
Answer Key: CMP 230 Final Exam, Version 1, Fall 2014

1. What will the following code print:

a = ",Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec,"
b = "Apr 15, 2014"
c = b.split()
print(c)
d = a.split(",")
print(d[1:12])
e = (a.find(c[0]) - 1) / 3
print(e)
f = c[1][:-1]
print(str(int(e)) + "/" + f + "/" + c[2])

Answer Key:

[’Apr’, ’15,’, ’2014’]
[’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’]
4.0
4/15/2014

2. Write a program to print the fine for speeding. The program must read the speed from user input,

then compute and print the fine. The fine is $12 for each mph over 65 and less than or equal to 70,

and $15 for each additional mph over 70.

For example, if the speed is 68 mph, then the fine would be $36 = $12 x 3. If the speed is 72 mph,

then the fine would be $90 = $12 x 5 + $15 x 2.

Answer Key:

def answer1():
speed = eval(input("Enter the speed in mph:"))
if (speed < 65):

print("No fine")
else:

fine = (speed - 65) * 12
if speed > 70:

fine = fine + (speed - 70) * 3
print("The fine is", fine)

def answer2():
speed = eval(input("Enter the speed in mph:"))
if speed <= 60:

print("No fine")
elif speed <= 70:

print("The fine is", (speed - 65) * 12)
else:

print("The fine is", 60 + (speed - 70) * 15)

22

3. Complete the following program, which reads in a file that has multiple grades, each separated by

a comma, and prints out the computed average. That is, write the functions getGrades() and

calculateAverage():

def main():
grades = getGrades() #get the file name containing the grades

#and return the contents of the file
avg = calculateAverage(grades) #separate the grades into numbers and compute

#the average
print("The calculated average is:", avg)

main()

Answer Key:

def getGrades():
contents = open(input("Enter the file with the grades"), "r").read()
grades = contents.split(",")
for i in range(len(grades)):

grades[i] = int(grades[i])
return grades

def calculateAverage(grades):
sum = 0
for i in grades:

sum = sum + i
return sum/len(grades)

4. Given the following function definitions:

def help(g):
s = 1
for h in g:

s = s + h
print(s)

return s

def abc(d):
e = len(d)
print("e is ", e)
if e >= 2:

f = help(d[0:3])
elif 2 > e >= 1:

f = help(d[0:1])
else:

f = 5
return f

23

(a) What does abc([0,1,2,3]) return?

Answer Key: 4

Write output for partial credit:

Answer Key:

e is 4
1
2
4

(b) What does abc([49]) return?

Answer Key: 50

Write output for partial credit:

Answer Key:

e is 1
50

5. Given the following code:

def main():
file = open("poetry.txt", ’r’)
count = 0
for line in file:

line2 = line[:-1] + "?"
if count % 2 == 0:

print(line2)
else:

print(len(line[:-1]))
count = count + 1

main()

(a) What will the output be for this poetry.txt?

poetry.txt:

What a
nice
day.
It is.

Answer Key:

What a?
4
day.?
6

(b) What will the output be for this poetry.txt?

24

poetry.txt:

No rain
but
cloudy.

Answer Key:

No rain?
3
cloudy.?

6. (a) Draw what will be displayed in the graphics window when the following program is executed.

Remember to indicate the final position and direction of the turtle at the end of program. (The

turtle always points to the right of the screen at the start of the program.)

from turtle import *

def mystery(t, n):

for i in range(n):
t.backward(50)
if i % 2 == 0:

t.right(90)
else:

t.left(90)

def draw(t, n):
mystery(t, n)

t = Turtle()
draw(t, 5)

Graphics Displayed:

Answer Key:

(b) Write a complete program that asks the user for the radius and color of a circle, creates a graphics

window, and draws a circle based on the inputted information. Your main() should use functions

to complete these tasks, that is, in addition to the main() you should write the additional functions

getInput(), createWin(), and draw():

Answer Key:

from graphics import *
def main():

c, r = getInput() # get the radius and color of a circle
w = createWin() # create and return a GraphWin object
draw(w, c, r) # draw the circle in the center of w

def getInput():
col = input("What color should the circle be? "))
r = eval(input("What is the radius of the circle? "))
return col, r

def createWin():
return GraphWin()

def draw(w, c, r):

25

circ = Circle(Point(100, 100), r)
circ.setFill(r)
circ.draw(w)

7. Write a program that reads in a file called infile.txt. For each line in the file it should print out the

line followed by “- * -” and then the number of times the lower-case word the appears in that line.

Finally, it should print out the total number of the’s in the file.

