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Project & Last Day Notes

Last week of lectures (and lab).

Next Monday (last day of class):

I Project Presentations (about 5 minutes):
brief overview of biological question,
techniques used, and results)

I Open Lab for questions about labs,
Rosalind questions, etc.

For those who cannot make Monday, possible to
do presentation this Wednesday (see me).
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Comparing Algorithms

Measure the size of the problem, usually called n.

Example: for sorting cards, n is the number of cards.

Different approaches can take different amounts of
time.

How long does the algorithm take proportional to n?

Sorting Algorithms demo
Not in demo is the built-in Python sort: timSort (invented by Tim Peters in

2002) that is hybrid of merge sort and insertion sort.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 / 54



Comparing Algorithms

Measure the size of the problem, usually called n.

Example: for sorting cards, n is the number of cards.

Different approaches can take different amounts of
time.

How long does the algorithm take proportional to n?

Sorting Algorithms demo
Not in demo is the built-in Python sort: timSort (invented by Tim Peters in

2002) that is hybrid of merge sort and insertion sort.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 / 54



Comparing Algorithms

Measure the size of the problem, usually called n.

Example: for sorting cards, n is the number of cards.

Different approaches can take different amounts of
time.

How long does the algorithm take proportional to n?

Sorting Algorithms demo
Not in demo is the built-in Python sort: timSort (invented by Tim Peters in

2002) that is hybrid of merge sort and insertion sort.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 / 54



Comparing Algorithms

Measure the size of the problem, usually called n.

Example: for sorting cards, n is the number of cards.

Different approaches can take different amounts of
time.

How long does the algorithm take proportional to n?

Sorting Algorithms demo
Not in demo is the built-in Python sort: timSort (invented by Tim Peters in

2002) that is hybrid of merge sort and insertion sort.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 / 54



Comparing Algorithms

Measure the size of the problem, usually called n.

Example: for sorting cards, n is the number of cards.

Different approaches can take different amounts of
time.

How long does the algorithm take proportional to n?

Sorting Algorithms demo
Not in demo is the built-in Python sort: timSort (invented by Tim Peters in

2002) that is hybrid of merge sort and insertion sort.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 / 54



Analysis of Algorithms

How long does the algorithm take proportional to n?

If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

Then, the algorithm runs in linear time.

Would write “the running time is O(n).”
(“big-Oh” notation).

Usually measure the worst-case running time.

Formally: If the running time of an algorithm is f (n)
for n items, then we f (n) = O(g(n))
if there exists N, c > 0 such that for all n > N,

f (n) < c · g(n)

(That is, after some point, f (n) is smaller than
c · g(n).)
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Analyzing Sorts by Running Times

The sorting algorithms vary in running time, depending on
number of elements and type of data.

Sorting Demo

Thinking about the worst-case, how many operations are
performed in bubbleSort?

def bubbleSort(a): #Let n be # of elements in a.

for j in range(1,len(a)): #Will go through this loop n times.

for i in range(1,len(a)): #Will go through this loop n times.

if a[i-1] > a[i]: #Takes constant time.

a[i-1], a[i] = a[i], a[i-1] #Takes constant time.

The lines in the if statement take constant time, but are
performed n · n time.

Upper bound on running time is O(c · n · n) = O(n2).
(For big-Oh notation, drop constants and keep only largest terms.)
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Complexity Classes: What is NP-hardness?

P
?
= NP: Roughly, if the answer to a

problem can be checked quickly, can
it be computed quickly?

P stands for problems that can be
computed quickly (polynomial time).

NP stands for problems that can be
checked quickly (nondeterministic
polynomial time).

