
Algorithmic Approaches for Biological Data, Lecture #12

Katherine St. John

City University of New York
American Museum of Natural History

2 March 2016



Outline

File Overview:

I Standard I/O
I CSV reader
I matplotlib’s imread()
I The urllib reader

Structured Data files: CSV, PNG (Image), SQL,
FASTA & friends

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 2 / 13



Outline

File Overview:

I Standard I/O

I CSV reader
I matplotlib’s imread()
I The urllib reader

Structured Data files: CSV, PNG (Image), SQL,
FASTA & friends

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 2 / 13



Outline

File Overview:

I Standard I/O
I CSV reader

I matplotlib’s imread()
I The urllib reader

Structured Data files: CSV, PNG (Image), SQL,
FASTA & friends

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 2 / 13



Outline

File Overview:

I Standard I/O
I CSV reader
I matplotlib’s imread()

I The urllib reader

Structured Data files: CSV, PNG (Image), SQL,
FASTA & friends

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 2 / 13



Outline

File Overview:

I Standard I/O
I CSV reader
I matplotlib’s imread()
I The urllib reader

Structured Data files: CSV, PNG (Image), SQL,
FASTA & friends

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 2 / 13



Outline

File Overview:

I Standard I/O
I CSV reader
I matplotlib’s imread()
I The urllib reader

Structured Data files: CSV, PNG (Image), SQL,
FASTA & friends

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 2 / 13



Standard File Input/Output

infile.txt
Hello!

This is

a

test.

123

"Hello!\nThis is \na \ntest.\n123"

Text files are multi-lined strings.

Lines are indicated by ’\n’ characters.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 3 / 13



Standard File Input/Output

infile.txt
Hello!

This is

a

test.

123

"Hello!\nThis is \na \ntest.\n123"

Text files are multi-lined strings.

Lines are indicated by ’\n’ characters.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 3 / 13



Standard File Input/Output

infile.txt
Hello!

This is

a

test.

123

"Hello!\nThis is \na \ntest.\n123"

Text files are multi-lined strings.

Lines are indicated by ’\n’ characters.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 3 / 13



Standard File Input/Output

infile.txt
Hello!

This is

a

test.

123

"Hello!\nThis is \na \ntest.\n123"

Text files are multi-lined strings.

Lines are indicated by ’\n’ characters.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 3 / 13



Files Commands

Opening a file:

infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:

infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:

outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



Files Commands

Opening a file:
infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 4 / 13



CSV Files

Very structured– the columns and rows matter.

To keep that format as a text file:

I columns separated by commas (’,’) and
I rows separated by new lines (’\n’)

Rows look like:
"DOT 84 FLUID 11383",Ceyx lepidus collectoris,Solomon Islands,New Georgia Group,Vella Lavella

Island,Oula River camp,,,,07 47 30 S,156 37 30 E,Paul R. Sweet,7-May-04,,PRS-2672,,,"Tissue Fluid "

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 5 / 13



CSV Files

Very structured– the columns and rows matter.

To keep that format as a text file:

I columns separated by commas (’,’) and
I rows separated by new lines (’\n’)

Rows look like:
"DOT 84 FLUID 11383",Ceyx lepidus collectoris,Solomon Islands,New Georgia Group,Vella Lavella

Island,Oula River camp,,,,07 47 30 S,156 37 30 E,Paul R. Sweet,7-May-04,,PRS-2672,,,"Tissue Fluid "

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 5 / 13



CSV Files

Very structured– the columns and rows matter.

To keep that format as a text file:

I columns separated by commas (’,’) and

I rows separated by new lines (’\n’)

Rows look like:
"DOT 84 FLUID 11383",Ceyx lepidus collectoris,Solomon Islands,New Georgia Group,Vella Lavella

Island,Oula River camp,,,,07 47 30 S,156 37 30 E,Paul R. Sweet,7-May-04,,PRS-2672,,,"Tissue Fluid "

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 5 / 13



CSV Files

Very structured– the columns and rows matter.

To keep that format as a text file:

I columns separated by commas (’,’) and
I rows separated by new lines (’\n’)

Rows look like:
"DOT 84 FLUID 11383",Ceyx lepidus collectoris,Solomon Islands,New Georgia Group,Vella Lavella

Island,Oula River camp,,,,07 47 30 S,156 37 30 E,Paul R. Sweet,7-May-04,,PRS-2672,,,"Tissue Fluid "

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 5 / 13



CSV Files

Very structured– the columns and rows matter.

To keep that format as a text file:

I columns separated by commas (’,’) and
I rows separated by new lines (’\n’)

Rows look like:
"DOT 84 FLUID 11383",Ceyx lepidus collectoris,Solomon Islands,New Georgia Group,Vella Lavella

Island,Oula River camp,,,,07 47 30 S,156 37 30 E,Paul R. Sweet,7-May-04,,PRS-2672,,,"Tissue Fluid "

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 5 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv

I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.