Answer Key:

#some comments

def main():
infile = open(’infile.txt’)
totThes = 0
for line in infile:

thes = line.count(’the’)
totThes += thes
print(line[:-1] + ’- * -’ + str(thes))

print("Total thes:", totThes)

infile.close()

8. Write the Python code for the algorithms below:

(a) count(ls)
Set count to 0
for each item in the list ls

If item is negative
increment count

print count

Answer Key:

def count(ls):
count = 0
for item in ls:

If item < 0:
count = count + 1

print(count)

(b) search(ls, key, first, last)
while first is less than last

Set mid to first + last / 2
if ls[mid] equals key

return mid
else if ls[mid] < key

26

first = mid + 1
else

last = mid -1
return -1

Answer Key:

def search(ls, key, first, last):
while first < last:

mid = (first + last) / 2
if ls[mid] == key:

return mid
elif ls[mid] < key:

first = mid + 1
else

last = mid -1
return -1

9. (a) Write a complete class that keeps tracks of information about countries. Your class, Country
should contain instance variables for the name, population, area and chocolateProduction, and
should have a constructor method as well as a method, populationDensity(), that returns the
population density (‘‘population/area’’) for the country and a method, getChocolateProduction(),
that returns the chocolate production for the country.

Answer Key:

class Country:
def __init__(self, name, population, area, chocolateProduction):

self.name = name
self.population = population
self.area = area
self.chocolateProduction = chocolateProduction

def populationDensity(self):
return self.population / self.area

def getChocolateProduction(self):
return self.getChocolateProduction

(b) Write a function that takes as input a list of Countries, called continent, and returns the sum

of the chocolate production in the list:

def overallChocolateProduction(continent):

Answer Key:

def overallChocolateProduction(continent):
total = 0
for c in continent:

27

total = total + c.getChocolateProduction()
return total

10. In the book, a Student class and program for finding the student with the highest GPA was designed.

Modify the design to also find all full-time high honor students (those with a GPA � 3.75 and currently

enrolled in � 12 credits). Your program should print out the name and GPA of all students who meet

this criteria. The current credits will be provided as the last entry on each line of the file. Include in

your class definition, an instance variable to hold current credits and a new method to access it.

Clearly mark your changes to the design below:

class Student:
def __init__(self, name, hours, qpoints):

self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)

def getName(self):
return self.name

def getHours(self):
return self.hours

def getQPoints(self):
return self.qpoints

def gpa(self):
return self.qpoints/self.hours

def makeStudent(infoStr):
infoStr is a tab-separated line: name hours qpoints
returns a corresponding Student object
name, hours, qpoints = infoStr.split("\t")
return Student(name, hours, qpoints)

def main():
open the input file for reading
filename = input("Enter name the grade file: ")
infile = open(filename, ’r’)
set best to the record for the first student in the file
best = makeStudent(infile.readline())
process subsequent lines of the file
for line in infile:

turn the line into a student record
s = makeStudent(line)
if this student is best so far, remember it.
if s.gpa() > best.gpa():

best = s
infile.close()
print information about the best student
print("The best student is:", best.getName())
print("hours:", best.getHours())
print("GPA:", best.gpa())

Answer Key:

28

class Student:
def __init__(self, name, hours, qpoints): ###Added credits

self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)
self.credits = credits ###Added credits

def getName(self):
return self.name

def getHours(self):
return self.hours

def getQPoints(self):
return self.qpoints

def gpa(self):
return self.qpoints/self.hours

def getCredits(self) ###Added getCredits()
return self.credits

def makeStudent(infoStr):
infoStr is a tab-separated line: name hours qpoints
returns a corresponding Student object
name, hours, qpoints,credits = infoStr.split("\t") ###Added credits
return Student(name, hours, qpoints,credits) ###Added credits

def main():
open the input file for reading
filename = input("Enter name the grade file: ")
infile = open(filename, ’r’)
set best to the record for the first student in the file
best = makeStudent(infile.readline())
process subsequent lines of the file
for line in infile:

turn the line into a student record
s = makeStudent(line)
if this student is best so far, remember it.
if s.gpa() > best.gpa():

best = s
if s.gpa() >= 3.75 and s.getCredits() >= 12: ###Added decision

print(s.name(), "is a full-time high honor student.") ###Added print
infile.close()
print information about the best student
print("The best student is:", best.getName())
print("hours:", best.getHours())
print("GPA:", best.gpa())

29

Answer Key: CMP 230 Final Exam, Version 2, Fall 2014

1. What will the following code print:

a = ",Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec,"
b = "Mar 15, 2014"
c = b.split()
print(c)
d = a.split(",")
print(d[1:12])
e = a.find(c[0]) / 3
print(e)
f = c[1][:-1]
print(str(int(e)) + "/" + f + "/" + c[2])

Answer Key:

[’Mar’, ’15,’, ’2014’]
[’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’]
3.0
3/15/2014

2. Write a program to print the fine for speeding. The program must read the speed from user input,

then compute and print the fine. The fine is $10 for each mph over 55 and less than or equal to 65,

and $15 for each additional mph over 65.

