
Algorithmic Approaches for Biological Data, Lecture #16

Katherine St. John

City University of New York
American Museum of Natural History

30 March 2016



Outline

Networks & Graphs

Standard Representations: Adjacency Lists and
Adjacency Matrices

Reframing Biology Questions

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2 / 13



Outline

Networks & Graphs

Standard Representations: Adjacency Lists and
Adjacency Matrices

Reframing Biology Questions

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2 / 13



Outline

Networks & Graphs

Standard Representations: Adjacency Lists and
Adjacency Matrices

Reframing Biology Questions

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2 / 13



Networks & Graphs

Problem Solving with Algorithms and Data Structures

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 3 / 13



Networks & Graphs

Graphs (networks)

have vertices (nodes) and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}
I E = {(V 0,V 1, 5), (V 1,V 2, 4),

(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Graphs (networks) have vertices (nodes)

and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}
I E = {(V 0,V 1, 5), (V 1,V 2, 4),

(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}
I E = {(V 0,V 1, 5), (V 1,V 2, 4),

(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}
I E = {(V 0,V 1, 5), (V 1,V 2, 4),

(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}
I E = {(V 0,V 1, 5), (V 1,V 2, 4),

(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}
I E = {(V 0,V 1, 5), (V 1,V 2, 4),

(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}

I E = {(V 0,V 1, 5), (V 1,V 2, 4),
(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}
I E = {(V 0,V 1, 5), (V 1,V 2, 4),

(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

Edges can have weights.

Widely used model in math, routing, biology, etc.

In example: G = (V ,E) where:

I V = {V 0,V 1,V 2,V 3,V 4,V 5}
I E = {(V 0,V 1, 5), (V 1,V 2, 4),

(V 2,V 3, 9), (V 3,V 4, 7),
(V 4,V 0, 1), (V 0,V 5, 2),
(V 5,V 4, 8), (V 3,V 5, 3),
(V 5,V 2, 1)}

I Since edges have a direction, called a
directed graph.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 4 / 13



Networks & Graphs

Paths are a sequence of vertices in graph, each
connected to the next by an edge.

Example: there is a path from V 1 to V 4.

A cycle is a path that starts and ends at the same
vertex.
Example: (V 5,V 2,V 3,V 5) is a cycle.

A graph with no cycles is called an acyclic graph.

A directed graph with no cycles is called a directed
acyclic graph (DAG).

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5 / 13



Networks & Graphs

Paths are a sequence of vertices in graph, each
connected to the next by an edge.
Example: there is a path from V 1 to V 4.

A cycle is a path that starts and ends at the same
vertex.
Example: (V 5,V 2,V 3,V 5) is a cycle.

A graph with no cycles is called an acyclic graph.

A directed graph with no cycles is called a directed
acyclic graph (DAG).

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5 / 13



Networks & Graphs

Paths are a sequence of vertices in graph, each
connected to the next by an edge.
Example: there is a path from V 1 to V 4.

A cycle is a path that starts and ends at the same
vertex.

Example: (V 5,V 2,V 3,V 5) is a cycle.

A graph with no cycles is called an acyclic graph.

A directed graph with no cycles is called a directed
acyclic graph (DAG).

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5 / 13



Networks & Graphs

Paths are a sequence of vertices in graph, each
connected to the next by an edge.
Example: there is a path from V 1 to V 4.

A cycle is a path that starts and ends at the same
vertex.
Example: (V 5,V 2,V 3,V 5) is a cycle.

A graph with no cycles is called an acyclic graph.

A directed graph with no cycles is called a directed
acyclic graph (DAG).

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5 / 13



Networks & Graphs

Paths are a sequence of vertices in graph, each
connected to the next by an edge.
Example: there is a path from V 1 to V 4.

A cycle is a path that starts and ends at the same
vertex.
Example: (V 5,V 2,V 3,V 5) is a cycle.

A graph with no cycles is called an acyclic graph.

A directed graph with no cycles is called a directed
acyclic graph (DAG).

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5 / 13



Networks & Graphs

Paths are a sequence of vertices in graph, each
connected to the next by an edge.
Example: there is a path from V 1 to V 4.

A cycle is a path that starts and ends at the same
vertex.
Example: (V 5,V 2,V 3,V 5) is a cycle.

A graph with no cycles is called an acyclic graph.

A directed graph with no cycles is called a directed
acyclic graph (DAG).

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5 / 13



Representing Graphs in the Computer: Adjacency Matrix

Problem Solving with Algorithms and Data Structures

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 6 / 13



Representing Graphs in the Computer: Adjacency Matrix

In Python, can use a list of lists or a numpy array.

import numpy as np

adjMatrix = np.zeros(6,6)

adjMatix[0,1] = 5

adjMatix[0,5] = 2

adjMatix[1,2] = 4

adjMatix[2,3] = 9

adjMatix[3,4] = 7

adjMatix[3,5] = 3

adjMatix[4,0] = 1

adjMatix[5,2] = 1

adjMatix[5,4] = 8

Need to keep track of the node names separately.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 7 / 13



Representing Graphs in the Computer: Adjacency Matrix

In Python, can use a list of lists or a numpy array.

