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Standard File Input/Output

infile.txt
Hello!

This is

a

test.

123

"Hello!\nThis is \na \ntest.\n123"

Text files are multi-lined strings.

Lines are indicated by ’\n’ characters.
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Files Commands

Opening a file:

infile = open(’data.txt’, ’r’)

outfile = open(’log.txt’, ’w’)

Reading from a file:

I infile.read(): reads the entire file into a
single string.

I infile.readline(): read the next line of
the file.

I infile.readlines(): read the file into a
list of strings.

Closing a file:
infile.close()

Writing to a file:
outfile.write(s)
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CSV Files

Very structured– the columns and rows matter.

To keep that format as a text file:

I columns separated by commas (’,’) and
I rows separated by new lines (’\n’)

Rows look like:
"DOT 84 FLUID 11383",Ceyx lepidus collectoris,Solomon Islands,New Georgia Group,Vella Lavella

Island,Oula River camp,,,,07 47 30 S,156 37 30 E,Paul R. Sweet,7-May-04,,PRS-2672,,,"Tissue Fluid "
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CSV Files

Built-in package for reading CSV files. To use it:

I At top of file, include: import csv
I Open the file normally: f = open("in.csv", "rU")

"rU" avoids errors with different newlines, and accepts all variants.
I Create a reader: reader = csv.DictReader(f)

Uses column names in first line of csv file to access row data.
I Read in lines from reader: for row in reader:
I To access individual entries in a row:

if "Malaysia" in row[’COUNTRY’]: ...
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Structured Data Files

CSV: comma separated values

FASTA: sequence data
> Rosalind.1289

ACGTTTAATTATATATAAAA

> Rosalind.1988

GCGAAGGTATTTGGSAAAA

GCGCGCGCGCCCCTTATAT

Portable Network Graphics (PNG): stores images pixel
by pixel.

Structured Query Language (SQL): used to
access/modify relational databases.
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Color By Numbers...

Images are a grid of pixels.

Can access color value for pixel (row, col):
print "Red: ", img[row,col,0]

print "Green:", img[row,col,1]

print "Blue: ", img[row,col,2]

Challenges: manipulate images, pixel by pixel.
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Code Review
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Challenges

Display the green channel, the blue channel, and in
black and white.

Starting with a monochromatic butterfly
(e.g. bflyBlue.png), display only the butterfly.

Make a white butterfly appear purple
(e.g. bflyGreen.png).

Display the image upside down.

Subtract two similar images and display pixels that
differ by more than 30%.
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Recap

Using matplotlib & numpy in lab today.

Email lab reports to kstjohn@amnh.org

Challenges available at rosalind.info
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