Algorithmic Approaches for Biological Data, Lecture #24

Katherine St. John

City University of New York American Museum of Natural History

4 May 2016

<ロト <四ト <注入 <注下 <注下 <

Outline

- Approximation Algorithms: UPGMA & Neighbor Joining
- Searching for Optimal Trees
- Early Project Presentations

3

• • • • • • • • • • • •

Idea:

 Compute Hamming distance between sequences.

- Compute Hamming distance between sequences.
- Base a tree only on the distances.

- Compute Hamming distance between sequences.
- Base a tree only on the distances.
- Common Algorithms:

- Compute Hamming distance between sequences.
- Base a tree only on the distances.
- Common Algorithms:
 - Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sokal & Michener 1958)

- Compute Hamming distance between sequences.
- Base a tree only on the distances.
- Common Algorithms:
 - Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sokal & Michener 1958)
 - Neighbor Joining (Saitou-Nei 1987)

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sokal & Michener 1958)

イロン イヨン イヨン イヨン

• Compute the distance between every pair of leaves.

イロト イポト イヨト イヨト

- Compute the distance between every pair of leaves.
- Make a cluster for each leaf.
- Join the two clusters with lowest distance.

(日) (同) (三) (三)

- Compute the distance between every pair of leaves.
- Make a cluster for each leaf.
- Join the two clusters with lowest distance.
- Average the weights to get the new distances to other clusters.

- 4 同 6 4 日 6 4 日 6

- Compute the distance between every pair of leaves.
- Make a cluster for each leaf.
- Join the two clusters with lowest distance.
- Average the weights to get the new distances to other clusters.

$$d(A \cup B, X) = \frac{\sum_{x \in X} \sum_{a \in A} d(x, a) + \sum_{x \in X} \sum_{b \in B} d(x, b)}{|X|(|A| + |B|)}$$

- 4 同 6 4 日 6 4 日 6

- Compute the distance between every pair of leaves.
- Make a cluster for each leaf.
- Join the two clusters with lowest distance.
- Average the weights to get the new distances to other clusters.

$$d(A \cup B, X) = \frac{\sum_{x \in X} \sum_{a \in A} d(x, a) + \sum_{x \in X} \sum_{b \in B} d(x, b)}{|X|(|A| + |B|)}$$

• Repeat until only one cluster.

A B b

- Compute the distance between every pair of leaves.
- Make a cluster for each leaf.
- Join the two clusters with lowest distance.
- Average the weights to get the new distances to other clusters.

$$d(A \cup B, X) = \frac{\sum_{x \in X} \sum_{a \in A} d(x, a) + \sum_{x \in X} \sum_{b \in B} d(x, b)}{|X|(|A| + |B|)}$$

• Repeat until only one cluster.

	а	b	c	d	е
a	0	17	21	31	23
b	17	0	30	34	21
c	21	30	0	28	39
d	31	34	28	0	43
e	23	21	39	43	0

A B b

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sokal & Michener 1958)

- Compute the distance between every pair of leaves.
- Make a cluster for each leaf.
- Join the two clusters with lowest distance.
- Average the weights to get the new distances to other clusters.

$$d(A \cup B, X) = \frac{\sum_{x \in X} \sum_{a \in A} d(x, a) + \sum_{x \in X} \sum_{b \in B} d(x, b)}{|X|(|A| + |B|)}$$

• Repeat until only one cluster.

		a	- 1	b		•	c		e	
a		0	1	7	2	1	3	1	2	3
b	1	17		D	3	0	3	4	2	1
c	2	21	3	0	()	2	в	3	9
d	3	31	3	14	2	8	C		43	3
e	2	23	2	1	3	9	4	3	0	
(0)	•	(a,	b)	0	;		d		e	
(a,i)	U	-	20	.5	3	2.5		2	
c		25	.5	()	2	28	- 2	39	
d		32	.5	2	8		D		13	

22 39 43 0

< ∃ > <

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sokal & Michener 1958)

- Compute the distance between every pair of leaves.
- Make a cluster for each leaf.
- Join the two clusters with lowest distance.
- Average the weights to get the new distances to other clusters.

$$d(A \cup B, X) = \frac{\sum_{x \in X} \sum_{a \in A} d(x, a) + \sum_{x \in X} \sum_{b \in B} d(x, b)}{|X|(|A| + |B|)}$$

• Repeat until only one cluster.

	а	b	c	d	е
а	0	17	21	31	23
b	17	0	30	34	21
c	21	30	0	28	39
d	31	34	28	0	43
e	23	21	39	43	0

	(a,b)	c	d	е
(a,b)	0	25.5	32.5	22
c	25.5	0	28	39
d	32.5	28	0	43
е	22	39	43	0

	((a,b),e) c		d
((a,b),e)	0	30	36
c	30	0	28
d	36	28	0

.

