Algorithmic Approaches for Biological Data, Lecture #16 J

Katherine St. John

City University of New York
American Museum of Natural History

30 March 2016

Outline

@ Networks & Graphs

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2/13

Outline

@ Networks & Graphs

@ Standard Representations: Adjacency Lists and
Adjacency Matrices

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2/13

Outline

@ Networks & Graphs

@ Standard Representations: Adjacency Lists and
Adjacency Matrices

@ Reframing Biology Questions

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 2/13

Networks & Graphs

Problem Solving with Algorithms and Data Structures

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 3/13

Networks & Graphs

@ Graphs (networks)

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13

Networks & Graphs

@ Graphs (networks) have vertices (nodes)

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13

Networks & Graphs

@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13

Networks & Graphs

@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

@ Edges can have weights.

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13

Networks & Graphs

@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

4/13

Networks & Graphs

K. St. John (CUNY & AMNH)

@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.

@ In example: G = (V, E) where:

Algorithms #16 30 March 2016

4/13

Networks & Graphs

o)
(vs)
—
9
7
3
v)
(wls A A
(va)b Yy
\v‘\/ K‘va/w ‘r
|
A / | a
\\ 1) |
\ / |
N 5 TN
N)

K. St. John (CUNY & AMNH)

@ Graphs (networks) have vertices (nodes) and edges
(lines, branches) connecting them.

@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.
@ In example: G = (V, E) where:

» V={V0,V1, V2 V3 V4 V5}

Algorithms #16 30 March 2016

4/13

Networks & Graphs

K. St. John (CUNY & AMNH)

@ Graphs (networks) have vertices (nodes) and edges

(lines, branches) connecting them.
@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.
@ In example: G = (V, E) where:
» V={V0,V1, V2 V3 V4 V5}

» E={(V0,V1,5),(V1,V2,4),
(V2,V3,9),(V3,Va,1),
(V4, V0,1),(V0, V5,2),
(V5,V4,8),(V3,V5,3),
(V5,V2,1)

Algorithms #16 30 March 2016

4/13

Networks & Graphs

o)
(vs)
24
9
7
3
v)
—)
(v)t Y
a2 f
\ |
A / | a
N\ /. “
\ / |
o5 v
) N

K. St. John (CUNY & AMNH)

@ Graphs (networks) have vertices (nodes) and edges

(lines, branches) connecting them.
@ Edges can have weights.
@ Widely used model in math, routing, biology, etc.
@ In example: G = (V, E) where:
» V={V0,V1, V2 V3 V4 V5}

» E={(V0,V1,5),(V1,V2,4),
(V2,V3,9),(V3,Va,1),
(V4, V0,1),(V0, V5,2),
(V5,V4,8),(V3,V5,3),
(V5,V2,1)

» Since edges have a direction, called a
directed graph.

Algorithms #16 30 March 2016

4/13

Networks & Graphs

@ Paths are a sequence of vertices in graph, each
connected to the next by an edge.

\\yag-—f‘—ﬂ(@ T
-
\ / | o
/
\! /2 |
\ |
=~ SR
Qo——C)

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5/13

Networks & Graphs

@ Paths are a sequence of vertices in graph, each

connected to the next by an edge.

e , Example: there is a path from V1 to V4.
T
ox S
. (s f
\ — X\ \? 7} ‘
\ // 4
\! /2 |
\ |

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

5/13

Networks & Graphs

@ Paths are a sequence of vertices in graph, each
connected to the next by an edge.
Example: there is a path from V1 to V4.

@ A cycle is a path that starts and ends at the same
vertex.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5/13

Networks & Graphs

@ Paths are a sequence of vertices in graph, each
connected to the next by an edge.
Example: there is a path from V1 to V4.

@ A cycle is a path that starts and ends at the same

vertex.
Example: (V5,V2, V3, V5) is a cycle.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5/13

Networks & Graphs

@ Paths are a sequence of vertices in graph, each
connected to the next by an edge.