Example: given a geometry proof,
you can check if its correct quickly,
but knowing that, is there a quick
way to find proofs?
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Millennium Prize Problems

In 2000, the Clay Mathematics Institute an-
nounced million dollar prizes for:

Birch and Swinnerton-Dyer
Conjecture

Hodge Conjecture

Navier-Stokes Equations

P vs NP

Poincaré Conjecture

Riemann Hypothesis

Yang-Mills Theory
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Millenium Prize Problems

Grigori Perelman, 1993

In 2010, CMI announced Grigori Perelman
solved:

Birch and Swinnerton-Dyer
Conjecture

Hodge Conjecture

Navier-Stokes Equations

P vs NP

Poincaré Conjecture

Riemann Hypothesis

Yang-Mills Theory

He turned down the prize.
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Poincaré Conjecture

Riemann Hypothesis

Yang-Mills Theory

He turned down the prize.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 10 / 54



P vs. NP

Birch and Swinnerton-Dyer
Conjecture

Hodge Conjecture

Navier-Stokes Equations

P vs. NP

Poincaré Conjecture

Riemann Hypothesis

Yang-Mills Theory
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More Examples of NP Problems
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Traveling Salesman Problem (TSP): find the shortest path
that visits all cities.

Knapsack Problem: fill your backpack with the most valuable
objects without exceeding weight restrictions.

Sudoku: find a solution to a (large) Sudoku puzzle.
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Traveling Salesman Problem (TSP): find the shortest path
that visits all cities.

Knapsack Problem: fill your backpack with the most valuable
objects without exceeding weight restrictions.

Sudoku: find a solution to a (large) Sudoku puzzle.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 12 / 54



P
?
= NP : Why Does It Matter?

wiki

If you could quickly find solutions
to NP-hard problems (i.e. P=NP),
then

Many security systems (such
as the Data Encryption
Standard (DES) used to send
ATM/bank data) would be
easily breached.
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United Airlines

If you could quickly find solutions
to NP-hard problems (i.e. P=NP),
then

Scheduling and routing
questions (such as the
Knapsack question and
Traveling Salesman Problem)
could be done efficiently.
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P
?
= NP : Why Does It Matter?

wiki

If you could quickly find solutions
to NP-hard problems (i.e. P=NP),
then

Some hard biological
questions (such as protein
folding) would be tractable.
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P
?
= NP

P
?
= NP: Roughly, if the answer to

a problem can be checked quickly,
can it be computed quickly?

Solving this, will bring

fame,

fortune, and

change how algorithms are
designed
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In Pairs: Analyze Running Time

Give upper bounds on the worst case running time of:

1 def double(n):

d = 2*n

return d

2 def sum(n):

s = 0

for i in range(n):

s += i

return s

3 def sum2(n):

return n*(n+1)/2

4 def findMin(numList):

m = numList[0]

for i in range(1,len(numList)):

if numList[i] < m:

m = numList[i]

return m

5 (Code from text):

6 (Code from text):
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Analyze Space Requirements

How much space an algorithm uses can
matter.

If you want to align two long sequences
(say 1 million bp each). The dynamic
programming will require a matrix with 1
million × 1 million entries, requiring
106 × 106 = 1012 places of storage.

Can easily overwhelm the memory on
your computer.

Can measure space usage as we did for
time complexity.
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Analyze Space Requirements

insertionSort sorts “in place”, and use no
additional space.

Our sequence alignment under
Needleman-Wunsch used an additional
O(n2) space to store the dynamic
programming array.
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In Pairs: Analyze Space Requirement

The running time of bubblesort is analyzed above. Give upper bounds on the
worst case space needed for:

1 def double(n):

d = 2*n

return d

2 def sum(n):

s = 0

for i in range(n):

s += i

return s

3 def sum2(n):

return n*(n+1)/2

4 def findMin(numList):

m = numList[0]

for i in range(1,len(numList)):

if numList[i] < m:

m = numList[i]

return m

5 def findMaxDist(numList):

n = len(numList)

d = np.zeros(n,n)

for i in range(1,n):

for j in range(1,n)

d[i,j] = abs(i,j)

return np.amax(d)

6 def findMaxDist2(numList):

n = len(numList)

m = 0

for i in range(1,n):

for j in range(1,n)

if abs(i,j) > m:

m = abs(i,j)

return m

7 (Code from text):
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More Complexity: Fixed Parameter Tractability
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Roughly, the ability to efficiently calculate instances that are small
with respect to some parameter is called fixed parameter tractability.

