Algorithmic Approaches for Biological Data, Lecture #23 J

Katherine St. John

City University of New York
American Museum of Natural History

2 May 2016



Outline

@ Project & Last Day Notes

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 2 /54



Outline

@ Project & Last Day Notes

@ Complexity Revisited: NP-hardness, Time & Space
Complexity

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 2 /54



Outline

@ Project & Last Day Notes

@ Complexity Revisited: NP-hardness, Time & Space
Complexity

@ Searching for Optimal Trees

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 2 /54



Outline

Project & Last Day Notes

Complexity Revisited: NP-hardness, Time & Space
Complexity

Searching for Optimal Trees

@ Edit distances between trees

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 2 /54



Outline

@ Project & Last Day Notes

@ Complexity Revisited: NP-hardness, Time & Space
Complexity

@ Searching for Optimal Trees
@ Edit distances between trees

@ Tree Vectors

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 2 /54



Project & Last Day Notes

@ Last week of lectures (and lab).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 3 /54



Project & Last Day Notes

@ Last week of lectures (and lab).

@ Next Monday (last day of class):

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 3 /54



Project & Last Day Notes

@ Last week of lectures (and lab).
@ Next Monday (last day of class):

» Project Presentations (about 5 minutes):
brief overview of biological question,
techniques used, and results)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 3 /54



Project & Last Day Notes

@ Last week of lectures (and lab).
@ Next Monday (last day of class):

» Project Presentations (about 5 minutes):
brief overview of biological question,
techniques used, and results)

» Open Lab for questions about labs,
Rosalind questions, etc.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 3 /54



Project & Last Day Notes

@ Last week of lectures (and lab).
@ Next Monday (last day of class):
» Project Presentations (about 5 minutes):
brief overview of biological question,
techniques used, and results)

» Open Lab for questions about labs,
Rosalind questions, etc.

@ For those who cannot make Monday, possible to
do presentation this Wednesday (see me).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 3 /54



Complexity Revisited: Running Times

@ Theoretical Estimates on Running Time

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 4 /54



Complexity Revisited: Running Times

@ Theoretical Estimates on Running Time

@ big-Oh notation

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 4 /54



Complexity Revisited: Running Times

@ Theoretical Estimates on Running Time
@ big-Oh notation

@ Complexity Classes

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 4 /54



Complexity Revisited: Running Times

@ Theoretical Estimates on Running Time
@ big-Oh notation

@ Complexity Classes

@ Pvs. NP

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 4 /54



Comparing Algorithms

@ Measure the size of the problem, usually called n.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 /54



Comparing Algorithms

@ Measure the size of the problem, usually called n.

@ Example: for sorting cards, n is the number of cards.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 /54



Comparing Algorithms

@ Measure the size of the problem, usually called n.
@ Example: for sorting cards, n is the number of cards.

@ Different approaches can take different amounts of
time.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 /54



Comparing Algorithms

Measure the size of the problem, usually called n.

Example: for sorting cards, n is the number of cards.

Different approaches can take different amounts of
time.

How long does the algorithm take proportional to n?

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 /54



Comparing Algorithms

@ Measure the size of the problem, usually called n.
@ Example: for sorting cards, n is the number of cards.

@ Different approaches can take different amounts of
time.

@ How long does the algorithm take proportional to n?

@ Sorting Algorithms demo
Not in demo is the built-in Python sort: timSort (invented by Tim Peters in

2002) that is hybrid of merge sort and insertion sort.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 5 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 6 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

@ If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 6 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

@ If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

@ Then, the algorithm runs in linear time.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

6 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

@ If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

@ Then, the algorithm runs in linear time.

@ Would write “the running time is O(n)."
("big-Oh" notation).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 6 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

@ If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

@ Then, the algorithm runs in linear time.

@ Would write “the running time is O(n)."
("big-Oh" notation).

@ Usually measure the worst-case running time.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 6 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

@ If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

@ Then, the algorithm runs in linear time.

@ Would write “the running time is O(n)."
("big-Oh" notation).

@ Usually measure the worst-case running time.

@ Formally: If the running time of an algorithm is f(n)
for n items, then we f(n) = O(g(n))

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 6 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

@ If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

@ Then, the algorithm runs in linear time.

@ Would write “the running time is O(n)."
("big-Oh" notation).

@ Usually measure the worst-case running time.

@ Formally: If the running time of an algorithm is f(n)
for n items, then we f(n) = O(g(n))
if there exists N, c > 0 such that for all n > N,

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 6 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

@ If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

@ Then, the algorithm runs in linear time.

@ Would write “the running time is O(n)."
("big-Oh" notation).

@ Usually measure the worst-case running time.

@ Formally: If the running time of an algorithm is f(n)
for n items, then we f(n) = O(g(n))
if there exists N, c > 0 such that for all n > N,

f(n) < c-g(n)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 6 /54



Analysis of Algorithms

@ How long does the algorithm take proportional to n?

@ If an algorithm looks at each element once (or a
constant number of times), the running time is
proportional to n, the number of elements.

@ Then, the algorithm runs in linear time.

@ Would write “the running time is O(n)."
("big-Oh" notation).

@ Usually measure the worst-case running time.

@ Formally: If the running time of an algorithm is f(n)
for n items, then we f(n) = O(g(n))
if there exists N, c > 0 such that for all n > N,

f(n) < c-g(n)

(That is, after some point, f(n) is smaller than

c-g(n).)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 6 /54



Analyzing Sorts by Running Times

@ The sorting algorithms vary in running time, depending on
number of elements and type of data.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

@ The sorting algorithms vary in running time, depending on
number of elements and type of data.

