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Approximation Algorithms Using Distance Matrices

Idea:

I Compute Hamming distance
between sequences.

I Base a tree only on the distances.

Common Algorithms:

I Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) (Sokal
& Michener 1958)

I Neighbor Joining (Saitou-Nei 1987)
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UPGMA

Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) (Sokal & Michener 1958)

Compute the distance between every pair of
leaves.

Make a cluster for each leaf.

Join the two clusters with lowest distance.
Average the weights to get the new distances
to other clusters.

d(A ∪ B, X ) =

∑
x∈X

∑
a∈A d(x, a) +

∑
x∈X

∑
b∈B d(x, b)

|X |(|A| + |B|)

Repeat until only one cluster.
wiki
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Neighbor Joining

Neighbor Joining (Saitou & Nei 1987)

A similar idea, but a different matrix is
computed:

Q(i , j) = (n−2)d(i , j)−
n∑

k=1

d(i , k)−
n∑

k=1

d(j , k)

If A and B are joined to new node u, then
the distance from k to u

d(u, k) =
1

2
[d(A, k) + d(B, k) − d(A,B)]

This relaxes the assumption of UPGMA that
all lineages evolve at the same rate.
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In Pairs: Distance Methods

wiki

1 If you run the UPGMA algorithm on
the matrix, what is the resulting
tree?

2 What is an upper bound on the
running time of UPGMA?

3 What is an upper bound on the
running time of Neighbor Joining?
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Searching Treespace

 
 

treeSearch(sequences):

Input: A set of n sequences of length k
Output: The best scoring tree we could find
after 1000 steps through the NNI search space.

1 Choose randomly a tree to be
bestSoFar.

2 Score the tree, bestSoFar.

3 For 1000 steps:

4 if any of the NNI neighbors of
bestSoFar have better score,

5 choose it to be the current tree

6 else:

7 break (stuck in local minima)

8 Print number of steps, tree, and score.
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In Pairs: Translating “To Do” into Pseudocode

Translate into pseudocode: 
 

treeSearch(sequences):

Input: A set of n sequences of length k
Output: The best scoring tree we could find
after 1000 steps through the NNI search space.

1 Choose randomly a tree to be
bestSoFar.

2 Score the tree, bestSoFar.

3 For 1000 steps:

4 if any of the NNI neighbors of
bestSoFar have better score,

5 choose it to be the current tree

6 else:

7 break (stuck in local minima)

8 Print number of steps, tree, and score.
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Randomly Building A Tree

1 Put all leaves into a dictionary.

2 Also create a “To Do” list, parentless, of nodes
without parents.

3 While len(parentless) > 1:

4 Make a new internal node and choose two
from parentless to be its children.

5 Remove children from parentless.

6 Add new node to parentless.

7 Rename remaining node in parentless to be
root.
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In Pairs: Randomly Building A Tree

Translate into pseudocode:
def randomBuild(sequenceList):

1 Put all leaves into a dictionary.

2 Also create a “To Do” list, parentless, of nodes
without parents.

3 While len(parentless) > 1:

4 Make a new internal node and choose two
from parentless to be its children.

5 Remove children from parentless.

6 Add new node to parentless.

7 Rename remaining node in parentless to be
root.
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Making NNI Move

C D E

A

B

G

F

C
F

A

B

D

E

G

Input: A tree, t, and an internal node, node.
Output: Two trees that result from switching the nodes’
sibling with its children.

1 Let sib be the sibling of node.

2 Let kid1, kid2 be the children of node.

3 Make two (deep) copies of t: tree1 and tree2

4 Switch sib and kid1 in tree1.

5 Switch sib and kid2 in tree2.

6 Return tree1 and tree2.
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In Pairs: Making NNI Move

Translate into pseudocode:

C D E

A

B

G

F

C
F

A

B

D

E

G

def nniNeighbors(t, node):

Input: A tree, t, and an internal node, node.
Output: Two trees that result from switching the nodes’
sibling with its children.

1 Let sib be the sibling of node.

2 Let kid1, kid2 be the children of node.

3 Make two (deep) copies of t: tree1 and tree2

4 Switch sib and kid1 in tree1.

5 Switch sib and kid2 in tree2.

6 Return tree1 and tree2.
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Recap

C
F

A

B

D

E

G

Trees can be estimated used distance
based methods.

More on searching treespace in lab today.

Email lab reports to kstjohn@amnh.org.

Challenges available at rosalind.info.
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