Though NP-hard, some problems can be solved in time polynomial in
the size of the input size but exponential in the size of a fixed
parameter.
Often, the parameter, k , will be the distance between the trees.
For example, the distance between the two trees can be calculated by
shrinking the common regions and focusing on the differences, which
can be bounded by k.
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Recap: Small Parsimony Problem

Last Week: given a tree with leaves
labeled by sequences, computed the
parsimony score of the tree.

Thinking in terms of time complexity:
How long does it take?
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Algorithm Design: Scoring Trees Under Parsimony

AMNH

How do you code this?

I Input: A tree and sequences on the leaves.
I Output: The parsimony score of the tree

(with respect to the leaf labels).

What data structures do you need?

I Tree structure
I Count of the number changes

Algorithm:

I First pass: Starting at the leaves, label the
internal leaves (with possible multiple labels).

I Second pass: Starting at the root, choose a
labeling, then work towards the leaves
minimizing the conflicts.
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Fitch’s Algorithm: Pseudocode

AMNH

First pass: Starting at the leaves, label the internal

leaves (with possible multiple labels):

I Given labels for children, compute label for
the parent:
A T A T G

A A T T G → A AT AT T G
I Go position by position:

F If overlap, use that label.
F If no overlap, use the union.

I Useful Python container type: set
F Has functions for union and intersection of

sets.
F s1 = set(l1)

s2 = set(l2)

print s1.intersection(s2)

print s1.union(s2)
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Fitch’s Algorithm: Pseudocode

AMNH

First pass: Starting at the leaves, label the internal

leaves (with possible multiple labels):

I Given labels for children, compute label for
the parent:
A T A T G

A A T T G → A AT AT T G
I Go position by position: for-loop

F If overlap, use that label. if-statement
F If no overlap, use the union.

I Useful Python container type: set
F Has functions for union and intersection of

sets.
F s1 = set(l1) set operations

s2 = set(l2)

print s1.intersection(s2)

print s1.union(s2)
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Fitch’s Algorithm: Pseudocode

AMNH

Second pass: Starting at the root, choose a labeling,

then work towards the leaves minimizing the conflicts.

I At root, choose one labeling:
A AT AT T G → A A T T G

I For all other nodes, compare to the parent:
A T A T G

AT AT G ACT G → A T G T G
I Go position by position:

F If overlap, use that label.
F If no overlap, choose label from child.
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Fitch’s Algorithm: Pseudocode

AMNH

Second pass: Starting at the root, choose a labeling,

then work towards the leaves minimizing the conflicts.

I At root, choose one labeling:
A AT AT T G → A A T T G

I For all other nodes, compare to the parent:
A T A T G

AT AT G ACT G → A T G T G
I Go position by position: for-loop

F If overlap, use that label. if-statement
F If no overlap, choose label from child.
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In Pairs: Analyze Fitch’s Algorithm

AMNH

What is the running time and space require-
ments for:

First pass: Starting at the leaves, label the
internal leaves (with possible multiple
labels).

Second pass: Starting at the root, choose
a labeling, then work towards the leaves
minimizing the conflicts.

Print out all tree on n leaves.
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Searching for Optimal Trees

Large Parsimony Problem: Given sequences
for leaves, find the optimal scoring tree.

Visually: think of the trees on a 2D map and
the height above sea level is the score.

Works for any optimality criteria (i.e. same
analogy works for maximum likelihood).
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Analogy: Find the Highest Point

polymaps.org
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Analogy: Find the Highest Point

Sampling:

Choose 1000 random points.

Find height at each point.

Output the sampled point with largest
height.

Will you reach the highest point?

Only if very lucky or a very dense sample.
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Analogy: Find the Highest Point

Hill Climbing:

Start at the harbor.

Can see 25 meters in all directions.

Walk upwards, repeat.

Will you reach the highest point?

Maybe, but maybe not.