@ Sorting Demo

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

@ The sorting algorithms vary in running time, depending on
number of elements and type of data.

@ Sorting Demo

@ Thinking about the worst-case, how many operations are
performed in bubbleSort?

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

@ The sorting algorithms vary in running time, depending on
number of elements and type of data.

@ Sorting Demo

@ Thinking about the worst-case, how many operations are
performed in bubbleSort?

def bubbleSort(a): #Let n be # of elements in a.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

@ The sorting algorithms vary in running time, depending on
number of elements and type of data.

@ Sorting Demo

@ Thinking about the worst-case, how many operations are
performed in bubbleSort?

def bubbleSort(a): #Let n be # of elements in a.
for j in range(1,len(a)): #Will go through this loop n times.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

@ The sorting algorithms vary in running time, depending on
number of elements and type of data.

@ Sorting Demo

@ Thinking about the worst-case, how many operations are
performed in bubbleSort?

def bubbleSort(a): #Let n be # of elements in a.
for j in range(1,len(a)): #Will go through this loop n times.
for i in range(1,len(a)): #Will go through this loop n times.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

@ The sorting algorithms vary in running time, depending on
number of elements and type of data.

@ Sorting Demo

@ Thinking about the worst-case, how many operations are
performed in bubbleSort?
def bubbleSort(a): #Let n be # of elements in a.
for j in range(1,len(a)): #Will go through this loop n times.

for i in range(1,len(a)): #Will go through this loop n times.
if ali-1] > a[il: #Takes constant time.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

@ The sorting algorithms vary in running time, depending on
number of elements and type of data.

@ Sorting Demo

@ Thinking about the worst-case, how many operations are
performed in bubbleSort?

def bubbleSort(a): #Let n be # of elements in a.
for j in range(1,len(a)): #Will go through this loop n times.
for i in range(1,len(a)): #Will go through this loop n times.
if ali-1] > a[il: #Takes constant time.
ali-1], ali] = alil, al[i-1] #Takes constant time.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

K. St. John (CUNY & AMNH)

The sorting algorithms vary in running time, depending on
number of elements and type of data.

Sorting Demo

@ Thinking about the worst-case, how many operations are

performed in bubbleSort?

def bubbleSort(a): #Let n be # of elements in a.
for j in range(1,len(a)): #Will go through this loop n times.
for i in range(1,len(a)): #Will go through this loop n times.
if ali-1] > a[il: #Takes constant time.
ali-1], ali] = alil, al[i-1] #Takes constant time.

The lines in the if statement take constant time, but are
performed n - n time.

Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

K. St. John (CUNY & AMNH)

The sorting algorithms vary in running time, depending on
number of elements and type of data.

@ Sorting Demo

@ Thinking about the worst-case, how many operations are

performed in bubbleSort?

def bubbleSort(a): #Let n be # of elements in a.
for j in range(1,len(a)): #Will go through this loop n times.
for i in range(1,len(a)): #Will go through this loop n times.
if ali-1] > a[il: #Takes constant time.
ali-1], ali] = alil, al[i-1] #Takes constant time.
The lines in the if statement take constant time, but are

performed n - n time.

Upper bound on running time is O(c - n- n) = O(n?).

Algorithms #23 2 May 2016 7 /54



Analyzing Sorts by Running Times

K. St. John (CUNY & AMNH)

The sorting algorithms vary in running time, depending on
number of elements and type of data.

Sorting Demo

Thinking about the worst-case, how many operations are

performed in bubbleSort?
def bubbleSort(a): #Let n be # of elements in a.
for j in range(1,len(a)): #Will go through this loop n times.
for i in range(1,len(a)): #Will go through this loop n times.

if ali-1] > al[il: #Takes constant time.
ali-1], al[i]l = al[i], ali-1] #Takes constant time.

The lines in the if statement take constant time, but are
performed n - n time.

Upper bound on running time is O(c - n- n) = O(n?).

(For big-Oh notation, drop constants and keep only largest terms.)

Algorithms #23 2 May 2016 7 /54



Complexity Classes: What is NP-hardness?

o P < NP: Roughly, if the answer to a
problem can be checked quickly, can
it be computed quickly?

CLAY
MATHEMATICS
INSTITUTE

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

8 /54



Complexity Classes: What is NP-hardness?

o P < NP: Roughly, if the answer to a
problem can be checked quickly, can
it be computed quickly?

@ P stands for problems that can be
computed quickly (polynomial time).

@ NP stands for problems that can be
checked quickly (nondeterministic

CLAY polynomial time).
MATHEMATICS
INSTITUTE

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 8 /54



Complexity Classes: What is NP-hardness?

o P < NP: Roughly, if the answer to a
problem can be checked quickly, can
it be computed quickly?

@ P stands for problems that can be
computed quickly (polynomial time).

@ NP stands for problems that can be
checked quickly (nondeterministic

CLAY polynomial time).
MATHEMATICS @ Example: given a geometry proof,
INSTITUTE you can check if its correct quickly,

but knowing that, is there a quick
way to find proofs?

