
MfA: Python in the City

Katherine St. John
City University of New York

American Museum of Natural History

Goal: Every table have at most one from each school, one from each discipline.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 1 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 2 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 3 / 51

Recap: Workshop Overview

Three sessions:

1 Flood Maps (arrays & images)

2 Noisiest Street (structured data, file I/O)

3 Mapping Collisions (using objects, mapping
coordinates)

Each session:

Design Challenge

I Analyze a publicly available dataset
I Introduce computing concepts &

packages
I Write a program to solve the problem

Variations on the theme

Design a Challenge

K. St. John (Hunter & AMNH) Session 2 20 November 2019 4 / 51

Recap: Workshop Overview

Three sessions:

1 Flood Maps (arrays & images)

2 Noisiest Street (structured data, file I/O)

3 Mapping Collisions (using objects, mapping
coordinates)

Each session:

Design Challenge

I Analyze a publicly available dataset
I Introduce computing concepts &

packages
I Write a program to solve the problem

Variations on the theme

Design a Challenge

K. St. John (Hunter & AMNH) Session 2 20 November 2019 4 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 5 / 51

Design Challenge: NYC Population

(Myles Zhang, wiki)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 6 / 51

Design Challenge: NYC Population

(Myles Zhang, wiki)

Working in Groups: graph NYC population (and
growth) since 1900.

Input: What data do you need?

Process: How can you compute the
growth?

Output: How can you present your data?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 7 / 51

Design Challenge: NYC Population

(Myles Zhang, wiki)

Working in Groups: graph NYC population (and
growth) since 1900.

Input: What data do you need?

Process: How can you compute the
growth?

Output: How can you present your data?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 7 / 51

Design Challenge: NYC Population

(Myles Zhang, wiki)

Working in Groups: graph NYC population (and
growth) since 1900.

Input: What data do you need?

Process: How can you compute the
growth?

Output: How can you present your data?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 7 / 51

Design Challenge: NYC Population

(Myles Zhang, wiki)

Working in Groups: graph NYC population (and
growth) since 1900.

Input: What data do you need?

Process: How can you compute the
growth?

Output: How can you present your data?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 7 / 51

Data: Population

(Myles Zhang, wiki)

Input: What data do you need?

Populations of the city in 1900 to today.

Wikipedia page on NYC Historical
Population.

Saved as a CSV file at:
stjohn.github.io/service/mfa/f19.html

(Download to your computer to use for
the following slides.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 8 / 51

Data: Population

(Myles Zhang, wiki)

Input: What data do you need?

Populations of the city in 1900 to today.

Wikipedia page on NYC Historical
Population.

Saved as a CSV file at:
stjohn.github.io/service/mfa/f19.html

(Download to your computer to use for
the following slides.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 8 / 51

Data: Population

(Myles Zhang, wiki)

Input: What data do you need?

Populations of the city in 1900 to today.

Wikipedia page on NYC Historical
Population.

Saved as a CSV file at:
stjohn.github.io/service/mfa/f19.html

(Download to your computer to use for
the following slides.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 8 / 51

Data: Population

(Myles Zhang, wiki)

Input: What data do you need?

Populations of the city in 1900 to today.

Wikipedia page on NYC Historical
Population.

Saved as a CSV file at:
stjohn.github.io/service/mfa/f19.html

(Download to your computer to use for
the following slides.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 8 / 51

Data: Population

(Myles Zhang, wiki)

Input: What data do you need?

Populations of the city in 1900 to today.

Wikipedia page on NYC Historical
Population.

Saved as a CSV file at:
stjohn.github.io/service/mfa/f19.html

(Download to your computer to use for
the following slides.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 8 / 51

CSV File: stjohn.github.io/service/mfa/f19.html

nycHistPop.csv

K. St. John (Hunter & AMNH) Session 2 20 November 2019 9 / 51

CSV Files

Excel .xls files have much extra formatting.

The text file version is called CSV for comma separated values.

Each row is a line in the file.

Columns are separated by commas on each line.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 10 / 51

CSV Files

Excel .xls files have much extra formatting.

The text file version is called CSV for comma separated values.

Each row is a line in the file.

Columns are separated by commas on each line.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 10 / 51

CSV Files

Excel .xls files have much extra formatting.

The text file version is called CSV for comma separated values.

Each row is a line in the file.