For example, if the speed is 58 mph, then the fine would be $30 = $10 x 3. If the speed is 67 mph,

then the fine would be $130 = $10 x 10 + $15 x 2.

Answer Key:

def answer1():
speed = eval(input("Enter the speed in mph:"))
if (speed<55):

print("No fine")
else:

fine = (speed - 55) * 10
if speed > 65:

fine = fine + (speed - 65) * 5
print("The fine is", fine)

def answer2():
speed = eval(input("Enter the speed in mph:"))
if speed <= 55:

print("No fine")
elif speed <= 65:

print("The fine is", (speed - 55) * 10)
else:

print("The fine is", 100 + (speed - 65) * 15)

30

3. Complete the following program, which reads in a file that has multiple grades, each separated by a

semi-colon, and prints out the computed average. That is, write the functions retrieveGrades() and

computeAverage():

def main():
grades = retrieveGrades() #get the file name containing the grades

#and return the contents of the file
avg = computeAverage(grades) #separate the grades into numbers and compute

#the average
print("The calculated average is:", avg)

main()

Answer Key:

def retrievetGrades():
contents = open(input("Enter the file with the grades"), "r").read()
grades = contents.split(";")
for i in range(len(grades)):

grades[i] = int(grades[i])
return grades

def computeAverage(grades):
sum = 0
for i in grades:

sum = sum + i
return sum/len(grades)

4. Given the following function definitions:

def help(g):
s = 0
for h in g:

s = s + 2
print(s)

return s

def abc(d):
e = len(d) - 1
print("e is", e)
if e >= 3:

f = help(d[0:2])
elif 2 >= e >= 1:

f = help(d[0:1])
else:

f = 10
return f

31

(a) What does abc([7,8,9]) return?

Answer Key: 2

Write output for partial credit:

Answer Key:

e is 2
2

(b) What does abc([77]) return?

Answer Key: 10

Write output for partial credit:

Answer Key:

e is 2

5. Given the following code:

def main():
file = open("summary.txt", ’r’)
count = 0
for line in file:

line2 = line[:-1] + "?"
if count % 2 == 0:

print("count", line2)
else:

print(count, line2)
count = count + 1

main()

(a) What will the output be for this summary.txt?

summary.txt:

It was
short.

Answer Key:

count It was
1 short.

(b) What will the output be for this summary.txt?

summary.txt:

So
so
short.

Answer Key:

count So
1 so
count short.

32

6. (a) Draw what will be displayed in the graphics window when the following program is executed.

Remember to indicate the final position and direction of the turtle at the end of program. (The

turtle always points to the right of the screen at the start of the program.)

from turtle import *

def mystery(t, n):

for i in range(n):
t.backward(50)
if i % 2 == 0:

t.left(90)
else:

t.right(90)

def draw(t, n):
mystery(t, n)

t = Turtle()
draw(t, 5)

Graphics Displayed:

Answer Key:

(b) Write a complete program that asks the user for the outline and fill color of a circle, creates a

graphics window, and draws a circle with those colors centered in the window with radius 50.

Your main() should use functions to complete these tasks, that is, in addition to the main() you

should write the additional functions getInput(), createWin(), and draw():

Answer Key:

from graphics import *
def main():

f, o = getInput() # get the outline and fill color of a circle
w = createWin() # create and return a GraphWin object
draw(w, f, o) # draw the circle in the center of w with radius 50

def getInput():
col = input("What color should the circle be filled with? ")
line = input("What color should the circle be outlined with? ")
return col, line

def createWin():
return GraphWin()

def draw(w, fill, out):
circ = Circle(Point(100, 100), 50)
circ.setFill(fill)
circ.setOutline(out)
circ.draw(w)

7. Write a program that reads in a file called infile.txt. For each line in the file, the program should

print out “- * -” to an output file called outfile.txt. Finally, it should print the total number of lines

in the input file to the screen.

