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Recap: Recursion

Smithsonian Institute

Works well for problems that break into pieces that can be solved independently

Two parts:

I Base Case: smallest possibility
(for trees: almost always the leaves)

I Recursive Call: calls the function on a “smaller” problem
(for trees: internal nodes)

PythonTutor Demo
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Assembling Sequence Reads

Compeau & Pevzner, Vol 1, Chapter 3
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Assembling Sequence Reads

Compeau & Pevzner, Vol 1, Chapter 3

Given a bunch of sequence reads (of length k), how do you assembly them?

In pairs/triples:

I 10 copies of a single-stranded sequence
I k=4
I Some errors in sequencing.
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Reframing Biology Questions

How can we store the information in the
computer?

What additional information and what structures
do we need?

How do you represent overlaps in a graph?
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Useful Graphs: Overlap & deBruijn

overlap graph deBruijn graph
Compeau & Pevzner, Vol 1, Chapter 3
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Overlap Graphs
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Overlap Graphs

The vertices are the reads.

There’s an edge from u to v if the Suffix(u) = Prefix(v).

Each read came from the original sequence, so, should be in the final
sequence.

Final sequence corresponds to a path that visits all the vertices
(called Hamiltonian path).
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deBruijn Graphs
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deBruijn Graphs

Label edges by k-mers.

Label vertices by the prefixes/suffixes.

An Eulerian path through a graph visits every edge
exactly once.

The completed sequence is one of the Eulerian paths
of the graph.
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Computational Questions

Finding Hamiltonian paths is NP-hard.

Eulerian paths exist if the out-degree = in-degree for
every vertex.

Since tractable, will compute Eulerian paths.

And then, if more than one, choose (using additional
information).
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Building deBruijn Graphs

Input: Reads of multiple sequences

Make k-mers of the reads.

Build deBruijn graphs from the reads.

(Find Eulerian paths...)
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Recap

Coding the deBruijn graph functions in lab today.

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info
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