Columns are separated by commas on each line.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 10 / 51

CSV Files

Excel .xls files have much extra formatting.

The text file version is called CSV for comma separated values.

Each row is a line in the file.

Columns are separated by commas on each line.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 10 / 51

Structured Data

We will use the popular Python Data Analysis Library (Pandas).

Open source and freely available (part of anaconda distribution).

To use, add to the top of your file:

import pandas as pd

K. St. John (Hunter & AMNH) Session 2 20 November 2019 11 / 51

Structured Data

We will use the popular Python Data Analysis Library (Pandas).

Open source and freely available (part of anaconda distribution).

To use, add to the top of your file:

import pandas as pd

K. St. John (Hunter & AMNH) Session 2 20 November 2019 11 / 51

Structured Data

We will use the popular Python Data Analysis Library (Pandas).

Open source and freely available (part of anaconda distribution).

To use, add to the top of your file:

import pandas as pd

K. St. John (Hunter & AMNH) Session 2 20 November 2019 11 / 51

Reading in CSV Files

To read in a CSV file: myVar = pd.read csv("myFile.csv")

Pandas has its own type, DataFrame, that is perfect for holding a
sheet of data.

Often abbreviated: df.

It also has Series, that is perfect for holding a row or column of data.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 12 / 51

Reading in CSV Files

To read in a CSV file: myVar = pd.read csv("myFile.csv")

Pandas has its own type, DataFrame, that is perfect for holding a
sheet of data.

Often abbreviated: df.

It also has Series, that is perfect for holding a row or column of data.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 12 / 51

Reading in CSV Files

To read in a CSV file: myVar = pd.read csv("myFile.csv")

Pandas has its own type, DataFrame, that is perfect for holding a
sheet of data.

Often abbreviated: df.

It also has Series, that is perfect for holding a row or column of data.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 12 / 51

Reading in CSV Files

To read in a CSV file: myVar = pd.read csv("myFile.csv")

Pandas has its own type, DataFrame, that is perfect for holding a
sheet of data.

Often abbreviated: df.

It also has Series, that is perfect for holding a row or column of data.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 12 / 51

Your Turn: Reading in CSV Files

nycHistPop.csv

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

(To get above color scheme, import seaborn.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 13 / 51

Your Turn: Reading in CSV Files

nycHistPop.csv

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

(To get above color scheme, import seaborn.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 13 / 51

Your Turn: Reading in CSV Files

nycHistPop.csv

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

(To get above color scheme, import seaborn.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 13 / 51

Your Turn: Reading in CSV Files

nycHistPop.csv

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

(To get above color scheme, import seaborn.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 13 / 51

Your Turn: Reading in CSV Files

nycHistPop.csv

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

(To get above color scheme, import seaborn.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 13 / 51

Your Turn: Reading in CSV Files

nycHistPop.csv

import matplotlib.pyplot as plt

import pandas as pd

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop.plot(x="Year")

plt.show()

(To get above color scheme, import seaborn.)

K. St. John (Hunter & AMNH) Session 2 20 November 2019 13 / 51

Nice Graph, But Doesn’t Answer the Question

Let’s survey what else you can do with pandas....

K. St. John (Hunter & AMNH) Session 2 20 November 2019 14 / 51

Nice Graph, But Doesn’t Answer the Question

Let’s survey what else you can do with pandas....

K. St. John (Hunter & AMNH) Session 2 20 November 2019 14 / 51

Series in Pandas

Series can store a column or row of a DataFrame.

Example: pop["Manhattan"] is the Series corresponding to the column of
Manhattan data.

Example:
print("The largest number living in the Bronx is",\
pop["Bronx"].max())

K. St. John (Hunter & AMNH) Session 2 20 November 2019 15 / 51

Series in Pandas

Series can store a column or row of a DataFrame.

Example: pop["Manhattan"] is the Series corresponding to the column of
Manhattan data.

Example:
print("The largest number living in the Bronx is",\
pop["Bronx"].max())

K. St. John (Hunter & AMNH) Session 2 20 November 2019 15 / 51

Series in Pandas

Series can store a column or row of a DataFrame.

Example: pop["Manhattan"] is the Series corresponding to the column of
Manhattan data.