I Could reach small peaks, but miss
the larger ones.

I Start in multiple places to see more.
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Local Search Techniques

Goal: Find the point with the optimal score

Local search techniques prevail:

I Begin with a point
I Choose the next point from its neighbors (e.g. best scoring)
I Repeat

Many variations on the theme: branch-and-bound, MCMC, genetic
algorithms,...
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Popular Tree Metrics

Nicotiana
Campanula
Scaevola
Stokesia
Dimorphotheca
Senecio
Gerbera
Gazania
Echinops
Felicia
Tagetes
Chromolaena
Blennosperma
Coreopsis
Vernonia
Cacosmia
Cichorium
Achillea
Carthamnus
Flaveria
Piptocarpa
Helianthus
Tragopogon
Chrysanthemum
Eupatorium
Lactuca
Barnadesia
Dasyphyllum

Nicotiana
Campanula
Scaevola
Stokesia
Dimorphotheca
Senecio
Gazania
Gerbera
Echinops
Felicia
Tagetes
Chromolaena
Blennosperma
Coreopsis
Vernonia
Cacosmia
Cichorium
Achillea
Carthamnus
Flaveria
Piptocarpa
Helianthus
Tragopogon
Chrysanthemum
Eupatorium
Lactuca
Barnadesia
Dasyphyllum

Those based on tree rearrangements:

Subtree Prune and Regraft (SPR)

Tree Bisection and Reconnection (TBR)

Nearest Neighbor Interchange (NNI)

Used for Searching for Optimal Trees, NP-hard

Those based on comparing tree vectors:

Robinson-Foulds (RF)

Rooted Triples (RT)

Quartet Distance

Billera-Holmes-Vogtmann (BHV or geodesic))

Used for comparing trees, poly time
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NNI Metric

C

E
D

BA

G

F →

A

E

C

D

B

G
F

The NNI distance between two trees is the minimal number of moves
needed to transform one to the other (NP-hard, DasGupta et al. ‘97).
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SPR Distance

F

G

E
D

C

A B A B

F

G

E
D

C
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F

G

E
D

C

SPR distance is the minimal number of moves that transforms one
tree into the other.

SPR for rooted trees is NP-hard (Bordewich & Semple ‘05).

SPR for unrooted trees is NP-hard (Hickey et al. ‘08).

SAT-based heuristic (Bonet & S ‘09).
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TBR Distance
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TBR distance is the minimal number of moves that transforms one
tree into the other.

TBR is NP-hard and FPT. (Allen & Steel ‘01)

TBR has a linear time 5-approximation and a polynomial time
3-approximation (Amenta, Bonet, Mahindru, & S ‘06;

Bordewich, McCartin, & Semple ‘08)
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Tree Rearrangements
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Nearest Neighbor Interchange Subtree Prune & Regraft Tree Bisection & Reconnection

(NNI) (SPR) (TBR)
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Metrics Matter

NNI & SPR Isoscope
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Landscapes

Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

A treespace with assigned scores is often called a landscape.
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What does the landscape look like?

Each landscape depends on the number of taxa and the score of each tree
(usually derived from the inputted character sequences).

(from wikipedia)

If very smooth, ‘hill climbing’ will work
well.

The phylogeny problem is that of finding those trees which optimise some function of the input data.

We may end up with several trees optimising some optimality criterion (say parsimony) and a completely different set of
trees optimising another criterion. There are hundreds of phylogenetic optimality criteria! This is a problem, but it's not the
one in which I'm interested today.

If very rugged, need more sophisticated
searches that use the underlying struc-
ture of the space.
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Adjusting Search Space

SPR metric NNI metric

Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

The same data, organized by different tree metrics.
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Attraction Basins

resalliance.org
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Adjusting Search Space

SPR metric NNI metric

Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

Simplest Case: for compatible character sequences (‘perfect data’):

Under SPR, there is a single attraction basin.