I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.

I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader:

for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:

I To access individual entries in a row:
if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 6 / 13



Structured Data Files

CSV: comma separated values

FASTA: sequence data
> Rosalind.1289

ACGTTTAATTATATATAAAA

> Rosalind.1988

GCGAAGGTATTTGGSAAAA

GCGCGCGCGCCCCTTATAT

Portable Network Graphics (PNG): stores images pixel
by pixel.

Structured Query Language (SQL): used to
access/modify relational databases.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 7 / 13



Structured Data Files

CSV: comma separated values

FASTA: sequence data
> Rosalind.1289

ACGTTTAATTATATATAAAA

> Rosalind.1988

GCGAAGGTATTTGGSAAAA

GCGCGCGCGCCCCTTATAT

Portable Network Graphics (PNG): stores images pixel
by pixel.

Structured Query Language (SQL): used to
access/modify relational databases.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 7 / 13



Structured Data Files

CSV: comma separated values

FASTA: sequence data
> Rosalind.1289

ACGTTTAATTATATATAAAA

> Rosalind.1988

GCGAAGGTATTTGGSAAAA

GCGCGCGCGCCCCTTATAT

Portable Network Graphics (PNG): stores images pixel
by pixel.

Structured Query Language (SQL): used to
access/modify relational databases.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 7 / 13



Structured Data Files

CSV: comma separated values

FASTA: sequence data
> Rosalind.1289

ACGTTTAATTATATATAAAA

> Rosalind.1988

GCGAAGGTATTTGGSAAAA

GCGCGCGCGCCCCTTATAT

Portable Network Graphics (PNG): stores images pixel
by pixel.

Structured Query Language (SQL): used to
access/modify relational databases.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 7 / 13



Color By Numbers...

Images are a grid of pixels.

Can access color value for pixel (row, col):
print "Red: ", img[row,col,0]

print "Green:", img[row,col,1]

print "Blue: ", img[row,col,2]

Challenges: manipulate images, pixel by pixel.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 8 / 13



Color By Numbers...

Images are a grid of pixels.
Can access color value for pixel (row, col):
print "Red: ", img[row,col,0]

print "Green:", img[row,col,1]

print "Blue: ", img[row,col,2]

Challenges: manipulate images, pixel by pixel.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 8 / 13



Color By Numbers...

Images are a grid of pixels.
Can access color value for pixel (row, col):
print "Red: ", img[row,col,0]

print "Green:", img[row,col,1]

print "Blue: ", img[row,col,2]

Challenges: manipulate images, pixel by pixel.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 8 / 13



Code Review

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 9 / 13



Code Review

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 10 / 13



Challenges

Display the green channel, the blue channel, and in
black and white.

Starting with a monochromatic butterfly
(e.g. bflyBlue.png), display only the butterfly.

Make a white butterfly appear purple
(e.g. bflyGreen.png).

Display the image upside down.

Subtract two similar images and display pixels that
differ by more than 30%.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 11 / 13



Challenges

Display the green channel, the blue channel, and in
black and white.

Starting with a monochromatic butterfly
(e.g. bflyBlue.png), display only the butterfly.

Make a white butterfly appear purple
(e.g. bflyGreen.png).

Display the image upside down.

Subtract two similar images and display pixels that
differ by more than 30%.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 11 / 13



Challenges

Display the green channel, the blue channel, and in
black and white.

Starting with a monochromatic butterfly
(e.g. bflyBlue.png), display only the butterfly.

Make a white butterfly appear purple
(e.g. bflyGreen.png).

Display the image upside down.

Subtract two similar images and display pixels that
differ by more than 30%.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 11 / 13



Challenges

Display the green channel, the blue channel, and in
black and white.

Starting with a monochromatic butterfly
(e.g. bflyBlue.png), display only the butterfly.

Make a white butterfly appear purple
(e.g. bflyGreen.png).

Display the image upside down.

Subtract two similar images and display pixels that
differ by more than 30%.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 11 / 13



Challenges

Display the green channel, the blue channel, and in
black and white.

Starting with a monochromatic butterfly
(e.g. bflyBlue.png), display only the butterfly.

Make a white butterfly appear purple
(e.g. bflyGreen.png).

Display the image upside down.

Subtract two similar images and display pixels that
differ by more than 30%.

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 11 / 13



Recap

Using matplotlib & numpy in lab today.

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 12 / 13



Recap

Using matplotlib & numpy in lab today.

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 12 / 13



Recap

Using matplotlib & numpy in lab today.

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info

K. St. John (CUNY & AMNH) Algorithms #12 2 March 2016 12 / 13