33

Answer Key:

#some comments

def main():
infile = open(’infile.txt’)
outfile = open(’outfile.txt’, ’w’)
lines = 0
for line in infile:

lines += 1
print(’- * -’, file = outfile)

print("Total lines:", lines)
outfile.close()
infile.close()

main()

8. Write the Python code for the algorithms below:

(a) count(ls)
Set count to 0
for each item in the list ls

If item is positive
increment count

print count

Answer Key:

def count(ls):
count = 0
for item in ls:

if item > 0:
count = count + 1

print(count)

(b) search(ls, key, first, last)
while first is less than last

Set mid to first + last / 2
if ls[mid] is less than key

Set first to mid + 1
else

Set last to mid
if last equals first and ls[first] equals key

return first
else

return -1

Answer Key:

34

def search(ls, key, first, last):
while first < last:

mid = (first + last) / 2
if ls[mid] < key:

first = mid + 1
else

last = mid
if (last == first) and (ls[first] == key):

return first
else

return -1

9. (a) Write a complete class that keeps tracks of information about states. Your class, State should

contain instance variables for the name, numberOfReps, population and area, and should have

a constructor method as well as a method, getNumReps(), that returns the number of repre-

sentatives for the state and a method, populationDensity() that calculates population density

(‘‘population/area’’):

Answer Key:

class State:
def __init__(self, name, numberOfReps, population, area):

self.name = name
self.numberOfReps = numberOfReps
self.population = population
self.area = area

def getNumberOfReps(self):
return self.numberOfReps

def populationDensity(self):
return self.population / self.area

(b) Write a function that takes as input a list of States, called region, and returns the sum of the

number of the representatives for the states in the list:

def overallNumReps(region):

Answer Key:

def overallNumReps(region):
total = 0
for state in region:

total = total + state.getNumberOfReps()
return total

10. In the book, a Student class and program for finding the student with the highest GPA was designed.

Modify the design to also find all part-time high honor students (those with a GPA � 3.75 and currently

enrolled in < 12 credits). Your program should print out the name and GPA of all students who meet

this criteria. The current credits will be provided as the last entry on each line of the file. Include in

your class definition, an instance variable to hold current credits and a new method to access it.

Clearly mark your changes to the design below:

35

class Student:
def __init__(self, name, hours, qpoints):

self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)

def getName(self):
return self.name

def getHours(self):
return self.hours

def getQPoints(self):
return self.qpoints

def gpa(self):
return self.qpoints/self.hours

def makeStudent(infoStr):
infoStr is a tab-separated line: name hours qpoints
returns a corresponding Student object
name, hours, qpoints = infoStr.split("\t")
return Student(name, hours, qpoints)

def main():
open the input file for reading
filename = input("Enter name the grade file: ")
infile = open(filename, ’r’)
set best to the record for the first student in the file
best = makeStudent(infile.readline())
process subsequent lines of the file
for line in infile:

turn the line into a student record
s = makeStudent(line)
if this student is best so far, remember it.
if s.gpa() > best.gpa():

best = s
infile.close()
print information about the best student
print("The best student is:", best.getName())
print("hours:", best.getHours())
print("GPA:", best.gpa())

Answer Key:

class Student:
def __init__(self, name, hours, qpoints): ###Added credits

self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)
self.credits = credits ###Added credits

def getName(self):
return self.name

def getHours(self):

36

return self.hours
def getQPoints(self):

return self.qpoints
def gpa(self):

return self.qpoints/self.hours
def getCredits(self) ###Added getCredits()

return self.credits

def makeStudent(infoStr):
infoStr is a tab-separated line: name hours qpoints
returns a corresponding Student object
name, hours, qpoints,credits = infoStr.split("\t") ###Added credits
return Student(name, hours, qpoints,credits) ###Added credits

def main():
open the input file for reading
filename = input("Enter name the grade file: ")
infile = open(filename, ’r’)
set best to the record for the first student in the file
best = makeStudent(infile.readline())
process subsequent lines of the file
for line in infile:

turn the line into a student record
s = makeStudent(line)
if this student is best so far, remember it.
if s.gpa() > best.gpa():

best = s
if s.gpa() >= 3.75 and s.getCredits() < 12: ###Added decision

print(s.name(), "is a part-time high honor student.") ###Added print
infile.close()
print information about the best student
print("The best student is:", best.getName())
print("hours:", best.getHours())
print("GPA:", best.gpa())

37

Answer Key: CMP 230 Final Exam, Version 3, Fall 2014

1. What will the following code print:

a = ",Dec,Nov,Oct,Sep,Aug,Jul,Jun,May,Apr,Mar,Feb,Jan,"
b = "Nov 15, 2014"
c = b.split()
print(c)
d = a.split(",")
print(d[1:12])
e = (a.find(c[0]) - 1) / 4 + 1
print(e)
f = c[1][:-1]
print(str(int(e)) + "/" + f + "/" + c[2])

Answer Key:

[’Nov’, ’15,’, ’2014’]
[’Dec’, ’Nov’, ’Oct’, ’Sep’, ’Aug’, ’Jul’, ’Jun’, ’May’, ’Apr’, ’Mar’, ’Feb’]
2.0
2/15/2014

2. Write a program to print the fine for speeding. The program must read the speed from user input,

then compute and print the fine. The fine is $15 for each mph over 60 and less than or equal to 70,

and $20 for each additional mph over 70.