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 8 /54



Millennium Prize Problems

In 2000, the Clay Mathematics Institute an-

nounced million dollar prizes for:

CLAY °
MATHEMATICS °
INSTITUTE °

Birch and Swinnerton-Dyer
Conjecture

Hodge Conjecture
Navier-Stokes Equations
P vs NP

Poincaré Conjecture
Riemann Hypothesis

Yang-Mills Theory

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

9 /54



Millenium Prize Problems

In 2010, CMI announced Grigori Perelman
solved:

@ Birch and Swinnerton-Dyer
Conjecture

Hodge Conjecture

Navier-Stokes Equations

@ P vs NP

@ Poincaré Conjecture

Grigori Perelman, 1993

@ Riemann Hypothesis

® Yang-Mills Theory

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 10 / 54



Millenium Prize Problems

In 2010, CMI announced Grigori Perelman
solved:

@ Birch and Swinnerton-Dyer
Conjecture

@ Hodge Conjecture
@ Navier-Stokes Equations

@ P vs NP

@ Poincaré Conjecture

Grigori Perelman, 1993

@ Riemann Hypothesis
® Yang-Mills Theory

He turned down the prize.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

10 / 54



P vs. NP

@ Birch and Swinnerton-Dyer
Conjecture

@ Hodge Conjecture

@ Navier-Stokes Equations

@ Pvs. NP
CLAY @ Poincaré Conjecture
MATHEMATICS @ Riemann Hypothesis
INSTITUTE

@ Yang-Mills Theory

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 11 / 54



More Examples of NP Problems

Traveling Salesman Problem (TSP): find the shortest path
that visits all cities.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 12 / 54



More Examples of NP Problems

Traveling Salesman Problem (TSP): find the shortest path
that visits all cities.

! = , .
- S, O Knapsack Problem: fill your backpack with the most valuable
; 7jj = objects without exceeding weight restrictions.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 12 / 54



More Examples of NP Problems

Traveling Salesman Problem (TSP): find the shortest path
that visits all cities.

! = , .
- S, 5T Knapsack Problem: fill your backpack with the most valuable
R objects without exceeding weight restrictions.
=

Sudoku: find a solution to a (large) Sudoku puzzle.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 12 / 54



P £ NP: Why Does It Matter?

If you could quickly find solutions
to NP-hard problems (i.e. P=NP),
then

@ Many security systems (such
as the Data Encryption
Standard (DES) used to send
ATM/bank data) would be
easily breached.

wiki

(=] = = = DQAC
K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 13 / 54



P £ NP: Why Does It Matter?

If you could quickly find solutions
to NP-hard problems (i.e. P=NP),
then

@ Scheduling and routing
questions (such as the
Knapsack question and

N = s R Traveling Salesman Problem)

could be done efficiently.

United Airlines

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 14 / 54



P £ NP: Why Does It Matter?

If you could quickly find solutions
to NP-hard problems (i.e. P=NP),
then

@ Some hard biological
questions (such as protein
wiki folding) would be tractable.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 15 / 54



CLAY
MATHEMATICS
INSTITUTE

K. St. John (CUNY & AMNH)

P L NP: Roughly, if the answer to
a problem can be checked quickly,

can it be computed quickly?

Algorithms #23

2 May 2016

16 / 54



P L NP: Roughly, if the answer to
a problem can be checked quickly,
can it be computed quickly?

Solving this, will bring

@ fame,

CLAY
MATHEMATICS
INSTITUTE

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

16 / 54



P L NP: Roughly, if the answer to
a problem can be checked quickly,
can it be computed quickly?

Solving this, will bring

@ fame,

CLAY @ fortune, and
MATHEMATICS
INSTITUTE

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

16 / 54



P L NP: Roughly, if the answer to
a problem can be checked quickly,
can it be computed quickly?

Solving this, will bring

@ fame,

CLAY @ fortune, and
MATHEMATICS @ change how algorithms are
INSTITUTE designed

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

16 / 54



In Pairs: Analyze Running Time

Give upper bounds on the worst case running time of:

@ der double(m):
d = 2%n
return d

e def sum(n):
s =0
for i in range(n):
s +=1i
return s
e def sum2(n):
return n*(n+1)/2
@ der findMin(nunList):
m = numList[0]
for i in range(1,len(numList)):
if numList[i] < m:
m = numList[i]
return m

K. St. John (CUNY & AMNH)

e (Code from text):

def selectionSort(alist):
for fillslot in range(lenCalist)-1,0,-1):
position0fMax=0
for location in range(1,fillslot+1):
if alist[location]>alist[position0fMax]:
position0fMax = location

temp = alist[fillslot]
alist[fillslot] = alist[position0fMax]
alist[position0fMax] = temp

alist = [54,26,93,17,77,31,44,55,20]
selectionSort(alist)
print(alist)

e (Code from text):

def insertionSort(alist):
for index in range(1,len(alist)):

currentvalue = alist[index]
position = index

while position>@ and alist[position-1l>currentvalue:
alist[position]=alist[position-1]
position = position-1
alist[position]=currentvalue
alist = [54,26,93,17,77,31,44,55,20]

insertionSort(alist)
print(alist)

Algorithms #23 2 May 2016 17 / 54



Analyze Space Requirements

@ How much space an algorithm uses can
matter.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 18 / 54



Analyze Space Requirements

@ How much space an algorithm uses can
matter.

@ If you want to align two long sequences
(say 1 million bp each). The dynamic
programming will require a matrix with 1
million x 1 million entries, requiring
10° x 10° = 10'? places of storage.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 18 / 54



Analyze Space Requirements

@ How much space an algorithm uses can
matter.

@ If you want to align two long sequences
(say 1 million bp each). The dynamic
programming will require a matrix with 1
million x 1 million entries, requiring
10° x 10° = 10'? places of storage.