Example:
print("The largest number living in the Bronx is",\
pop["Bronx"].max())

K. St. John (Hunter & AMNH) Session 2 20 November 2019 15 / 51

In Groups

Predict what the following will do:

print("Queens:", pop["Queens"].min())

print("S I:", pop["Staten Island"].mean())

print("S I:", pop["Staten Island"].std())

pop.plot.bar(x="Year")

pop.plot.scatter(x="Brooklyn", y= "Total")

pop["Fraction"] = pop["Bronx"]/pop["Total"]

K. St. John (Hunter & AMNH) Session 2 20 November 2019 16 / 51

In Groups

Predict what the following will do:

print("Queens:", pop["Queens"].min())

print("S I:", pop["Staten Island"].mean())

print("S I:", pop["Staten Island"].std())

pop.plot.bar(x="Year")

pop.plot.scatter(x="Brooklyn", y= "Total")

pop["Fraction"] = pop["Bronx"]/pop["Total"]

K. St. John (Hunter & AMNH) Session 2 20 November 2019 16 / 51

In Groups

Predict what the following will do:

print("Queens:", pop["Queens"].min())

print("S I:", pop["Staten Island"].mean())

print("S I:", pop["Staten Island"].std())

pop.plot.bar(x="Year")

pop.plot.scatter(x="Brooklyn", y= "Total")

pop["Fraction"] = pop["Bronx"]/pop["Total"]

K. St. John (Hunter & AMNH) Session 2 20 November 2019 16 / 51

In Groups

Predict what the following will do:

print("Queens:", pop["Queens"].min())

print("S I:", pop["Staten Island"].mean())

print("S I:", pop["Staten Island"].std())

pop.plot.bar(x="Year")

pop.plot.scatter(x="Brooklyn", y= "Total")

pop["Fraction"] = pop["Bronx"]/pop["Total"]

K. St. John (Hunter & AMNH) Session 2 20 November 2019 16 / 51

In Groups

Predict what the following will do:

print("Queens:", pop["Queens"].min())

print("S I:", pop["Staten Island"].mean())

print("S I:", pop["Staten Island"].std())

pop.plot.bar(x="Year")

pop.plot.scatter(x="Brooklyn", y= "Total")

pop["Fraction"] = pop["Bronx"]/pop["Total"]

K. St. John (Hunter & AMNH) Session 2 20 November 2019 16 / 51

In Groups

Predict what the following will do:

print("Queens:", pop["Queens"].min())

print("S I:", pop["Staten Island"].mean())

print("S I:", pop["Staten Island"].std())

pop.plot.bar(x="Year")

pop.plot.scatter(x="Brooklyn", y= "Total")

pop["Fraction"] = pop["Bronx"]/pop["Total"]

K. St. John (Hunter & AMNH) Session 2 20 November 2019 16 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

Solutions

Predict what the following will do:

print("Queens:", pop["Queens"].min())

Minimum value in the column with label “Queens”.

print("S I:", pop["Staten Island"].mean())

Average of values in the column “Staten Island”.

print("S I :", pop["Staten Island"].std())

Standard deviation of values in the column “Staten
Island”.

pop.plot.bar(x="Year")

Bar chart with x-axis ”Year”.

pop.plot.scatter(x="Brooklyn", y= "Total")

Scatter plot of Brooklyn versus Total values.

pop["Fraction"] = pop["Bronx"]/pop["Total"]

New column with the fraction of population that
lives in the Bronx.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 17 / 51

In Groups

Graph the percentage of the total population that live in Manhattan:

K. St. John (Hunter & AMNH) Session 2 20 November 2019 18 / 51

In Groups

Graph the percentage of the total population that live in Manhattan:

K. St. John (Hunter & AMNH) Session 2 20 November 2019 18 / 51

Percent of Population in Manhattan, Over Time

import matplotlib.pyplot as plt

import pandas as pd

import seaborn

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop["% Manhattan"] = 100*pop["Manhattan"]/pop["Total"]

pop.plot(x="Year",y="% Manhattan")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 19 / 51

Percent of Population in Manhattan, Over Time

import matplotlib.pyplot as plt

import pandas as pd

import seaborn

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop["% Manhattan"] = 100*pop["Manhattan"]/pop["Total"]

pop.plot(x="Year",y="% Manhattan")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 19 / 51

Percent of Population in Manhattan, Over Time

import matplotlib.pyplot as plt

import pandas as pd

import seaborn

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop["% Manhattan"] = 100*pop["Manhattan"]/pop["Total"]

pop.plot(x="Year",y="% Manhattan")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 19 / 51