For example, if the speed is 63 mph, then the fine would be $45 = $15 x 3. If the speed is 72 mph,

then the fine would be $190 = $15 x 10 + $20 x 2.

Answer Key:

def answer1():
speed = eval(input("Enter the speed in mph:"))
if (speed < 60):

print("No fine")
else:

fine = (speed - 60) * 15
if speed > 70:

fine = fine + (speed - 70) * 5
print("The fine is", fine)

def answer2():
speed = eval(input("Enter the speed in mph:"))
if speed <= 60:

print("No fine")
elif speed <= 70:

print("The fine is", (speed - 60) * 15)
else:

print("The fine is", 150 + (speed - 70) * 20)

38

3. Complete the following program, which reads in a file that has multiple grades, each separated by

a colon, and prints out the computed average. That is, write the functions extractGrades() and

processAverage():

def main():
grades = extractGrades() #get the file name containing the grades

#and return the contents of the file
avg = processAverage(grades) #separate the grades into numbers and compute

#the average
print("The calculated average is:", avg)

main()

Answer Key:

def extractGrades():
contents = open(input("Enter the file with the grades"), "r").read()
grades = contents.split(":")
for i in range(len(grades)):

grades[i] = int(grades[i])
return grades

def processAverage(grades):
sum = 0
for i in grades:

sum = sum + i
return sum/len(grades)

4. Given the following function definitions:

def help(g):
s = 1
for h in g:

s = s + 1
print(s)

return s

def abc(d):
e = len(d)
print("e is ", e)
if 5 > e > 2:

f = help(d[0:3])
elif e > 5:

f = help(d[2:5])
else:

f = 8
return f

39

(a) What does abc([10,20,30,40,50,60]) return?

Answer Key: 4 Write output for partial credit:

Answer Key:

e is 6
2
3
4

(b) What does abc([5,6,7]) return?

Answer Key: 4 Write output for partial credit:

Answer Key:

e is 3
2
3
4

5. Given the following code:

def main():
file = open("story.txt", ’r’)
count = 0
for line in file:

line2 = "!" + line[:-1]
if count == 2:

print(line2)
else:

print(line.count("a"))
count = count + 2

main()

(a) What will the output be for this story.txt?

story.txt:

Once
upon a
time.

Answer Key:

0
1
!time.

(b) What will the output be for this story.txt?

40

story.txt:

Here
is
a
story...

Answer Key:

0
0
!a
0

6. (a) Draw what will be displayed in the graphics window when the following program is executed.

Remember to indicate the final position and direction of the turtle at the end of program. (The

turtle always points to the right of the screen at the start of the program.)

from turtle import *

def mystery(t, n):

for i in range(n):
t.right(90)
if i % 2 == 0:

t.backward(50)
else:

t.forward(50)

def draw(t, n):
mystery(t, n)

t = Turtle()
draw(t, 4)

Graphics Displayed:

Answer Key:

(b) Write a complete program that asks the user for the width and height of a rectangle, creates a

graphics window, and draws a rectangle with its upper left corner at (0, 0) and the inputted height

and width. Your main() should use functions to complete these tasks, that is, in addition to the

main() you should write the additional functions getInput(), createWin(), and draw():

Answer Key:

from graphics import *
def main():

w, h = getInput() # get the width and height of a rectangle
win = createWin() # create and return a GraphWin object
draw(win, w, h) # draw the rectangle with upper left corner at (0, 0)

def getInput():
w = eval(input("What is the width of the rectangle? "))
h = eval(input("What’s its height? "))
return w, h

def createWin():
return GraphWin()

def draw(win, w, h):

41

rect = Rectangle(Point(0, 0), Point(w, h))
rect.draw(win)

7. Write a program that reads in a file called infile.txt. For each line in the file it should print out the

line followed by “- * -” and then the number of times that the lower-case word the appears in that line.

Finally, it should print out the total number of times that the lower-case word the appears in the file.