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sokal & Michener 1958)

- Compute the distance between every pair of leaves.
- Make a cluster for each leaf.
- Join the two clusters with lowest distance.
- Average the weights to get the new distances to other clusters.

$$d(A \cup B, X) = \frac{\sum_{x \in X} \sum_{a \in A} d(x, a) + \sum_{x \in X} \sum_{b \in B} d(x, b)}{|X|(|A| + |B|)}$$

• Repeat until only one cluster.

	a	b	c	d	е
a	0	17	21	31	23
b	17	0	30	34	21
с	21	30	0	28	39
d	31	34	28	0	43
e	23	21	39	43	0

	(a,b)	c	d	е
(a,b)	0	25.5	32.5	22
c	25.5	0	28	39
d	32.5	28	0	43
е	22	39	43	0

	((a,b),e)	c	d
((a,b),e)	0	30	36
c	30	0	28
d	36	28	0

	((a,b),e)	(c,d)
((a,b),e)	0	33
(c,d)	33	0

wiki

Neighbor Joining (Saitou & Nei 1987)

• A similar idea, but a different matrix is computed:

$$Q(i,j) = (n-2)d(i,j) - \sum_{k=1}^{n} d(i,k) - \sum_{k=1}^{n} d(j,k)$$

< A

- ₹ 🗦 🕨

Neighbor Joining (Saitou & Nei 1987)

 A similar idea, but a different matrix is computed:

$$Q(i,j) = (n-2)d(i,j) - \sum_{k=1}^{n} d(i,k) - \sum_{k=1}^{n} d(j,k)$$

• If A and B are joined to new node u, then the distance from k to u

$$d(u,k) = \frac{1}{2}[d(A,k) + d(B,k) - d(A,B)]$$

< ∃ >

Neighbor Joining (Saitou & Nei 1987)

 A similar idea, but a different matrix is computed:

$$Q(i,j) = (n-2)d(i,j) - \sum_{k=1}^{n} d(i,k) - \sum_{k=1}^{n} d(j,k)$$

• If A and B are joined to new node u, then the distance from k to u

$$d(u,k) = \frac{1}{2}[d(A,k) + d(B,k) - d(A,B)]$$

• This relaxes the assumption of UPGMA that all lineages evolve at the same rate.

- **4 A b**

-∢ ∃ ▶

Neighbor Joining (Saitou & Nei 1987)

 A similar idea, but a different matrix is computed:

$$Q(i,j) = (n-2)d(i,j) - \sum_{k=1}^{n} d(i,k) - \sum_{k=1}^{n} d(j,k)$$

• If A and B are joined to new node u, then the distance from k to u

$$d(u,k) = \frac{1}{2}[d(A,k) + d(B,k) - d(A,B)]$$

• This relaxes the assumption of UPGMA that all lineages evolve at the same rate.

- **4 A b**

- ∢ ∃ ▶

In Pairs: Distance Methods

	a	b	С	d	е
a	0	5	9	9	8
b	5	0	10	10	9
С	9	10	0	8	7
d	9	10	8	0	3
е	8	9	7	3	0

wiki

- If you run the UPGMA algorithm on the matrix, what is the resulting tree?
- What is an upper bound on the running time of UPGMA?
- What is an upper bound on the running time of Neighbor Joining?

.

treeSearch(sequences):

treeSearch(sequences):
Input: A set of n sequences of length k

treeSearch(sequences):

Input: A set of n sequences of length k **Output:** The best scoring tree we could find after 1000 steps through the NNI search space.

treeSearch(sequences):

Input: A set of n sequences of length k **Output:** The best scoring tree we could find after 1000 steps through the NNI search space.

Choose randomly a tree to be bestSoFar.

treeSearch(sequences):

Input: A set of n sequences of length k **Output:** The best scoring tree we could find after 1000 steps through the NNI search space.

- Choose randomly a tree to be bestSoFar.
- Score the tree, bestSoFar.

treeSearch(sequences):

Input: A set of n sequences of length k **Output:** The best scoring tree we could find after 1000 steps through the NNI search space.

- Choose randomly a tree to be bestSoFar.
- 2 Score the tree, bestSoFar.
- Sor 1000 steps:

treeSearch(sequences):
Input: A set of n sequences of length k

Output: The best scoring tree we could find after 1000 steps through the NNI search space.

- Choose randomly a tree to be bestSoFar.
- Score the tree, bestSoFar.
- Sor 1000 steps:
- if any of the NNI neighbors of bestSoFar have better score,

treeSearch(sequences): Input: A set of n sequences of length k

Output: The best scoring tree we could find after 1000 steps through the NNI search space.

- Choose randomly a tree to be bestSoFar.
- Score the tree, bestSoFar.
- Sor 1000 steps:
- if any of the NNI neighbors of bestSoFar have better score,
 - choose it to be the current tree

treeSearch(sequences):

Input: A set of n sequences of length k **Output:** The best scoring tree we could find after 1000 steps through the NNI search space.

- Choose randomly a tree to be bestSoFar.
- 2 Score the tree, bestSoFar.
- I For 1000 steps:
- if any of the NNI neighbors of bestSoFar have better score,
 - choose it to be the current tree
- 6 else:
 - break (stuck in local minima)

treeSearch(sequences):

Input: A set of n sequences of length k **Output:** The best scoring tree we could find after 1000 steps through the NNI search space.