Percent of Population in Manhattan, Over Time

import matplotlib.pyplot as plt

import pandas as pd

import seaborn

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop["% Manhattan"] = 100*pop["Manhattan"]/pop["Total"]

pop.plot(x="Year",y="% Manhattan")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 19 / 51

Percent of Population in Manhattan, Over Time

import matplotlib.pyplot as plt

import pandas as pd

import seaborn

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop["% Manhattan"] = 100*pop["Manhattan"]/pop["Total"]

pop.plot(x="Year",y="% Manhattan")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 19 / 51

Percent of Population in Manhattan, Over Time

import matplotlib.pyplot as plt

import pandas as pd

import seaborn

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop["% Manhattan"] = 100*pop["Manhattan"]/pop["Total"]

pop.plot(x="Year",y="% Manhattan")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 19 / 51

Percent of Population in Manhattan, Over Time

import matplotlib.pyplot as plt

import pandas as pd

import seaborn

pop = pd.read csv(’nycHistPop.csv’,skiprows=5)

pop["% Manhattan"] = 100*pop["Manhattan"]/pop["Total"]

pop.plot(x="Year",y="% Manhattan")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 19 / 51

Population Since 1900

pop1900 = pop[pop[’Year’] >= 1900]

pop1900.plot(x="Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 20 / 51

Population Since 1900

pop1900 = pop[pop[’Year’] >= 1900]

pop1900.plot(x="Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 20 / 51

Population Percentage by Borough

K. St. John (Hunter & AMNH) Session 2 20 November 2019 21 / 51

Population Percentage by Borough

boros = ["Bronx","Brooklyn","Manhattan","Queens","Staten Island"]

percentCol = ["% "+ boro for boro in boros] #List comprehension

for boro in boros:

print(’Computing percentage for’, boro)

pop["% " + boro] = 100*pop2[boro]/pop["Total"]

pop = pop.drop(boros, axis = 1)

pop = pop.drop("Total", axis = 1)

pop.plot(x = "Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 22 / 51

Population Percentage by Borough

boros = ["Bronx","Brooklyn","Manhattan","Queens","Staten Island"]

percentCol = ["% "+ boro for boro in boros] #List comprehension

for boro in boros:

print(’Computing percentage for’, boro)

pop["% " + boro] = 100*pop2[boro]/pop["Total"]

pop = pop.drop(boros, axis = 1)

pop = pop.drop("Total", axis = 1)

pop.plot(x = "Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 22 / 51

Population Percentage by Borough

boros = ["Bronx","Brooklyn","Manhattan","Queens","Staten Island"]

percentCol = ["% "+ boro for boro in boros] #List comprehension

for boro in boros:

print(’Computing percentage for’, boro)

pop["% " + boro] = 100*pop2[boro]/pop["Total"]

pop = pop.drop(boros, axis = 1)

pop = pop.drop("Total", axis = 1)

pop.plot(x = "Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 22 / 51

Population Percentage by Borough

boros = ["Bronx","Brooklyn","Manhattan","Queens","Staten Island"]

percentCol = ["% "+ boro for boro in boros] #List comprehension

for boro in boros:

print(’Computing percentage for’, boro)

pop["% " + boro] = 100*pop2[boro]/pop["Total"]

pop = pop.drop(boros, axis = 1)

pop = pop.drop("Total", axis = 1)

pop.plot(x = "Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 22 / 51

Population Percentage by Borough

boros = ["Bronx","Brooklyn","Manhattan","Queens","Staten Island"]

percentCol = ["% "+ boro for boro in boros] #List comprehension

for boro in boros:

print(’Computing percentage for’, boro)

pop["% " + boro] = 100*pop2[boro]/pop["Total"]

pop = pop.drop(boros, axis = 1)

pop = pop.drop("Total", axis = 1)

pop.plot(x = "Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 22 / 51

Population Percentage by Borough

boros = ["Bronx","Brooklyn","Manhattan","Queens","Staten Island"]

percentCol = ["% "+ boro for boro in boros] #List comprehension

for boro in boros:

print(’Computing percentage for’, boro)

pop["% " + boro] = 100*pop2[boro]/pop["Total"]

pop = pop.drop(boros, axis = 1)

pop = pop.drop("Total", axis = 1)

pop.plot(x = "Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 22 / 51

Population Percentage by Borough

boros = ["Bronx","Brooklyn","Manhattan","Queens","Staten Island"]

percentCol = ["% "+ boro for boro in boros] #List comprehension

for boro in boros:

print(’Computing percentage for’, boro)

pop["% " + boro] = 100*pop2[boro]/pop["Total"]

pop = pop.drop(boros, axis = 1)

pop = pop.drop("Total", axis = 1)

pop.plot(x = "Year")

plt.show()