Answer Key:

#some comments

def main():
infile = open(’infile.txt’)
totThes = 0
for line in infile:

thes = line.count(’the’)
totThes += thes
print(line[:-1] + ’- * -’ + str(thes))

print("Total thes:", totThes)

infile.close()
main()

8. Write the Python code for the algorithms below:

(a) balance(ls)
Set balance to 1000
for each item in the list ls

Subtract item from balance
print balance

Answer Key:

def balance(ls):
balance = 1000
for item in ls

balance = balance - item
print(balance)

(b) search(ls, key, first, last)
while first is less than last

Set mid to first + last / 2
if ls[mid] equals key

return mid
else if ls[mid] < key

first = mid + 1
else

last = mid -1
return -1

42

Answer Key:

def search(ls, key, first, last):
while first < last:

mid = (first + last) / 2
if ls[mid] == key

return mid
elif ls[mid] < key

first = mid + 1
else

last = mid - 1
return -1

9. (a) Write a complete class that keeps tracks of information about boroughs. Your class, Borough
should contain instance variables for the name, collegeCampuses, population and area, and
should have a constructor method as well as a method, getNumCampuses(), that returns the

number of college campuses and a method, populationDensity() that calculates population

density (‘‘population/area’’) for the borough:

Answer Key:

class Borough:
def __init__(self, name, collegeCampuses, population, area):

self.name = name
self.collegeCampuses = collegeCampuses
self.population = population
self.area = area

def getNumberCampuses(self):
return self.collegeCampuses

def populationDensity(self):
return self.population / self.area

(b) Write a function that takes as input a list of Boroughss, called city, and returns the sum of the

number of the college campuses for the boroughs in the list:

def overallCollegeCampuses(city):

Answer Key:

def overallCollegeCampuses(city):
total = 0
for state in city:

total = total + state.getNumberCampuses()
return total

10. In the book, a Student class and program for finding the student with the highest GPA was designed.

Modify the design to also find all part-time honor students (those with a GPA � 3.5 and currently

enrolled in < 12 credits). Your program should print out the name and GPA of all students who meet

this criteria. The current credits will be provided as the last entry on each line of the file. Include in

your class definition, an instance variable to hold current credits and a new method to access it.

43

Clearly mark your changes to the design below:

class Student:
def __init__(self, name, hours, qpoints):

self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)

def getName(self):
return self.name

def getHours(self):
return self.hours

def getQPoints(self):
return self.qpoints

def gpa(self):
return self.qpoints/self.hours

def makeStudent(infoStr):
infoStr is a tab-separated line: name hours qpoints
returns a corresponding Student object
name, hours, qpoints = infoStr.split("\t")
return Student(name, hours, qpoints)

def main():
open the input file for reading
filename = input("Enter name the grade file: ")
infile = open(filename, ’r’)
set best to the record for the first student in the file
best = makeStudent(infile.readline())
process subsequent lines of the file
for line in infile:

turn the line into a student record
s = makeStudent(line)
if this student is best so far, remember it.
if s.gpa() > best.gpa():

best = s
infile.close()
print information about the best student
print("The best student is:", best.getName())
print("hours:", best.getHours())
print("GPA:", best.gpa())

Answer Key:

class Student:
def __init__(self, name, hours, qpoints): ###Added credits

self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)
self.credits = credits ###Added credits

def getName(self):

44

return self.name
def getHours(self):

return self.hours
def getQPoints(self):

return self.qpoints
def gpa(self):

return self.qpoints/self.hours
def getCredits(self) ###Added getCredits()

return self.credits

def makeStudent(infoStr):
infoStr is a tab-separated line: name hours qpoints
returns a corresponding Student object
name, hours, qpoints,credits = infoStr.split("\t") ###Added credits
return Student(name, hours, qpoints,credits) ###Added credits

def main():
open the input file for reading
filename = input("Enter name the grade file: ")
infile = open(filename, ’r’)
set best to the record for the first student in the file
best = makeStudent(infile.readline())
process subsequent lines of the file
for line in infile:

turn the line into a student record
s = makeStudent(line)
if this student is best so far, remember it.
if s.gpa() > best.gpa():

best = s
if s.gpa() >= 3.5 and s.getCredits() < 12: ###Added decision

print(s.name(), "is a part-time honor student.") ###Added print
infile.close()
print information about the best student
print("The best student is:", best.getName())
print("hours:", best.getHours())
print("GPA:", best.gpa())

45

Answer Key: CMP 230 Final Exam, Version 4, Fall 2014

1. What will the following code print:

a = ",Dec,Nov,Oct,Sep,Aug,Jul,Jun,May,Apr,Mar,Feb,Jan,"
b = "Oct 15, 2014"
c = b.split()
print(c)
d = a.split(",")
print(d[1:12])
e = a.find(c[0]) / 3
print(e)
f = c[1].rstrip(",")
print(str(int(e)) + "/" + f + "/" + c[2])