@ Can easily overwhelm the memory on
your computer.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 18 / 54



Analyze Space Requirements

K. St. John (CUNY & AMNH)

How much space an algorithm uses can
matter.

If you want to align two long sequences
(say 1 million bp each). The dynamic
programming will require a matrix with 1
million x 1 million entries, requiring

10° x 10° = 10'? places of storage.

Can easily overwhelm the memory on
your computer.

Can measure space usage as we did for
time complexity.

Algorithms #23 2 May 2016

18 / 54



Analyze Space Requirements

def insertionSort(alist):

o i rengect Lencatise: dditional
currentvalue = alistCindes] aaditional space.
o

position = ind
while position>d and alist[position-1]>currentvalue:
alist[position]=alist[position-1]
position = position-1
alist[position]=currentvalue
alist - [54,26,93,17,77,31,44,55,20]
>

insertionsort(alist:
print(alist)

K. St. John (CUNY & AMNH) Algorithms #23

@ insertionSort sorts “in place”, and use no

2 May 2016

19 / 54



Analyze Space Requirements

@ insertionSort sorts “in place”, and use no
additional space.

def insertionSort(alist):
for index in range(1,len(alist)):

currentvalue = alist[index]
position = index

et pormtonoatt st pestionray e e @ Our sequence alignment under
Rt gk .
olistiposttionj-currentvalue Needleman-Wunsch used an additional
iR O(n?) space to store the dynamic
print(alist)

programming array.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 19 / 54



Analyze Space Requirements

@ insertionSort sorts “in place”, and use no
additional space.

def insertionSort(alist):
for index in range(1,len(alist)):

currentvalue = alist[index]
position = index

et pormtonoatt st pestionray e e @ Our sequence alignment under
Rt gk .
olistiposttionj-currentvalue Needleman-Wunsch used an additional
iR O(n?) space to store the dynamic
print(alist)

programming array.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 19 / 54



In Pairs: Analyze Space Requirement

The running time of bubblesort is analyzed above. Give upper bounds on the
worst case space needed for:

Q et
Q cet

© cet
Q et

Q cet

K. St. John (CUNY & AMNH)

double(n):
d = 2*n
return d

sum(n) :

s =0

for i in range(n):
s += i

return s

sum2(n) :
return n*(n+1)/2

findMin(numList) :
m = numList[0]
for i in range(1,len(numList)):
if numList[i] < m:
m = numList[i]
return m

findMaxDist (numList) :
n = len(numList)
d = np.zeros(n,n)
for i in range(1,n):
for j in range(1,n)
dli,jl = abs(i,j)
return np.amax(d)

Algorithms #23

@ def findMaxDist2(numList):

n = len(numlList)
m=0
for i in range(1,n):
for j in range(1,n)
if abs(i,j) > m:
m = abs(i,j)
return m

o (Code from text):

def selectionSort(alist):
for fillslot in range(lenCalist)-1,0,-1):
position0fMax=0
for location in range(l,fillslot+1):
if alist[location]>alist[position0fMax]:
positionOfMax = Llocation

temp = alist[fillslot]
alist[fillslot] = alist[position0fMax]
alist[position0fMax] = temp

alist = [54,26,93,17,77,31,44,55,20]

selectionSort(alist)
print(alist)

2 May 2016

20 / 54



More Complexity: Fixed Parameter Tractability

@ Roughly, the ability to efficiently calculate instances that are small
with respect to some parameter is called fixed parameter tractability.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 21 / 54



More Complexity: Fixed Parameter Tractability

@ Roughly, the ability to efficiently calculate instances that are small
with respect to some parameter is called fixed parameter tractability.

@ Though NP-hard, some problems can be solved in time polynomial in
the size of the input size but exponential in the size of a fixed

parameter.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 21 / 54



More Complexity: Fixed Parameter Tractability

@ Roughly, the ability to efficiently calculate instances that are small
with respect to some parameter is called fixed parameter tractability.

@ Though NP-hard, some problems can be solved in time polynomial in
the size of the input size but exponential in the size of a fixed
parameter.

o Often, the parameter, k, will be the distance between the trees.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 21 / 54



More Complexity: Fixed Parameter Tractability

@ Roughly, the ability to efficiently calculate instances that are small
with respect to some parameter is called fixed parameter tractability.

@ Though NP-hard, some problems can be solved in time polynomial in
the size of the input size but exponential in the size of a fixed
parameter.

o Often, the parameter, k, will be the distance between the trees.

@ For example, the distance between the two trees can be calculated by
shrinking the common regions and focusing on the differences, which
can be bounded by k.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 21 / 54



Recap: Small Parsimony Problem

@ Last Week: given a tree with leaves
labeled by sequences, computed the
parsimony score of the tree.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

22 / 54



Recap: Small Parsimony Problem

@ Last Week: given a tree with leaves
labeled by sequences, computed the
parsimony score of the tree.

@ Thinking in terms of time complexity:
How long does it take?

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 22 / 54



Algorithm Design: Scoring Trees Under Parsimony

@ How do you code this?

K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016

23 / 54



Algorithm Design: Scoring Trees Under Parsimony

@ How do you code this?

> Input: A tree and sequences on the leaves.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 23 / 54



Algorithm Design: Scoring Trees Under Parsimony

@ How do you code this?

> Input: A tree and sequences on the leaves.
» Output: The parsimony score of the tree
(with respect to the leaf labels).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 23 / 54



Algorithm Design: Scoring Trees Under Parsimony

@ How do you code this?