K. St. John (Hunter & AMNH) Session 2 20 November 2019 22 / 51

Population Percentage by Borough

boros = ["Bronx","Brooklyn","Manhattan","Queens","Staten Island"]

percentCol = ["% "+ boro for boro in boros] #List comprehension

for boro in boros:

print(’Computing percentage for’, boro)

pop["% " + boro] = 100*pop2[boro]/pop["Total"]

pop = pop.drop(boros, axis = 1)

pop = pop.drop("Total", axis = 1)

pop.plot(x = "Year")

plt.show()
K. St. John (Hunter & AMNH) Session 2 20 November 2019 22 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 23 / 51

Variations on the Theme: School Attendance

Manhattan Hunter HS, 2018-2019

K. St. John (Hunter & AMNH) Session 2 20 November 2019 24 / 51

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

More on downloading NYC OpenData datasets after break.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 25 / 51

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

More on downloading NYC OpenData datasets after break.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 25 / 51

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

More on downloading NYC OpenData datasets after break.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 25 / 51

Accessing Structured Data: NYC Open Data

Freely available source of data.

Maintained by the NYC data analytics team.

Will use pandas, pyplot & folium libraries to analyze, visualize and
map the data.

More on downloading NYC OpenData datasets after break.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 25 / 51

Variations on the Theme: School Attendance

NYC OpenData has daily population counts for schools.

2018-2019 data for Manhattan Hunter linked on webpage.
Download now to work through the exercise.

Can download your own from OpenData NYC
(view data and filter by “School DBN”).

Dates need to be converted from ’YYYYMMDD’ to a
datetime format:

df["Date"] = pd.to datetime(df["Date"].apply(str))

Goal: Make a plot of daily attendance
(as percentage of enrolled).

K. St. John (Hunter & AMNH) Session 2 20 November 2019 26 / 51

Variations on the Theme: School Attendance

NYC OpenData has daily population counts for schools.

2018-2019 data for Manhattan Hunter linked on webpage.

Download now to work through the exercise.

Can download your own from OpenData NYC
(view data and filter by “School DBN”).

Dates need to be converted from ’YYYYMMDD’ to a
datetime format:

df["Date"] = pd.to datetime(df["Date"].apply(str))

Goal: Make a plot of daily attendance
(as percentage of enrolled).

K. St. John (Hunter & AMNH) Session 2 20 November 2019 26 / 51

Variations on the Theme: School Attendance

NYC OpenData has daily population counts for schools.

2018-2019 data for Manhattan Hunter linked on webpage.
Download now to work through the exercise.

Can download your own from OpenData NYC
(view data and filter by “School DBN”).

Dates need to be converted from ’YYYYMMDD’ to a
datetime format:

df["Date"] = pd.to datetime(df["Date"].apply(str))

Goal: Make a plot of daily attendance
(as percentage of enrolled).

K. St. John (Hunter & AMNH) Session 2 20 November 2019 26 / 51

Variations on the Theme: School Attendance

NYC OpenData has daily population counts for schools.

2018-2019 data for Manhattan Hunter linked on webpage.
Download now to work through the exercise.

Can download your own from OpenData NYC
(view data and filter by “School DBN”).

Dates need to be converted from ’YYYYMMDD’ to a
datetime format:

df["Date"] = pd.to datetime(df["Date"].apply(str))

Goal: Make a plot of daily attendance
(as percentage of enrolled).

K. St. John (Hunter & AMNH) Session 2 20 November 2019 26 / 51

Variations on the Theme: School Attendance

NYC OpenData has daily population counts for schools.

2018-2019 data for Manhattan Hunter linked on webpage.
Download now to work through the exercise.

Can download your own from OpenData NYC
(view data and filter by “School DBN”).

Dates need to be converted from ’YYYYMMDD’ to a
datetime format:

df["Date"] = pd.to datetime(df["Date"].apply(str))

Goal: Make a plot of daily attendance
(as percentage of enrolled).