Answer Key:

[’Oct’, ’15,’, ’2014’]
[’Dec’, ’Nov’, ’Oct’, ’Sep’, ’Aug’, ’Jul’, ’Jun’, ’May’, ’Apr’, ’Mar’, ’Feb’]
3.0
3/15/2014

2. Write a program to print the fine for speeding. The program must read the speed from user input,

then compute and print the fine. The fine is $15 for each mph over 45 and less than or equal to 65,

and $25 for each additional mph over 65.

For example, if the speed is 48 mph, then the fine would be $45 = $15 x 3. If the speed is 67 mph,

then the fine would be $350 = $15 x 20 + $25 x 2.

Answer Key:

def answer1():
speed = eval(input("Enter the speed in mph:"))
if (speed < 45):

print("No fine")
else:

fine = (speed - 45) * 15
if speed > 65:

fine = fine + (speed - 65) * 10
print("The fine is", fine)

def answer2():
speed = eval(input("Enter the speed in mph:"))
if speed <= 45:

print("No fine")
elif speed <= 65:

print("The fine is", (speed - 45) * 15)
else:

print("The fine is", 300 + (speed - 65) * 25)

46

3. Complete the following program, which reads in a file that has multiple grades, each separated by

a hyphen, and prints out the computed average. That is, write the functions acquireGrades() and

determineAverage():

def main():
grades = acquireGrades() #get the file name containing the grades

#and return the contents of the file
avg = determineAverage(grades) #separate the grades into numbers and compute

#the average
print("The calculated average is:", avg)

main()

Answer Key:

def acquireGrades():
contents = open(input("Enter the file with the grades"), "r").read()
grades = contents.split("-")
for i in range(len(grades)):

grades[i] = int(grades[i])
return grades

def determineAverage(grades):
sum = 0
for i in grades:

sum = sum + i
return sum/len(grades)

4. Given the following function definitions:

def help(g):
s = 0
for h in g:

s = s + h
print(s)

return s

def abc(d):
e = len(d) + 1
print("e is ", e)
if e >= 3:

f = help(d[0:2])
elif 3 > e >= 2:

f = help(d[0:1])
else:

f = 65
return f

47

(a) What does abc([2,2]) return?

Answer Key: 4

Write output for partial credit:

Answer Key:

e is 3
2
4

(b) What does abc([99]) return?

Answer Key: 99

Write output for partial credit:

Answer Key:

e is 2
99

5. Given the following code:

def main():
file = open("poetry.txt", ’r’)
count = 0
for line in file:

line2 = line[:-1] + "?"
if count % 2 == 0:

print(line2)
else:

print(len(line[:-1]))
count = count + 1

main()

(a) What will the output be for this poetry.txt?

poetry.txt:

What a
nice
day.
It is.

Answer Key:

What a?
4
day.?
6

(b) What will the output be for this poetry.txt?

48

poetry.txt:

No rain
but
cloudy.

Answer Key:

No rain?
3
cloudy.?

6. (a) Draw what will be displayed in the graphics window when the following program is executed.

Remember to indicate the final position and direction of the turtle at the end of program. (The

turtle always points to the right of the screen at the start of the program.)

from turtle import *

def mystery(t, n):

for i in range(n):
t.right(90)
if i % 2 == 0:

t.backward(50)
else:

t.right(90)
t.forward(50)

def draw(t, n):
mystery(t, n)

t = Turtle()
draw(t, 4)

Graphics Displayed:

Answer Key:

(b) Write a complete program that asks the user for the width and color of a square, creates a graphics

window, and draws a square with its lower right corner at (199, 199) and width and color based

on the inputted information. Your main() should use functions to complete these tasks, that is,

in addition to the main() you should write the additional functions getInput(), createWin(),
and draw():

Answer Key:

from graphics import *
def main():

w, c = getInput() # get the width and color of a square
win = createWin() # create and return a GraphWin object
draw(win, w, c) # draw the square with the lower right corner at (199, 199)

def getInput():
col = input("What color should the square be? "))
width = eval(input("What is the width of the square? "))
return width, col

def createWin():
return GraphWin()

49

def draw(win, w, c):
square = Rectangle(Point(199 - w, 199 - w), Point(199, 199))
square.setFill(c)
square.draw(w)

7. Write a program that reads in a file called infile.txt. For each line in the file, the program should

print out the line followed by “: ” and then the number of times that the lower-case letter a appears

in that line. Finally, it should print out the total number of times the lower-case letter a appear in the

file.

