What is output of the code below:

def prob4(fred, george):

if fred < 2:

print("Small case")

harry = -1

else:

print("Complex case")

harry = helper(fred,george)

return(harry)

def helper(isaac,jacob):

s = ""

for j in range(isaac):

print(j, ": ", jacob[j])

if j % 2 == 0:

s = s + jacob[j]

print("Building s:", s)

return(s)

(a)
r = prob4(0,"herbert")

print("Return: ", r)

Output:

Answer Key:

Small case

Return: -1

(b)
r = prob4(2,"lehman")

print("Return: ", r)

Output:

Answer Key:

Complex case

0 : l

Building s: l

1 : e

Return: l

(c)
r = prob4(4,"college")

print("Return: ", r)

Output:

Answer Key:

Complex case

0 : c

Building s: c

1 : o

2 : l

Building s: cl

3 : l

Return: cl

2



4. Given the following program and input file, what is printed:

def prob5V1():

c = 0

infile=open("places.txt","r")

for line in infile.readlines():

if len(line) > 7:

print("Long Line: ", end ="")

c = c + 1

print(line)

print("Num long lines is", c)

prob5V1()

places.txt

Vandenberg

Wright-Patterson

Laughlin

Dover

Charleston

San Antonio

Output:

Answer Key:

Long Line: Vandenberg

Long Line: Wright-Patterson

Long Line: Laughlin

Dover

Long Line: Charleston

Long Line: San Antonio

Num long lines is 5

3



5. (a) Write a function that takes number between 1 and 7 as a parameter and returns the corresponding
day of the week as a string. For example, if the parameter is 1, your function should return
"Monday". If the parameter is 2, your function should "Tuesday", etc. If the parameter is not
between 1 and 7, your function should return the empty string.

Answer Key:

def returnDay(num):

if num == 1:

return "Monday"

elif num == 2:

return "Tuesday"

elif num == 3:

return "Wednesday"

elif num == 4:

return "Thursday"

elif num == 5:

return "Friday"

elif num == 6:

return "Saturday"

elif num == 7:

return "Sunday"

else:

return ""

(b) Write a main() that allows the user to enter a number and calls your function to show that it
works.

Answer Key:

#intro comment

def main():

num = eval(input("Enter a number"))

test1 = returnDay(num)

print ("Testing my function:",num,"is", test1)

main()

4



6. Complete the following program, which sets up a graphics window and turtle, draws a hexagon (6-sided
figure) to the window, and then prints a closing message and closes the graphics window when mouse
is clicked. That is, write the functions setUp(), drawHexagon(), and conclusion():

import turtle

def main():

w,t = setUp() #sets up a graphics window and turtle

drawHexagon(t) #draws a hexagon using the turtle

conclusion(w) #prints goodbye and closes window on click

main()

Answer Key:

def setUp():

trey = turtle.Turtle()

win = turtle.Screen()

return(win,trey)

def drawHexagon(t):

for i in range(6):

t.forward(100)

t.right(360/6)

def conclusion(w):

print("Goodbye!")

w.exitonclick()

5



7. (a) Write a complete program that prompts the user for a file name and prints the number of lines
in the file.

Answer Key:

#some comments

def main():

fileName = input(’Enter file name: ’)

infile = open(fileName)

data = infile.read()

print("Number of lines:", data.count("\n"))

infile.close()

(b) Write a complete program that prints the total population stored in a data file. Your program
should open the file, population.csv and sum the last values in each line. Note that the first
line should not be used since it contains the column headers and not data. The data is separated
by commas (“,”). Your program should print the total sum that you calculated.

population.csv:

Borough, 2000 Population, 2010 Population

Bronx, 1332650, 1385108

Brooklyn, 2465326, 2504700

Manhattan, 1537195, 1585873

Queens, 2229379, 2230722

Staten Island, 443728, 468730

Answer Key:

#some comments

def main():

sum = 0

infile = open("population.csv")

infile.readline() #Ignore first line, since no numbers

lines = infile.readlines()

for l in lines:

cells = l.split()

sum = sum + eval(cells[2])

print("Total population:", sum)

infile.close()

6



8. Write the Python code for the algorithms below:

(a) getInput()

Ask user for an even number

Until they enter an even number

Print error message

Ask user for an even number

Return the even number entered

Answer Key:

def getInput()

x = int(eval(’Enter an even number: ’))

while x % 2 != 0:

print(’Not an even number!’)

x = int(eval(’Enter an even number: ’))

return(x)

(b) merge(ls, mid)

Initialize the variables: set newList to be an empty list, set counters i to be 0

and j to be mid.

While i < mid and j < len(ls):

If ls[i] < ls[j], then append ls[i] to the newList and increment i.

Else: append ls[j] to the newList and increment j.

While i < mid:

Append ls[i] to the newList and increment i.

While j < len(ls)

Append ls[j] to the newList and increment j.

Return newList

Answer Key:

def merge(ls, mid):

newList = []

i, j = 0, mid

while i < mid and j < len(ls):

if ls[i] < ls[j]:

newList.append(ls[i])

i += 1

else:

newList.append(ls[j])

j += 1

while i < mid:

newList.append(ls[i])

i += 1

while j < len(ls)

newList.append(ls[j])

j += 1

Return newList

7



8



9. In lab, we wrote a Tic-Tac-Toe program. Change the program to check for a winner after each move and
keep track of the number of times this occurs. Your program should print out a message if someone has
a winning configuration, print out the total winning configurations seen so far, and continue playing.