K. St. John (Hunter & AMNH) Session 2 20 November 2019 26 / 51

Variations on the Theme: School Attendance

NYC OpenData has daily population counts for schools.

2018-2019 data for Manhattan Hunter linked on webpage.
Download now to work through the exercise.

Can download your own from OpenData NYC
(view data and filter by “School DBN”).

Dates need to be converted from ’YYYYMMDD’ to a
datetime format:

df["Date"] = pd.to datetime(df["Date"].apply(str))

Goal: Make a plot of daily attendance
(as percentage of enrolled).

K. St. John (Hunter & AMNH) Session 2 20 November 2019 26 / 51

Variations on the Theme: School Attendance

c

df = pd.read csv(’dailyAttendance.csv’) #Read file to a dataframe

df["Date"] = pd.to datetime(df["Date"].apply(str))

df["% Attending"] = 100*df["Present"]/df["Enrolled"]

df.plot(x=’Date’,y="% Attending")

K. St. John (Hunter & AMNH) Session 2 20 November 2019 27 / 51

Variations on the Theme: School Attendance

c

df = pd.read csv(’dailyAttendance.csv’) #Read file to a dataframe

df["Date"] = pd.to datetime(df["Date"].apply(str))

df["% Attending"] = 100*df["Present"]/df["Enrolled"]

df.plot(x=’Date’,y="% Attending")

K. St. John (Hunter & AMNH) Session 2 20 November 2019 27 / 51

Variations on the Theme: School Attendance

c

df = pd.read csv(’dailyAttendance.csv’) #Read file to a dataframe

df["Date"] = pd.to datetime(df["Date"].apply(str))

df["% Attending"] = 100*df["Present"]/df["Enrolled"]

df.plot(x=’Date’,y="% Attending")

K. St. John (Hunter & AMNH) Session 2 20 November 2019 27 / 51

Variations on the Theme: School Attendance

c

df = pd.read csv(’dailyAttendance.csv’) #Read file to a dataframe

df["Date"] = pd.to datetime(df["Date"].apply(str))

df["% Attending"] = 100*df["Present"]/df["Enrolled"]

df.plot(x=’Date’,y="% Attending")

K. St. John (Hunter & AMNH) Session 2 20 November 2019 27 / 51

Design a Challenge

Find an interesting data set for a
challenge.

Suggested places to look:

I NYC OpenData.
I Weather Underground

(for historical weather data).
I Kaggle Open Datasets:

data, code, and competitions for
data science.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 28 / 51

Design a Challenge

Find an interesting data set for a
challenge.

Suggested places to look:

I NYC OpenData.
I Weather Underground

(for historical weather data).
I Kaggle Open Datasets:

data, code, and competitions for
data science.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 28 / 51

Design a Challenge

Find an interesting data set for a
challenge.

Suggested places to look:

I NYC OpenData.

I Weather Underground
(for historical weather data).

I Kaggle Open Datasets:
data, code, and competitions for
data science.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 28 / 51

Design a Challenge

Find an interesting data set for a
challenge.

Suggested places to look:

I NYC OpenData.
I Weather Underground

(for historical weather data).

I Kaggle Open Datasets:
data, code, and competitions for
data science.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 28 / 51

Design a Challenge

Find an interesting data set for a
challenge.

Suggested places to look:

I NYC OpenData.
I Weather Underground

(for historical weather data).
I Kaggle Open Datasets:

data, code, and competitions for
data science.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 28 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 29 / 51

Break

K. St. John (Hunter & AMNH) Session 2 20 November 2019 30 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 31 / 51

Variations on the Theme: Binning Data: Parking Tickets

Open Data has archived recent NYC parking tickets.

I We will use a small version (1000 lines).
I You are welcome to use any neighborhood in the city.
I Suggest restricting to a single year, since can be quite large.

A simple, but very powerful, technique is binning data: grouping data
into the number of occurrences for each categories.

Can often show patterns that individual data points do not.

We will bin parking tickets by attributes: license plate number, car
color, etc.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 32 / 51

Variations on the Theme: Binning Data: Parking Tickets

Open Data has archived recent NYC parking tickets.
I We will use a small version (1000 lines).

I You are welcome to use any neighborhood in the city.
I Suggest restricting to a single year, since can be quite large.

A simple, but very powerful, technique is binning data: grouping data
into the number of occurrences for each categories.

Can often show patterns that individual data points do not.