import numpy as np

adjMatrix = np.zeros(6,6)

adjMatix[0,1] = 5

adjMatix[0,5] = 2

adjMatix[1,2] = 4

adjMatix[2,3] = 9

adjMatix[3,4] = 7

adjMatix[3,5] = 3

adjMatix[4,0] = 1

adjMatix[5,2] = 1

adjMatix[5,4] = 8

Need to keep track of the node names separately.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 7 / 13



Representing Graphs in the Computer: Adjacency Matrix

In Python, can use a list of lists or a numpy array.

import numpy as np

adjMatrix = np.zeros(6,6)

adjMatix[0,1] = 5

adjMatix[0,5] = 2

adjMatix[1,2] = 4

adjMatix[2,3] = 9

adjMatix[3,4] = 7

adjMatix[3,5] = 3

adjMatix[4,0] = 1

adjMatix[5,2] = 1

adjMatix[5,4] = 8

Need to keep track of the node names separately.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 7 / 13



Representing Graphs in the Computer: Adjacency Matrix

Advantages:

I Checking if an edge occurs is quick.
I Can check connectivity by matrix

multiplication (explained in lab).

Disadvantages:

I Always the same size (n × n) even if
there are few edges.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 8 / 13



Representing Graphs in the Computer: Adjacency Matrix

Advantages:

I Checking if an edge occurs is quick.

I Can check connectivity by matrix
multiplication (explained in lab).

Disadvantages:

I Always the same size (n × n) even if
there are few edges.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 8 / 13



Representing Graphs in the Computer: Adjacency Matrix

Advantages:

I Checking if an edge occurs is quick.
I Can check connectivity by matrix

multiplication (explained in lab).

Disadvantages:

I Always the same size (n × n) even if
there are few edges.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 8 / 13



Representing Graphs in the Computer: Adjacency Matrix

Advantages:

I Checking if an edge occurs is quick.
I Can check connectivity by matrix

multiplication (explained in lab).

Disadvantages:

I Always the same size (n × n) even if
there are few edges.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 8 / 13



Representing Graphs in the Computer: Adjacency Matrix

Advantages:

I Checking if an edge occurs is quick.
I Can check connectivity by matrix

multiplication (explained in lab).

Disadvantages:

I Always the same size (n × n) even if
there are few edges.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 8 / 13



Representing Graphs in the Computer: Adjacency List

Problem Solving with Algorithms and Data Structures

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 9 / 13



Representing Graphs in the Computer: Adjacency List

In Python, can use a dictionary to store lists of tuples.

import numpy as np

adjList = {}
adjList["V0"] = [("V1",5), ("V5",2)]

adjList["V1"] = [("V2",4)]

adjList["V2"] = [("V3",9)]

adjList["V3"] = [("V4",7), ("V5",3)]

adjList["V4"] = [("V0",1)]

adjList["V5"] = [("V2",1), ("V4",8)]

Can look up each list of adjacencies in the dictionary
using the vertex label as the key.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 10 / 13



Representing Graphs in the Computer: Adjacency List

In Python, can use a dictionary to store lists of tuples.

import numpy as np

adjList = {}
adjList["V0"] = [("V1",5), ("V5",2)]

adjList["V1"] = [("V2",4)]

adjList["V2"] = [("V3",9)]

adjList["V3"] = [("V4",7), ("V5",3)]

adjList["V4"] = [("V0",1)]

adjList["V5"] = [("V2",1), ("V4",8)]

Can look up each list of adjacencies in the dictionary
using the vertex label as the key.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 10 / 13



Representing Graphs in the Computer: Adjacency List

In Python, can use a dictionary to store lists of tuples.

import numpy as np

adjList = {}
adjList["V0"] = [("V1",5), ("V5",2)]

adjList["V1"] = [("V2",4)]

adjList["V2"] = [("V3",9)]

adjList["V3"] = [("V4",7), ("V5",3)]

adjList["V4"] = [("V0",1)]

adjList["V5"] = [("V2",1), ("V4",8)]

Can look up each list of adjacencies in the dictionary
using the vertex label as the key.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 10 / 13



Representing Graphs in the Computer: Adjacency List

Advantages:

I More space efficient for sparsely
connected graphs

Disadvantages:

I Could be costly to find adjacencies if a
vertex has many neighbors.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 11 / 13



Representing Graphs in the Computer: Adjacency List

Advantages:

I More space efficient for sparsely
connected graphs

Disadvantages:

I Could be costly to find adjacencies if a
vertex has many neighbors.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 11 / 13



Representing Graphs in the Computer: Adjacency List

Advantages:

I More space efficient for sparsely
connected graphs

Disadvantages:

I Could be costly to find adjacencies if a
vertex has many neighbors.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 11 / 13



Representing Graphs in the Computer: Adjacency List

Advantages:

I More space efficient for sparsely
connected graphs

Disadvantages:

I Could be costly to find adjacencies if a
vertex has many neighbors.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 11 / 13



In Pairs

In pairs/triples, represent the following graphs in the computer:

c

e

f

g

h

i

a

b

d

(1) (2) (3) (4)

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 12 / 13



Recap

Lab today: connectivity & storing trees

Using networkx in lab today
(for displaying graphs).

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 13 / 13



Recap

Lab today: connectivity & storing trees

Using networkx in lab today
(for displaying graphs).

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 13 / 13



Recap

Lab today: connectivity & storing trees

Using networkx in lab today
(for displaying graphs).

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 13 / 13



Recap

Lab today: connectivity & storing trees

Using networkx in lab today
(for displaying graphs).

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 13 / 13