‘W“\\Q Example: there is a path from V1 to V4.
B ’ ‘}/;]\, @ A cycle is a path that starts and ends at the same
'\\YQ‘*B*{;VQ’/ T vertex.
\: /. [Example: (V5,V2, V3, V5) is a cycle.
\ \ , /,L\ @ A graph with no cycles is called an acyclic graph.
(W — N

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5/13

Networks & Graphs

@ Paths are a sequence of vertices in graph, each
connected to the next by an edge.

~w“\\q Example: there is a path from V1 to V4.
- ’ ‘}/;]\, @ A cycle is a path that starts and ends at the same
’\\Yig‘*“*ﬂ(;vs)"""" f vertex.
\. / |« Example: (V5,V2, V3, V5) is a cycle.
\ \ , /,L\ @ A graph with no cycles is called an acyclic graph.
(W — N

@ A directed graph with no cycles is called a directed
acyclic graph (DAG).

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 5/13

Representing Graphs in the Computer: Adjacency Matrix

vi

v3

V4

V5

vi

vz

V3

V4

Vs

Problem Solving with Algorithms and Data Structures

K. St. John (CUNY & AMNH) Algorithms #16

30 March 2016

6/13

Representing Graphs in the Computer: Adjacency Matrix

K. St

. John (CUNY & AMNH)

@ In Python, can use a list of lists or a numpy array.

Algorithms #16

30 March 2016

7/13

Representing Graphs in the Computer: Adjacency Matrix

TN
(v)
L
9
7
3 —

\ / |
L PuE

- s o
N (N

w v |[ve|w]|w]|vw

vo s

K. St. John (CUNY & AMNH)

@ In Python, can use a list of lists or a numpy array.

@ import numpy as np

adjMatrix = np.zeros(6,6)

adjMatix[0,1] = 5
adjMatix[0,5] =
adjMatix[1,2] =
adjMatix[2,3] =
adjMatix[3,4] =
adjMatix[3,5] =
adjMatix[4,0] =
adjMatix[5,2] =
adjMatix[5,4] =

N

W -k WN oD

Algorithms #16

30 March 2016

7/13

Representing Graphs in the Computer: Adjacency Matrix

TN
(v)
—
9
7,
3 —
s { \g\
V4 Y8 N T
Ut ey f
\ 4
/ |
\ [
\! /:
\ |
N/ |
"/ |
L PuE

- s o
N (N

w v |[ve|w]|w]|vw

vo s

K. St. John (CUNY & AMNH)

@ In Python, can use a list of lists or a numpy array.

@ import numpy as np

adjMatrix = np.zeros(6,6)

adjMatix[0,1] = 5
adjMatix[0,5] =
adjMatix[1,2] =
adjMatix[2,3] =
adjMatix[3,4] =
adjMatix[3,5] =
adjMatix[4,0] =
adjMatix[5,2] =
adjMatix[5,4] = 8

N

= =W N O

@ Need to keep track of the node names separately.

Algorithms #16

30 March 2016

7/13

Representing Graphs in the Computer: Adjacency Matrix

K. St. John (CUNY & AMNH)

@ Advantages:

Algorithms #16

30 March 2016

8 /13

Representing Graphs in the Computer: Adjacency Matrix

K. St. John (CUNY & AMNH)

@ Advantages:

» Checking if an edge occurs is quick.

Algorithms #16

30 March 2016

8 /13

Representing Graphs in the

K. St. John (CUNY & AMNH)

@ Advantages:

Computer: Adjacency Matrix

» Checking if an edge occurs is quick.
» Can check connectivity by matrix
multiplication (explained in lab).

Algorithms #16

30 March 2016

8 /13

Representing Graphs in the

K. St. John (CUNY & AMNH)

@ Advantages:

Computer: Adjacency Matrix

» Checking if an edge occurs is quick.
» Can check connectivity by matrix
multiplication (explained in lab).