We will bin parking tickets by attributes: license plate number, car
color, etc.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 32 / 51

Variations on the Theme: Binning Data: Parking Tickets

Open Data has archived recent NYC parking tickets.
I We will use a small version (1000 lines).
I You are welcome to use any neighborhood in the city.

I Suggest restricting to a single year, since can be quite large.

A simple, but very powerful, technique is binning data: grouping data
into the number of occurrences for each categories.

Can often show patterns that individual data points do not.

We will bin parking tickets by attributes: license plate number, car
color, etc.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 32 / 51

Variations on the Theme: Binning Data: Parking Tickets

Open Data has archived recent NYC parking tickets.
I We will use a small version (1000 lines).
I You are welcome to use any neighborhood in the city.
I Suggest restricting to a single year, since can be quite large.

A simple, but very powerful, technique is binning data: grouping data
into the number of occurrences for each categories.

Can often show patterns that individual data points do not.

We will bin parking tickets by attributes: license plate number, car
color, etc.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 32 / 51

Variations on the Theme: Binning Data: Parking Tickets

Open Data has archived recent NYC parking tickets.
I We will use a small version (1000 lines).
I You are welcome to use any neighborhood in the city.
I Suggest restricting to a single year, since can be quite large.

A simple, but very powerful, technique is binning data: grouping data
into the number of occurrences for each categories.

Can often show patterns that individual data points do not.

We will bin parking tickets by attributes: license plate number, car
color, etc.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 32 / 51

Variations on the Theme: Binning Data: Parking Tickets

Open Data has archived recent NYC parking tickets.
I We will use a small version (1000 lines).
I You are welcome to use any neighborhood in the city.
I Suggest restricting to a single year, since can be quite large.

A simple, but very powerful, technique is binning data: grouping data
into the number of occurrences for each categories.

Can often show patterns that individual data points do not.

We will bin parking tickets by attributes: license plate number, car
color, etc.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 32 / 51

Variations on the Theme: Binning Data: Parking Tickets

Open Data has archived recent NYC parking tickets.
I We will use a small version (1000 lines).
I You are welcome to use any neighborhood in the city.
I Suggest restricting to a single year, since can be quite large.

A simple, but very powerful, technique is binning data: grouping data
into the number of occurrences for each categories.

Can often show patterns that individual data points do not.

We will bin parking tickets by attributes: license plate number, car
color, etc.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 32 / 51

Parking Ticket Data Format

K. St. John (Hunter & AMNH) Session 2 20 November 2019 33 / 51

Parking Ticket Data Format

Instead of zipcode, classified by the issuing police precinct.

To limit to a precinct, filter by “Violation Precinct”.

The first line gives the entries in the order they occur in the rows.

Each entry begins with a unique identifier to look up the ticket.

Sample line of CSV file:
1335632335,L040HZ,FL,PAS,06/09/2015,46,SUBN,NISSA,X,35430,14510,15710,0,0020,20,74,921167,E074,0000,1213P,1207P,NY,O,4,WEST

83 ST,,0,408,C,,BBBBBBB,ALL,ALL,RED,0,0,-,0,,,,,

Issued on June 9, 2015 to a passenger car with Florida plates,
L040HZ. The red Nissan SUV received it on W 83rd Street.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 34 / 51

Parking Ticket Data Format

Instead of zipcode, classified by the issuing police precinct.

To limit to a precinct, filter by “Violation Precinct”.

The first line gives the entries in the order they occur in the rows.

Each entry begins with a unique identifier to look up the ticket.

Sample line of CSV file:
1335632335,L040HZ,FL,PAS,06/09/2015,46,SUBN,NISSA,X,35430,14510,15710,0,0020,20,74,921167,E074,0000,1213P,1207P,NY,O,4,WEST

83 ST,,0,408,C,,BBBBBBB,ALL,ALL,RED,0,0,-,0,,,,,

Issued on June 9, 2015 to a passenger car with Florida plates,
L040HZ. The red Nissan SUV received it on W 83rd Street.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 34 / 51

Parking Ticket Data Format

Instead of zipcode, classified by the issuing police precinct.

To limit to a precinct, filter by “Violation Precinct”.

The first line gives the entries in the order they occur in the rows.

Each entry begins with a unique identifier to look up the ticket.