Clearly mark your changes to the design below:

#Second Version of Tic-Tac-Toe

from turtle import *

def setUp():

win, tic = Screen(), Turtle()

tic.speed(10)

win.setworldcoordinates(-0.5,-0.5,3.5, 3.5)

for i in range(1,3):

tic.up()

tic.goto(0,i)

tic.down()

tic.forward(3)

tic.left(90)

for i in range(1,3):

tic.up()

tic.goto(i,0)

tic.down()

tic.forward(3)

tic.up()

board = [["","",""],["","",""],["","",""]]

return(win,tic,board)

def playGame(tic,board):

for i in range(4):

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

x,y = eval(input("Enter x, y coordinates for O’s move: "))

tic.goto(x+.25,y+.25)

tic.write("O",font=(’Arial’, 90, ’normal’))

board[x][y] = "O"

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

def checkWinner(board):

for x in range(3):

if board[x][0] != "" and (board[x][0] == board[x][1] == board[x][2]):

return(board[x][0]) #we have a non-empty row that’s identical

for y in range(3):

if board[0][y] != "" and (board[0][y] == board[1][y] == board[2][y]):

return(board[0][y]) #we have a non-empty column that’s identical

if board[0][0] != "" and (board[0][0] == board[1][1] == board[2][2]):

return(board[0][0])

if board[2][0] != "" and (board[2][0] == board[1][1] == board[2][0]):

return(board[2][0])

return("No winner")

def main():

win,tic,board = setUp() #Set up the window and game board

playGame(tic,board) #Ask the user for the moves and display

print("\nThe winner is", checkWinner(board)) #Check for winner

9



Answer Key:

#Second Version of Tic-Tac-Toe

from turtle import *

def setUp():

win, tic = Screen(), Turtle()

tic.speed(10)

win.setworldcoordinates(-0.5,-0.5,3.5, 3.5)

for i in range(1,3):

tic.up()

tic.goto(0,i)

tic.down()

tic.forward(3)

tic.left(90)

for i in range(1,3):

tic.up()

tic.goto(i,0)

tic.down()

tic.forward(3)

tic.up()

board = [["","",""],["","",""],["","",""]]

return(win,tic,board)

def playGame(tic,board):

numWinners = 0 ###ADDED

for i in range(4):

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

if checkWinner(board): ###ADDED

print(’X has a winning configuration!’) ###ADDED

numWinners = numWinners + 1 ###ADDED

x,y = eval(input("Enter x, y coordinates for O’s move: "))

tic.goto(x+.25,y+.25)

tic.write("O",font=(’Arial’, 90, ’normal’))

board[x][y] = "O"

if checkWinner(board): ###ADDED

print(’O has a winning configuration!’) ###ADDED

numWinners = numWinners + 1 ###ADDED

x,y = eval(input("Enter x, y coordinates for X’s move: "))

tic.goto(x+.25,y+.25)

tic.write("X",font=(’Arial’, 90, ’normal’))

board[x][y] = "X"

if checkWinner(board): ###ADDED

print(’X has a winning configuration!’) ###ADDED

numWinners = numWinners + 1 ###ADDED

def checkWinner(board):

for x in range(3):

if board[x][0] != "" and (board[x][0] == board[x][1] == board[x][2]):

return(board[x][0]) #we have a non-empty row that’s identical

for y in range(3):

if board[0][y] != "" and (board[0][y] == board[1][y] == board[2][y]):

10



return(board[0][y]) #we have a non-empty column that’s identical

if board[0][0] != "" and (board[0][0] == board[1][1] == board[2][2]):

return(board[0][0])

if board[2][0] != "" and (board[2][0] == board[1][1] == board[2][0]):

return(board[2][0])

return("No winner")

def main():

win,tic,board = setUp() #Set up the window and game board

playGame(tic,board) #Ask the user for the moves and display

print("\nThe winner is", checkWinner(board)) #Check for winner

11



10. (a) Write a complete class that keeps tracks of information about cheeses. Your class, Cheese

should contain instance variables for the name, pricePerPound, weight and countryOfOrigin,
and should have a constructor method as well as a method, cost(), that returns the price
(pricePerPound*weight) for the cheese and a method, getWeight(), that returns the weight
for the cheese.

Answer Key:

class Country:

def __init__(self, name, pricePerPound, weight, countryOfOrigin):

self.name = name

self.pricePerPound = pricePerPound

self.weight = weight

self.countryOfOrigin = countryOfOrigin

def cost(self):

return self.pricePerPound * self.weight

def getWeight(self):

return self.weight

(b) Write a function that takes as input a list of cheese, called shoppingList, and returns the largest
weight in the list (i.e. the maximum of all the weights of the cheese in the inputted list):

def maxWeight(shoppingList):

Answer Key:

def maxWeight(shoppingList):

maxW = 0

for c in shoppingList:

if c.getWeight() > maxW:

maxW = c.getWeight()

return maxW

12