@ Disadvantages:

Algorithms #16

30 March 2016

8 /13

Representing Graphs in the Computer: Adjacency Matrix

K. St

. John (CUNY & AMNH)

@ Advantages:

» Checking if an edge occurs is quick.
» Can check connectivity by matrix
multiplication (explained in lab).

@ Disadvantages:

» Always the same size (n x n) even if

there are few edges.

Algorithms #16

30 March 2016

8 /13

Representing Graphs in the Computer: Adjacency List

Gran
vertList
id ="vo"
‘ vo ‘ | ‘Laap(vts,vsz)
id="v1"
‘ Vi ‘ | ‘llam:(vzm) ‘
d="v2"
| va ‘ I }Iam:(va:e) |
| [Vertex Objects
id="v3"
‘ va ‘ ‘Iaa1=(v4:7,v53)
id ="va"
‘ v4 ‘ | ‘llam:(von) ‘
id ="V
Vs ‘ I ‘l;d}:(VE:LVAB) Y,
numverces =6

Problem Solving with Algorithms and Data Structures

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 9 /13

Representing Graphs in the Computer: Adjacency List

@ In Python, can use a dictionary to store lists of tuples.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 10 / 13

Representing Graphs in the Computer: Adjacency List

@ In Python, can use a dictionary to store lists of tuples.
@ import numpy as np

adjList = {}

adjList["VO"] = [("V1i",5), ("V5",2)]

adjList["V1"] = [("V2",4)]
adjList["V2"] = [("V3",9)]
adjList["V3"] = [("v4",7), ("V5",3)]
adjList["V4"] = [("V0",1)]
adjList["V5"] = [("V2",1), ("V4",8)]

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 10 / 13

Representing Graphs in the Computer: Adjacency List

K. St. John (CUNY & AMNH)

@ import numpy as

adjList = {}

adjList["V0"] =
adjList["V1"] =
adjList["V2"] =
adjList["V3"] =
adjList["V4"] =
adjList["V5"] =

np

[("vi",s),
[("v2",4)]
[("v3",9)]
[("va",n,
[("vo",1)]
[("v2",1),

(nvsu,2)]

("VS",B)]

("V4",8)]

@ In Python, can use a dictionary to store lists of tuples.

Can look up each list of adjacencies in the dictionary

using the vertex label as the key.

Algorithms #16

30 March 2016

10 /13

Representing Graphs in the Computer: Adjacency List

@ Advantages:

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 11 /13

Representing Graphs in the Computer: Adjacency List

@ Advantages:

» More space efficient for sparsely
connected graphs

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016

11 /13

Representing Graphs in the Computer: Adjacency List

@ Advantages:

» More space efficient for sparsely
connected graphs

@ Disadvantages:

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016

11 /13

Representing Graphs in the Computer: Adjacency List

@ Advantages:

» More space efficient for sparsely
connected graphs

@ Disadvantages:

» Could be costly to find adjacencies if a
vertex has many neighbors.

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 11 /13

In Pairs

In pairs/triples, represent the following graphs in the computer:

)
) — T 1513124)
e (15i215¢
. (
a f / (a3)
(2s11134) | ~ — T
b T (e e
g / I I
| - 2411135
C 1215134) | (ra13125) (1312145)
h N
b ¢ _/ _
de 1213145 (1412135)
a b c d i . 121a135)

(1) (2) (3) (4)

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 12 /13

Recap

o Lab today: connectivity & storing trees

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 13 /13

Recap

o Lab today: connectivity & storing trees

@ Using networkx in lab today
(for displaying graphs).

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 13 /13

Recap

o Lab today: connectivity & storing trees
@ Using networkx in lab today

(for displaying graphs).
@ Email lab reports to kst john@amnh.org

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 13 /13

Recap

Lab today: connectivity & storing trees

Using networkx in lab today
(for displaying graphs).

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info

K. St. John (CUNY & AMNH) Algorithms #16 30 March 2016 13 /13