Answer Key:

#some comments

def main():
infile = open(’infile.txt’)
totAs = 0
for line in infile:

as = line.count(’a’)
totAs += as
print(line[:-1] + ’:’, as)

print("Total as:", totAs)

infile.close()
main()

8. Write the Python code for the algorithms below:

(a) total(ls)
Set total to 0
for each item in the list ls

Add item to total
print total

Answer Key:

def total(ls):
total = 0
for item in ls:

total = total + item
print(total)

(b) search(ls, key, first, last)
while first is less than last

Set mid to first + last / 2
if ls[mid] is less than key

Set first to mid + 1
else

50

Set last to mid
if last equals first and ls[first] equals key

return first
else

return -1

Answer Key:

def search(ls, key, first, last):
while first < last:

mid = (first + last)/ 2
if ls[mid] < key:

first = mid + 1
else

last = mid
if (last == first) and (ls[first] == key):

return first
else

return -1

9. (a) Write a complete class that keeps tracks of information about train lines. Your class, TrainLine
should contain instance variables for the name, length, dailyRidership and coverageArea, and
should have a constructor method as well as a method, getLength(), that returns the train length

a method, riderDensity() that calculates rider density (‘‘dailyRidership/coverageArea’’):

Answer Key:

class TrainLine:
def __init__(self, name, length, dailyRidership, coverageArea):

self.name = name
self.length = length
self.dailyRidership = dailyRidership
self.coverageArea = coverageArea

def getLength(self):
return self.length

def riderDensity(self):
return self.dailyRidership / self.coverageArea

(b) Write a function that takes as input a list of TrainLines, called subway, and returns the sum of

the length of the train lines in the list:

def overallLength(subway):

Answer Key:

def overallLength(subway):
total = 0

51

for line in subway:
total = total + line.getLength()

return total

10. In the book, a Student class and program for finding the student with the highest GPA was designed.

Modify the design to also find all full-time honor students (those with a GPA � 3.5 and currently

enrolled in � 12 credits). Your program should print out the name and GPA of all students who meet

this criteria. The current credits will be provided as the last entry on each line of the file. Include in

your class definition, an instance variable to hold current credits and a new method to access it.

Clearly mark your changes to the design below:

class Student:
def __init__(self, name, hours, qpoints):

self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)

def getName(self):
return self.name

def getHours(self):
return self.hours

def getQPoints(self):
return self.qpoints

def gpa(self):
return self.qpoints/self.hours

def makeStudent(infoStr):
infoStr is a tab-separated line: name hours qpoints
returns a corresponding Student object
name, hours, qpoints = infoStr.split("\t")
return Student(name, hours, qpoints)

def main():
open the input file for reading
filename = input("Enter name the grade file: ")
infile = open(filename, ’r’)
set best to the record for the first student in the file
best = makeStudent(infile.readline())
process subsequent lines of the file
for line in infile:

turn the line into a student record
s = makeStudent(line)
if this student is best so far, remember it.
if s.gpa() > best.gpa():

best = s
infile.close()
print information about the best student
print("The best student is:", best.getName())
print("hours:", best.getHours())
print("GPA:", best.gpa())

Answer Key:

52

class Student:
def __init__(self, name, hours, qpoints): ###Added credits

self.name = name
self.hours = float(hours)
self.qpoints = float(qpoints)
self.credits = credits ###Added credits

def getName(self):
return self.name

def getHours(self):
return self.hours

def getQPoints(self):
return self.qpoints

def gpa(self):
return self.qpoints/self.hours

def getCredits(self) ###Added getCredits()
return self.credits

def makeStudent(infoStr):
infoStr is a tab-separated line: name hours qpoints
returns a corresponding Student object
name, hours, qpoints,credits = infoStr.split("\t") ###Added credits
return Student(name, hours, qpoints,credits) ###Added credits

def main():
open the input file for reading
filename = input("Enter name the grade file: ")
infile = open(filename, ’r’)
set best to the record for the first student in the file
best = makeStudent(infile.readline())
process subsequent lines of the file
for line in infile:

turn the line into a student record
s = makeStudent(line)
if this student is best so far, remember it.
if s.gpa() > best.gpa():

best = s
if s.gpa() >= 3.5 and s.getCredits() >= 12: ###Added decision

print(s.name(), "is a full-time honor student.") ###Added print
infile.close()
print information about the best student
print("The best student is:", best.getName())
print("hours:", best.getHours())
print("GPA:", best.gpa())

53