Under NNI, multiple attraction basins occur even for perfect data.
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In Pairs: Tree Rearrangements

F

G

E
D

C

A B

For the tree on the left:

1 What are the NNI neighbors?

2 Give a SPR neighbor that is not a NNI neighbor.

3 Give a TBR neighbor that is not an SPR neighbor.

4 Find a tree that is NNI distance 3 but SPR
distance 1.

5 Write an algorithm for given a tree T and a
specific edge/node, the two NNI neighbors around
that edge.
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Weighted Trees

Philippe et al., ‘05

Branch weights are part of the model.

Indicated by length of edges in drawing.
Two classic trees with same underlying topology.
The metrics and search spaces above treat them as identical.
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Popular Tree Metrics

Nicotiana
Campanula
Scaevola
Stokesia
Dimorphotheca
Senecio
Gerbera
Gazania
Echinops
Felicia
Tagetes
Chromolaena
Blennosperma
Coreopsis
Vernonia
Cacosmia
Cichorium
Achillea
Carthamnus
Flaveria
Piptocarpa
Helianthus
Tragopogon
Chrysanthemum
Eupatorium
Lactuca
Barnadesia
Dasyphyllum

Nicotiana
Campanula
Scaevola
Stokesia
Dimorphotheca
Senecio
Gazania
Gerbera
Echinops
Felicia
Tagetes
Chromolaena
Blennosperma
Coreopsis
Vernonia
Cacosmia
Cichorium
Achillea
Carthamnus
Flaveria
Piptocarpa
Helianthus
Tragopogon
Chrysanthemum
Eupatorium
Lactuca
Barnadesia
Dasyphyllum

Those based on tree rearrangements:

Subtree Prune and Regraft (SPR)

Tree Bisection and Reconnection (TBR)

Nearest Neighbor Interchange (NNI)

Used for Searching for Optimal Trees, NP-hard

Those based on comparing tree vectors:

Robinson-Foulds (RF)

Rooted Triples (RT)

Quartet Distance

Billera-Holmes-Vogtmann (BHV or geodesic))

Used for comparing trees, poly time
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Trees as Vectors

1

2 3 4

5

T1

1

2 4 3

5

T2
T0

12|3
45

124|35

123|45
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4
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T0 = (1, 2, 3, 4, 5) 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
T1 = ((1, 2), (3, (4, 5)) 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
T2 = ((1, 2), (4, (3, 5)) 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0
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BHV Distance

Billera, Holmes, Vogtmann ‘01

Billera, Holmes, and Vogtmann ‘01
have a continuous metric space of
trees.

View each split in a tree as a
coordinate in the space.

Identify edges of orthants to form
space
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Identify Edges of Orthants

(All images from Billera, Holmes, Vogtmann ‘01)
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BHV & NNI Distances

1 5

423

1 5

432

3 5

412

123|45

12|345

23|145

13|245

1

2 3 4

5

(1,1,0,0)

(1,0
,1,0
)

1

3
2

4

5

3

2

1

4

5

(3,2,0,0)

1

2 3 4

5

(3,0,0,2)

Simplest move between orthants: shrink coordinate/edge and expand.

Corresponds to a Nearest Neighbor Interchange (NNI) move on the topology.
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In Pairs: Continuous Treespace

1

2 3 4

5

T1

1

2 4 3

5

T2
T0

12|3
45

124|35

123|45

123|45

12|345

23|145

13|245

1

2 3 4

5

(1,1,0,0)

(1,0
,1,0
)

1

3
2

4

5

3

2

1

4

5

(3,2,0,0)

1

2 3 4

5

(3,0,0,2)

1 What is the distance between T1 and T2?

2 What is the average (tree at the midpoint) of
T1 and T2?

3 Give three trees that have distance 1 to the
origin, T0 (star tree).

4 Lower figure: what is the distance between
(3,0,0,2) and (1,1,0,0)?

5 What is a good average/consensus for the
four trees?
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Recap

Efficiency (in time and space) matters
when data gets large.

More on tree searching next lecture.

Email lab reports to kstjohn@amnh.org.

Challenges available at rosalind.info.
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