> Input: A tree and sequences on the leaves.
» Output: The parsimony score of the tree
(with respect to the leaf labels).

RSN S it e @ What data structures do you need?

AMNH

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 23 / 54



Algorithm Design: Scoring Trees Under Parsimony

@ How do you code this?

> Input: A tree and sequences on the leaves.
» Output: The parsimony score of the tree
(with respect to the leaf labels).

RSN S it e @ What data structures do you need?

= » Tree structure

AMNH

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 23 / 54



Algorithm Design: Scoring Trees Under Parsimony

@ How do you code this?

> Input: A tree and sequences on the leaves.
» Output: The parsimony score of the tree
(with respect to the leaf labels).

RSN S it e @ What data structures do you need?

= » Tree structure
» Count of the number changes

AMNH

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 23 / 54



Algorithm Design: Scoring Trees Under Parsimony

@ How do you code this?

> Input: A tree and sequences on the leaves.
» Output: The parsimony score of the tree
(with respect to the leaf labels).

RSN S it e @ What data structures do you need?

= » Tree structure
» Count of the number changes

@ Algorithm:

AMNH

» First pass: Starting at the leaves, label the
internal leaves (with possible multiple labels).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 23 / 54



Algorithm Design: Scoring Trees Under Parsimony

@ How do you code this?

> Input: A tree and sequences on the leaves.
» Output: The parsimony score of the tree
(with respect to the leaf labels).

@ What data structures do you need?

> Tree structure
» Count of the number changes

@ Algorithm:

AMNH

» First pass: Starting at the leaves, label the
internal leaves (with possible multiple labels).

» Second pass: Starting at the root, choose a
labeling, then work towards the leaves
minimizing the conflicts.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 23 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position:

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position:
* If overlap, use that label.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position:
* If overlap, use that label.
* If no overlap, use the union.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position:
* If overlap, use that label.
* If no overlap, use the union.
» Useful Python container type: set

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position:
* If overlap, use that label.
* If no overlap, use the union.
» Useful Python container type: set
* Has functions for union and intersection of
sets.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position:
* If overlap, use that label.
* If no overlap, use the union.
» Useful Python container type: set
* Has functions for union and intersection of

sets.
* s1 = set(11)
s2 = set(12)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position:
* If overlap, use that label.
* If no overlap, use the union.
» Useful Python container type: set
* Has functions for union and intersection of

sets.
* s1 = set(11)
s2 = set(12)

print sl.intersection(s2)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position:
* If overlap, use that label.
* If no overlap, use the union.
» Useful Python container type: set
* Has functions for union and intersection of

sets.
* s1 = set(11)
s2 = set(12)

print sl.intersection(s2)
print sl.union(s2)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 24 / 54



Fitch's Algorithm: Pseudocode

@ First pass: Starting at the leaves, label the internal
leaves (with possible multiple labels):

» Given labels for children, compute label for
the parent:
ATATG
AATTG — AATATTG
» Go position by position: for-loop
* |If overlap, use that label. if-statement
* If no overlap, use the union.
» Useful Python container type: set
* Has functions for union and intersection of

sets.
* s1 = set(l1l) set operations
s2 = set(12)

print sl.intersection(s2)
print sl.union(s2)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 25 / 54



Fitch's Algorithm: Pseudocode

@ Second pass: Starting at the root, choose a labeling,
then work towards the leaves minimizing the conflicts.

AMNH

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 26 / 54



Fitch's Algorithm: Pseudocode

@ Second pass: Starting at the root, choose a labeling,
then work towards the leaves minimizing the conflicts.

» At root, choose one labeling:

AMNH

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 26 / 54



Fitch's Algorithm: Pseudocode

@ Second pass: Starting at the root, choose a labeling,
then work towards the leaves minimizing the conflicts.

» At root, choose one labeling:
AATATTG—-AATTG
» For all other nodes, compare to the parent:

AMNH

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 26 / 54



Fitch's Algorithm: Pseudocode

@ Second pass: Starting at the root, choose a labeling,
then work towards the leaves minimizing the conflicts
» At root, choose one labeling:
AATATTG—-AATTG

» For all other nodes, compare to the parent:
ATATG

AT AT G ACT G
AMNH

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 26 / 54



Fitch's Algorithm: Pseudocode

@ Second pass: Starting at the root, choose a labeling,
then work towards the leaves minimizing the conflicts
» At root, choose one labeling:
AATATTG—-AATTG

» For all other nodes, compare to the parent:
ATATG

AT ATGACTG — ATGTG
AMNH

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 26 / 54



Fitch's Algorithm: Pseudocode

@ Second pass: Starting at the root, choose a labeling,
then work towards the leaves minimizing the conflicts

» At root, choose one labeling:
AATATTG—-AATTG

» For all other nodes, compare to the parent:
ATATG

AT ATGACTG — ATGTG
AMNH . e
» Go position by position:

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 26 / 54



Fitch's Algorithm: Pseudocode

@ Second pass: Starting at the root, choose a labeling,
then work towards the leaves minimizing the conflicts

» At root, choose one labeling:
AATATTG—-AATTG

» For all other nodes, compare to the parent:
ATATG

AT ATGACTG — ATGTG
AMNH g .
» Go position by position:
* If overlap, use that label.
* If no overlap, choose label from child.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 26 / 54



Fitch's Algorithm: Pseudocode

@ Second pass: Starting at the root, choose a labeling,
then work towards the leaves minimizing the conflicts.

