Algorithmic Approaches for Biological Data, Lecture #16 J

Katherine St. John

City University of New York
American Museum of Natural History

30 March 2016



Outline

@ Networks & Graphs

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2/13



Outline

@ Networks & Graphs

@ Standard Representations: Adjacency Lists and
Adjacency Matrices

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2/13



Outline

@ Networks & Graphs

@ Standard Representations: Adjacency Lists and
Adjacency Matrices

@ Reframing Biology Questions

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2/13



Networks & Graphs

Problem Solving with Algorithms and Data Structures

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 3/13



Networks & Graphs

@ Graphs (networks)

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13



Networks & Graphs

@ Graphs (networks) have vertices (nodes)

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13



Networks & Graphs

@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13



Networks & Graphs

@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

@ Edges can have weights.

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13



Networks & Graphs

@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13



Networks & Graphs

K. St. John (CUNY & AMNH)
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@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.
@ In example: G = (V, E) where:

» V={V0,V1, V2 V3 V4 V5}
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@ Graphs (networks) have vertices (nodes) and edges

(lines, branches) connecting them.
@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.
@ In example: G = (V, E) where:
» V={V0,V1, V2 V3 V4 V5}

» E={(V0,V1,5),(V1,V2,4),
(V2,V3,9),(V3,Va,1),
(V4, V0,1),(V0, V5,2),
(V5,V4,8),(V3,V5,3),
(V5,V2,1)
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@ Graphs (networks) have vertices (nodes) and edges

(lines, branches) connecting them.
@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.
@ In example: G = (V, E) where:
» V={V0,V1, V2 V3 V4 V5}

» E={(V0,V1,5),(V1,V2,4),
(V2,V3,9),(V3,Va,1),
(V4, V0,1),(V0, V5,2),
(V5,V4,8),(V3,V5,3),
(V5,V2,1)

» Since edges have a direction, called a
directed graph.
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Example: there is a path from V1 to V4.

@ A cycle is a path that starts and ends at the same
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@ Paths are a sequence of vertices in graph, each
connected to the next by an edge.
Example: there is a path from V1 to V4.

@ A cycle is a path that starts and ends at the same

vertex.
Example: (V5,V2, V3, V5) is a cycle.
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@ Paths are a sequence of vertices in graph, each
connected to the next by an edge.
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@ Paths are a sequence of vertices in graph, each
connected to the next by an edge.

~w“\\q Example: there is a path from V1 to V4.
- ’ ‘}/;]\, @ A cycle is a path that starts and ends at the same
’\\Yig‘*“*ﬂ(;vs)"""" f vertex.
\. / |« Example: (V5,V2, V3, V5) is a cycle.
\ \ , /,L\ @ A graph with no cycles is called an acyclic graph.
(W — N

@ A directed graph with no cycles is called a directed
acyclic graph (DAG).
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@ In Python, can use a list of lists or a numpy array.

@ import numpy as np

adjMatrix = np.zeros(6,6)

adjMatix[0,1] = 5
adjMatix[0,5] =
adjMatix[1,2] =
adjMatix[2,3] =
adjMatix[3,4] =
adjMatix[3,5] =
adjMatix[4,0] =
adjMatix[5,2] =
adjMatix[5,4] =

N
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@ In Python, can use a list of lists or a numpy array.

@ import numpy as np

adjMatrix = np.zeros(6,6)

adjMatix[0,1] = 5
adjMatix[0,5] =
adjMatix[1,2] =
adjMatix[2,3] =
adjMatix[3,4] =
adjMatix[3,5] =
adjMatix[4,0] =
adjMatix[5,2] =
adjMatix[5,4] = 8

N

= =W N O

@ Need to keep track of the node names separately.
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Representing Graphs in the Computer: Adjacency Matrix
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. John (CUNY & AMNH)

@ Advantages:

» Checking if an edge occurs is quick.
» Can check connectivity by matrix
multiplication (explained in lab).

@ Disadvantages:

» Always the same size (n x n) even if

there are few edges.
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Representing Graphs in the Computer: Adjacency List
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Representing Graphs in the Computer: Adjacency List

@ In Python, can use a dictionary to store lists of tuples.
@ import numpy as np

adjList = {}

adjList["VO"] = [("V1i",5), ("V5",2)]

adjList["V1"] = [("V2",4)]
adjList["V2"] = [("V3",9)]
adjList["V3"] = [("v4",7), ("V5",3)]
adjList["V4"] = [("V0",1)]
adjList["V5"] = [("V2",1), ("V4",8)]
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Representing Graphs in the Computer: Adjacency List
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@ import numpy as

adjList = {}

adjList["V0"] =
adjList["V1"] =
adjList["V2"] =
adjList["V3"] =
adjList["V4"] =
adjList["V5"] =

np

[("vi",s),
[("v2",4)]
[("v3",9)]
[("va",n,
[("vo",1)]
[("v2",1),

(nvsu,2)]

("VS",B)]

("V4",8)]

@ In Python, can use a dictionary to store lists of tuples.

Can look up each list of adjacencies in the dictionary

using the vertex label as the key.
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Representing Graphs in the Computer: Adjacency List

@ Advantages:

» More space efficient for sparsely
connected graphs

@ Disadvantages:

» Could be costly to find adjacencies if a
vertex has many neighbors.
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In Pairs

In pairs/triples, represent the following graphs in the computer:
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Recap

Lab today: connectivity & storing trees

Using networkx in lab today
(for displaying graphs).

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info
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