- Choose randomly a tree to be bestSoFar.
- 2 Score the tree, bestSoFar.
- I For 1000 steps:
- if any of the NNI neighbors of bestSoFar have better score,
 - ochoose it to be the current tree
- 6 else:
- break (stuck in local minima)
- Print number of steps, tree, and score.

In Pairs: Translating "To Do" into Pseudocode

Translate into pseudocode:

treeSearch(sequences):
Input: A set of n sequences of length k
Output: The best scoring tree we could find
after 1000 steps through the NNI search space.

- Choose randomly a tree to be bestSoFar.
- 2 Score the tree, bestSoFar.
- For 1000 steps:
- if any of the NNI neighbors of bestSoFar have better score,
 - ochoose it to be the current tree
- 6 else:
 - break (stuck in local minima)
- Print number of steps, tree, and score.

Put all leaves into a dictionary.

Image: A matrix

- ∢ ∃ ▶

- Put all leaves into a dictionary.
- Also create a "To Do" list, parentless, of nodes without parents.

- Put all leaves into a dictionary.
- Also create a "To Do" list, parentless, of nodes without parents.
- While len(parentless) > 1:

- Put all leaves into a dictionary.
- Also create a "To Do" list, parentless, of nodes without parents.
- While len(parentless) > 1:
 - Make a new internal node and choose two from parentless to be its children.

- Put all leaves into a dictionary.
- Also create a "To Do" list, parentless, of nodes without parents.
- While len(parentless) > 1:
 - Make a new internal node and choose two from parentless to be its children.
- Semove children from parentless.

- Put all leaves into a dictionary.
- Also create a "To Do" list, parentless, of nodes without parents.
- While len(parentless) > 1:
 - Make a new internal node and choose two from parentless to be its children.
- 6 Remove children from parentless.
- 6 Add new node to parentless.

- Put all leaves into a dictionary.
- Also create a "To Do" list, parentless, of nodes without parents.
- While len(parentless) > 1:
 - Make a new internal node and choose two from parentless to be its children.
- 6 Remove children from parentless.
- 6 Add new node to parentless.
- Rename remaining node in parentless to be root.

In Pairs: Randomly Building A Tree

Translate into pseudocode:

def randomBuild(sequenceList):

- Put all leaves into a dictionary.
- Also create a "To Do" list, parentless, of nodes without parents.
- While len(parentless) > 1:
 - Make a new internal node and choose two from parentless to be its children.
- Semove children from parentless.
- 6 Add new node to parentless.
- Rename remaining node in parentless to be root.

Input: A tree, t, and an internal node, node. **Output:** Two trees that result from switching the nodes' sibling with its children.

Let sib be the sibling of node.

Input: A tree, t, and an internal node, node. **Output:** Two trees that result from switching the nodes' sibling with its children.

- Let sib be the sibling of node.
- 2 Let kid1, kid2 be the children of node.

Input: A tree, t, and an internal node, node. **Output:** Two trees that result from switching the nodes' sibling with its children.

- Let sib be the sibling of node.
- 2 Let kid1, kid2 be the children of node.
- Make two (deep) copies of t: tree1 and tree2

Input: A tree, t, and an internal node, node. **Output:** Two trees that result from switching the nodes' sibling with its children.

- Let sib be the sibling of node.
- 2 Let kid1, kid2 be the children of node.

Switch sib and kid1 in tree1.

Input: A tree, t, and an internal node, node. **Output:** Two trees that result from switching the nodes' sibling with its children.

- Let sib be the sibling of node.
- 2 Let kid1, kid2 be the children of node.

- Switch sib and kid1 in tree1.
- Switch sib and kid2 in tree2.

Input: A tree, t, and an internal node, node. **Output:** Two trees that result from switching the nodes' sibling with its children.

- Let sib be the sibling of node.
- 2 Let kid1, kid2 be the children of node.

- Switch sib and kid1 in tree1.
- Switch sib and kid2 in tree2.
- Seturn tree1 and tree2.

In Pairs: Making NNI Move

Translate into pseudocode:

def nniNeighbors(t, node):
Input: A tree, t, and an internal node, node.
Output: Two trees that result from switching the nodes'
sibling with its children.

Let sib be the sibling of node.

- Make two (deep) copies of t: tree1 and tree2
- Switch sib and kid1 in tree1.
- Switch sib and kid2 in tree2.
- Return tree1 and tree2.

Early Project Presentaitons

K. St. John (CUNY & AMNH)

Algorithms #24

4 May 2016 13 / 14

- E - N

Image: A math a math

• Trees can be estimated used distance based methods.

Image: A matrix

Recap

- Trees can be estimated used distance based methods.
- More on searching treespace in lab today.

Recap

- Trees can be estimated used distance based methods.
- More on searching treespace in lab today.
- Email lab reports to kstjohn@amnh.org.

Recap

- Trees can be estimated used distance based methods.
- More on searching treespace in lab today.
- Email lab reports to kstjohn@amnh.org.
- Challenges available at rosalind.info.