» At root, choose one labeling:
AATATTG—-AATTG
» For all other nodes, compare to the parent:
ATATG
AT ATGACTG — ATGTG
» Go position by position: for-loop

AMNH

* If overlap, use that label. if-statement
* If no overlap, choose label from child.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 27 / 54



In Pairs: Analyze Fitch's Algorithm

What is the running time and space require-
ments for:

S — o First pass: Starting at the leaves, label the
B B e o G . ) ; .
internal leaves (with possible multiple
labels).
@ Second pass: Starting at the root, choose
a labeling, then work towards the leaves
minimizing the conflicts.

AMNH

@ Print out all tree on n leaves.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 28 / 54



Searching for Optimal Trees

@ Large Parsimony Problem: Given sequences
S for leaves, find the optimal scoring tree.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 29 / 54



Searching for Optimal Trees

@ Large Parsimony Problem: Given sequences
S for leaves, find the optimal scoring tree.

@ Visually: think of the trees on a 2D map and
the height above sea level is the score.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 29 / 54



Searching for Optimal Trees

@ Large Parsimony Problem: Given sequences
for leaves, find the optimal scoring tree.

@ Visually: think of the trees on a 2D map and
the height above sea level is the score.

@ Works for any optimality criteria (i.e. same
analogy works for maximum likelihood).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 29 / 54



polymaps.org

«O>» «Fr «=)r» «E)»




Analogy: Find the Highest Point

Sampling:

@ Choose 1000 random points.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 31 /54



Analogy: Find the Highest Point

Sampling:
@ Choose 1000 random points.

@ Find height at each point.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

31/ 54



Analogy: Find the Highest Point

Sampling:
@ Choose 1000 random points.
@ Find height at each point.

@ Output the sampled point with largest
height.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

31/ 54



Analogy: Find the Highest Point

Sampling:
@ Choose 1000 random points.
@ Find height at each point.

@ Output the sampled point with largest
height.

@ Will you reach the highest point?

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 31 /54



Analogy: Find the Highest Point

Sampling:

Choose 1000 random points.

Find height at each point.

Output the sampled point with largest
height.

@ Will you reach the highest point?

@ Only if very lucky or a very dense sample.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 31 /54



Hill Climbing:

@ Start at the harbor.

«Or «Fr «E» «=)>» a




Analogy: Find the Highest Point

Hill Climbing:
@ Start at the harbor.

@ Can see 25 meters in all directions.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

32/ 54



Analogy: Find the Highest Point

Hill Climbing:
@ Start at the harbor.
@ Can see 25 meters in all directions.

@ Walk upwards, repeat.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

32/ 54



Analogy: Find the Highest Point

Hill Climbing:
@ Start at the harbor.
@ Can see 25 meters in all directions.
@ Walk upwards, repeat.

@ Will you reach the highest point?

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

32/ 54



Analogy: Find the Highest Point

Hill Climbing:
@ Start at the harbor.
@ Can see 25 meters in all directions.
@ Walk upwards, repeat.
@ Will you reach the highest point?

@ Maybe, but maybe not.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 32 /54



Analogy: Find the Highest Point

Hill Climbing:
@ Start at the harbor.
@ Can see 25 meters in all directions.
@ Walk upwards, repeat.
@ Will you reach the highest point?
@ Maybe, but maybe not.

» Could reach small peaks, but miss
the larger ones.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

32/ 54



Analogy: Find the Highest Point

Hill Climbing:

Start at the harbor.

Can see 25 meters in all directions.

Walk upwards, repeat.

@ Will you reach the highest point?

Maybe, but maybe not.

» Could reach small peaks, but miss
the larger ones.
» Start in multiple places to see more.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 32 /54



Local Search Techniques

@ Goal: Find the point with the optimal score

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 33 /54



Local Search Techniques

@ Goal: Find the point with the optimal score

@ Local search techniques prevail:

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 33 /54



Local Search Techniques

@ Goal: Find the point with the optimal score

@ Local search techniques prevail:

» Begin with a point

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 33 /54



Local Search Techniques

@ Goal: Find the point with the optimal score

@ Local search techniques prevail:

» Begin with a point
» Choose the next point from its neighbors (e.g. best scoring)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 33 /54



Local Search Techniques

@ Goal: Find the point with the optimal score
@ Local search techniques prevail:

» Begin with a point
» Choose the next point from its neighbors (e.g. best scoring)

> Repeat

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 33 /54



Local Search Techniques

@ Goal: Find the point with the optimal score

@ Local search techniques prevail:

» Begin with a point
» Choose the next point from its neighbors (e.g. best scoring)
> Repeat

@ Many variations on the theme: branch-and-bound, MCMC, genetic
algorithms, ...

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 33 /54



Popular Tree Metrics

Those based on tree rearrangements:
@ Subtree Prune and Regraft (SPR)

@ Tree Bisection and Reconnection (TBR)
@ Nearest Neighbor Interchange (NNI)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

34 /54



Popular Tree Metrics

Those based on tree rearrangements:

Subtree Prune and Regraft (SPR)

Tree Bisection and Reconnection (TBR)
Nearest Neighbor Interchange (NNI)

Used for Searching for Optimal Trees, NP-hard

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 34 / 54



Popular Tree Metrics

Those based on tree rearrangements:

Subtree Prune and Regraft (SPR)

Tree Bisection and Reconnection (TBR)
Nearest Neighbor Interchange (NNI)

Used for Searching for Optimal Trees, NP-hard

Those based on comparing tree vectors:
Robinson-Foulds (RF)

