Exam 2 Computer Science 761 Lehman College of CUNY Thursday, 21 November 2002

NAME (Printed)	
NAME (Signed)	

Please show all your work. Your grade will be based on the work shown.

Question 1	(5 points)	
Question 2	(15 points)	
Question 3	(10 points)	
Question 4	(10 points)	
Question 5	(10 points)	
Question 6	(10 points)	
Question 7	(20 points)	
Question 8	(20 points)	
TO		

Useful Formulas

1.	(a)	In a flow network, the flow on an edge is always the same as the capacity of the edge.
	(b)	A directed graph always has more edges than vertices
	(c)	Dynamic programming is a form of a greedy algorithms.
	(d)	Every undirected graph has at most one minimum spanning tree.
	(e)	Binary search trees are directed, acyclic graphs with special properties to make searching efficient.
2.	(a)	How many different minimal spanning trees are there on a complete graph on 4 vertices with edge weights 1 (that is, the graph $G = (\{1, 2, 3, 4\}, \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$ and the weight of every edge is 1.)
	(b)	What is the most number of edges possible in a directed graph $G=(V,E)$ where n is the number of vertices?
	(c)	What is the most number of edges possible in a undirected graph $G=(V,E)$ where n is the number of vertices?
	(d)	In a flow network, what is the capacity of a path, p, if the capacity of each edge (u, v) is $c(u, v)$?
	(e)	How many edges are there in a tree on n vertices?

3. Given the following character set and the frequency each letter occurs, construct a Huffman code for the character set:

	a	b	c	d	е	f
Frequency (in thousands)	5	11	1	4	9	1

4. Topologically sort the following acyclic directed graph. Use the edge relation given by the following table, first draw it, then sort it.

Adjacency Matrix:

	socks	shoes	hat	gloves	coat	watch
socks	0	1	0	0	1	0
shoes	0	0	0	0	1	0
hat	0	0	0	0	0	0
gloves	0	0	0	0	0	0
coat	0	0	1	1	0	0
watch	0	0	0	1	0	0

5.	(a)	Write Prim's Algorithm.
	(b)	Write Kruskal's Algorithm
	(c)	Give a simple example of a graph where the two algorithms will produce different
		answers.

6. Analyze the following algorithm. You may assume that all flows are integer-valued (that is, f[u, v] is always an integer) and $|f^*|$ is the value of the maximal flow.

G is a directed graph with s and t vertices in G.

```
FORD-FULKERSON(G,s,t)
   for each edge (u,v) in E[G]
       do f[u,v] \leftarrow 0
2
3
           f[v,u] <- 0
   while there exists a path p from s to t in the
           residual network G_f
5
       do c_f(p) \leftarrow \min \{c_f(u,v) : (u,v) \text{ is in } p\}
6
           for each edge (u,v) in p
7
              do f[u,v] \leftarrow f[u,v] + c_f(p)
                  f[v,u] \leftarrow - f[u,v]
8
```

7. Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and pennies. Show that your algorithm is optimal.

8. Give an algorithm that determines whether or not a given undirected graph G=(V,E) contains a cycle. Your algorithm should run in O(V) time, independent of the size of E.