°

@ Rooted Triples (RT)
@ Quartet Distance
°

Billera-Holmes-Vogtmann (BHV or geodesic))

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 34 / 54



Popular Tree Metrics

Those based on tree rearrangements:

Subtree Prune and Regraft (SPR)

Tree Bisection and Reconnection (TBR)
Nearest Neighbor Interchange (NNI)

Used for Searching for Optimal Trees, NP-hard

Those based on comparing tree vectors:

Robinson-Foulds (RF)
Rooted Triples (RT)

Quartet Distance

Billera-Holmes-Vogtmann (BHV or geodesic))

e 6 6 o o

Used for comparing trees, poly time

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 34 / 54



NNI Metric

A_ B A_B

C E_>E

The NNI distance between two trees is the minimal number of moves
needed to transform one to the other (NP-hard, DasGupta et al. ‘97).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 35/ 54



SPR Distance

B A_,B
C G Cﬁr<G

@ SPR distance is the minimal number of moves that transforms one

tree into the other.

K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016 36 / 54



SPR Distance

B A_,B A B
D B F D E F D E F

@ SPR distance is the minimal number of moves that transforms one
tree into the other.

@ SPR for rooted trees is NP-hard (Bordewich & Semple ‘05).
@ SPR for unrooted trees is NP-hard (Hickey et al. ‘08).
@ SAT-based heuristic (Bonet & S ‘09).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 36 / 54



TBR Distance

@ TBR distance is the minimal number of moves that transforms one
tree into the other.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 37 / 54



TBR Distance

@ TBR distance is the minimal number of moves that transforms one
tree into the other.

@ TBR is NP-hard and FPT. (Allen & Steel ‘01)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 37 / 54



TBR Distance

@ TBR distance is the minimal number of moves that transforms one
tree into the other.

@ TBR is NP-hard and FPT. (Allen & Steel ‘01)

@ TBR has a linear time 5-approximation and a polynomial time
3-approximation (Amenta, Bonet, Mahindru, & S '06;

Bordewich, McCartin, & Semple ‘08)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 37 /54



Tree Rearrangements

K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016

38 / 54



Tree Rearrangements

C
F G

Nearest Neighbor Interchange

(NNI)

K. St. John (CUNY & AMNH)

Subtree Prune & Regraft

(SPR)

Algorithms #23

C D
B E
A
F G
Tree Bisection & Reconnection
(TBR)
2 May 2016

38 / 54



¢
d
&




NNI & SPR

. : j‘
\ i (
|Soscope
«Or «Fr o« . o



Landscapes

Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

A treespace with assigned scores is often called a landscape.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 40 / 54



What does the landscape look like?

Each landscape depends on the number of taxa and the score of each tree
(usually derived from the inputted character sequences).

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 41 / 54



What does the landscape look like?

Each landscape depends on the number of taxa and the score of each tree
(usually derived from the inputted character sequences).

If very smooth, ‘hill climbing” will work
well.

(from wikipedia)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 41 / 54



What does the landscape look like?

Each landscape depends on the number of taxa and the score of each tree
(usually derived from the inputted character sequences).

Sixy)=e YY)

If very smooth, ‘hill climbing” will work
well.

(from wikipedia)

é‘pﬁ?” The Phylogeny Problem

‘ If very rugged, need more sophisticated
A searches that use the underlying struc-
ture of the space.

et of tree
some optimality criterion e.g. Parsimony,
Maximum Likelihood, Closest Tree etc.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 41 / 54



Adjusting Search Space

o ©° o
o

o

00000000

o %o
o,

o,

SPR metric NNI metric

Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

The same data, organized by different tree metrics.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 42 / 54



Attraction Basins

resalliance.org

Algorithms #23

DA
2 May 2016

43 / 54



Adjusting Search Space

000000,
o 00,

o000
0o® ®00q
.
o
o
“20000000°

of
o
£

~~ 5
Ty s
O e E O

SPR metric

NNI metric
Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

Simplest Case: for compatible character sequences (‘perfect data’):
@ Under SPR, there is a single attraction basin.

@ Under NNI, multiple attraction basins occur even for perfect data.
K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016 44 / 54



In Pairs: Tree Rearrangements

For the tree on the left:
@ What are the NNI neighbors?

K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016

45 / 54



In Pairs: Tree Rearrangements

For the tree on the left:
@ What are the NNI neighbors?
B @ Give a SPR neighbor that is not a NNI neighbor.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 45 / 54



In Pairs: Tree Rearrangements

For the tree on the left:
@ What are the NNI neighbors?
B @ Give a SPR neighbor that is not a NNI neighbor.
© Give a TBR neighbor that is not an SPR neighbor.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 45 / 54



In Pairs: Tree Rearrangements

For the tree on the left:
@ What are the NNI neighbors?

B @ Give a SPR neighbor that is not a NNI neighbor.
C © Give a TBR neighbor that is not an SPR neighbor.
G @ Find a tree that is NNI distance 3 but SPR
D F distance 1.
E

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 45 / 54



In Pairs: Tree Rearrangements

K. St. John (CUNY & AMNH)

For the tree on the left:
@ What are the NNI neighbors?
@ Give a SPR neighbor that is not a NNI neighbor.
© Give a TBR neighbor that is not an SPR neighbor.

@ Find a tree that is NNI distance 3 but SPR
distance 1.

@ Write an algorithm for given a tree T and a
specific edge/node, the two NNI neighbors around
that edge.

Algorithms #23 2 May 2016 45 / 54



Weighted Trees

Farris zone
Felsenstein zone C
A C
A
B
B D
D
a b

Philippe et al., ‘05

@ Branch weights are part of the model.

K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016

46 / 54



Weighted Trees

Farris zone
Felsenstein zone C
A C
A
B
B D
D
a b

Philippe et al., ‘05

@ Branch weights are part of the model.
@ Indicated by length of edges in drawing.

K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016

46 / 54



Weighted Trees

Farris zone
Felsenstein zone C
A C
A
B
B D
D
a b

Philippe et al., ‘05

@ Branch weights are part of the model.
@ Indicated by length of edges in drawing.
@ Two classic trees with same underlying topology.

K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016

46 / 54



Weighted Trees

Farris zone
Felsenstein zone C
A C
A
B
B D
D
a b

Philippe et al., ‘05

Branch weights are part of the model.

Indicated by length of edges in drawing.

Two classic trees with same underlying topology.

The metrics and search spaces above treat them as identical.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

46 / 54



Popular Tree Metrics

Those based on tree rearrangements:
@ Subtree Prune and Regraft (SPR)

@ Tree Bisection and Reconnection (TBR)
@ Nearest Neighbor Interchange (NNI)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

47 / 54



Popular Tree Metrics

Those based on tree rearrangements:

Subtree Prune and Regraft (SPR)

Tree Bisection and Reconnection (TBR)
Nearest Neighbor Interchange (NNI)

Used for Searching for Optimal Trees, NP-hard

Those based on comparing tree vectors:

Robinson-Foulds (RF)
Rooted Triples (RT)

Quartet Distance

Billera-Holmes-Vogtmann (BHV or geodesic))

e 6 6 o o

Used for comparing trees, poly time

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 47 / 54



Trees as Vectors

Sylezt

K. St. John (CUNY & AMNH)

Algorithms #23

2 May 2016 48 / 54



Trees as Vectors

€TT | G
¥21 | 6¢
Ge1 | ve
veT | 6T
GeT | 2
Gr1 | €2
vee | 61
Gee | v1
Gve | €1
Gve | 2T
veer | §
GeeT | v
GveT | €
GYET | T
Grez | 1

111110000000000
11111100000000°1
111111000000010

,(4,5))
,(3,5))

2,3,4,5)
2),(3
2), (4

)
I

1
(1
(1

49 / 54

2 May 2016

Algorithms #23

K. St. John (CUNY & AMNH)



BHV Distance

Lo e @ Billera, Holmes, and Vogtmann ‘01

F88Y have a continuous metric space of
trees.

|00 (1.0 =

1234

Billera, Holmes, Vogtmann ‘01

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 50 / 54



BHV Distance

0
» ; @ Billera, Holmes, and Vogtmann ‘01
s . A
have a continuous metric space of

0 trees.

0 @ View each split in a tree as a
: coordinate in the space.

=|(0.0) 1234

1234

Billera, Holmes, Vogtmann ‘01

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 50 / 54



BHV Distance

A Los ”":A @ Billera, Holmes, and Vogtmann ‘01
i TN have a continuous metric space of
g trees.
0 @ View each split in a tree as a
{ . : coordinate in the space.
(1,0) = .
g ilalole @ Identify edges of orthants to form
1234
space

Billera, Holmes, Vogtmann ‘01

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 50 / 54



|dentify Edges of Orthants

25 s 1234
0
o
(3.6)= 0
0 1234
1,0 =

AZ(&U) 1234
1234

K. St. John (CUNY & AMNH) Algorithms #23

2 May 2016

51 /54



|dentify Edges of Orthants

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 51 / 54



|dentify Edges of Orthants

A /
2 A
NN
. v SEI
\ A
LR b ‘\\\
(3.6)= 0 5 \\ AN
AN E \
10 =
A: 00) e SH8Y // K
1234 P

(All images from Billera, Holmes, Vogtmann ‘01)

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 51 / 54



BHV & NNI Distances

> < *» 123

2 1 4 '\‘ v.

1 5 j1as

@ Simplest move between orthants: shrink coordinate/edge and expand.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

52 / 54



BHV & NNI Distances

> < *» 123

2 1 4 '\‘ v.

1 5 j1as

@ Simplest move between orthants: shrink coordinate/edge and expand.

@ Corresponds to a Nearest Neighbor Interchange (NNI) move on the topology.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 52 / 54



Pairs: Continuous Treespace

23(145 ",

K. St. John (CUNY & AMNH)

@ What is the distance between T; and T,7?

@ What is the average (tree at the midpoint) of
T1 and T2?

Give three trees that have distance 1 to the
origin, To (star tree).

(3,0,0,2) and (1,1,0,0)?

What is a good average/consensus for the
four trees?

o
© Lower figure: what is the distance between
o

Algorithms #23 2 May 2016 53 / 54



Recap

e Efficiency (in time and space) matters
when data gets large.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 54 / 54



Recap

e Efficiency (in time and space) matters
when data gets large.

@ More on tree searching next lecture.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 54 / 54



Recap

""""""" B e Efficiency (in time and space) matters
B 5 when data gets large.

.8 . @ More on tree searching next lecture.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016

B0 gt e Email lab reports to kst john@amnh.org.

54 / 54



Recap

""""""" B e Efficiency (in time and space) matters
B 5 when data gets large.

.8 . @ More on tree searching next lecture.

B0 gt e Email lab reports to kst john@amnh.org.

@ Challenges available at rosalind. info.

K. St. John (CUNY & AMNH) Algorithms #23 2 May 2016 54 / 54