Sample line of CSV file:
1335632335,L040HZ,FL,PAS,06/09/2015,46,SUBN,NISSA,X,35430,14510,15710,0,0020,20,74,921167,E074,0000,1213P,1207P,NY,O,4,WEST

83 ST,,0,408,C,,BBBBBBB,ALL,ALL,RED,0,0,-,0,,,,,

Issued on June 9, 2015 to a passenger car with Florida plates,
L040HZ. The red Nissan SUV received it on W 83rd Street.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 34 / 51

Parking Ticket Data Format

Instead of zipcode, classified by the issuing police precinct.

To limit to a precinct, filter by “Violation Precinct”.

The first line gives the entries in the order they occur in the rows.

Each entry begins with a unique identifier to look up the ticket.

Sample line of CSV file:
1335632335,L040HZ,FL,PAS,06/09/2015,46,SUBN,NISSA,X,35430,14510,15710,0,0020,20,74,921167,E074,0000,1213P,1207P,NY,O,4,WEST

83 ST,,0,408,C,,BBBBBBB,ALL,ALL,RED,0,0,-,0,,,,,

Issued on June 9, 2015 to a passenger car with Florida plates,
L040HZ. The red Nissan SUV received it on W 83rd Street.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 34 / 51

Parking Ticket Data Format

Instead of zipcode, classified by the issuing police precinct.

To limit to a precinct, filter by “Violation Precinct”.

The first line gives the entries in the order they occur in the rows.

Each entry begins with a unique identifier to look up the ticket.

Sample line of CSV file:
1335632335,L040HZ,FL,PAS,06/09/2015,46,SUBN,NISSA,X,35430,14510,15710,0,0020,20,74,921167,E074,0000,1213P,1207P,NY,O,4,WEST

83 ST,,0,408,C,,BBBBBBB,ALL,ALL,RED,0,0,-,0,,,,,

Issued on June 9, 2015 to a passenger car with Florida plates,
L040HZ. The red Nissan SUV received it on W 83rd Street.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 34 / 51

Parking Ticket Data Format

Instead of zipcode, classified by the issuing police precinct.

To limit to a precinct, filter by “Violation Precinct”.

The first line gives the entries in the order they occur in the rows.

Each entry begins with a unique identifier to look up the ticket.

Sample line of CSV file:
1335632335,L040HZ,FL,PAS,06/09/2015,46,SUBN,NISSA,X,35430,14510,15710,0,0020,20,74,921167,E074,0000,1213P,1207P,NY,O,4,WEST

83 ST,,0,408,C,,BBBBBBB,ALL,ALL,RED,0,0,-,0,,,,,

Issued on June 9, 2015 to a passenger car with Florida plates,
L040HZ. The red Nissan SUV received it on W 83rd Street.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 34 / 51

Parking Ticket Data Format

Instead of zipcode, classified by the issuing police precinct.

To limit to a precinct, filter by “Violation Precinct”.

The first line gives the entries in the order they occur in the rows.

Each entry begins with a unique identifier to look up the ticket.

Sample line of CSV file:
1335632335,L040HZ,FL,PAS,06/09/2015,46,SUBN,NISSA,X,35430,14510,15710,0,0020,20,74,921167,E074,0000,1213P,1207P,NY,O,4,WEST

83 ST,,0,408,C,,BBBBBBB,ALL,ALL,RED,0,0,-,0,,,,,

Issued on June 9, 2015 to a passenger car with Florida plates,
L040HZ. The red Nissan SUV received it on W 83rd Street.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 34 / 51

Binning Data: Parking Tickets

In groups, brainstorm about how to answer:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 35 / 51

Binning Data: Parking Tickets

In groups, brainstorm about how to answer:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 35 / 51

Binning Data: Parking Tickets

In groups, brainstorm about how to answer:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 35 / 51

Binning Data: Parking Tickets

In groups, brainstorm about how to answer:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 35 / 51

Binning Data: Parking Tickets

In groups, brainstorm about how to answer:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 35 / 51

Binning Data: Parking Tickets

In groups, brainstorm about how to answer:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 35 / 51

Binning Data: Parking Tickets

In groups, brainstorm about how to answer:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 35 / 51

Counting Tickets per Car

How can tell which car got the most tickets?

Need to a unique way to identify different cars.
Luckily, cars almost always have license plates– unique by state.
(For this simple exercise, assume each license plate ID is unique– not unreasonable

since every state has a different schema for assigning numbers, but to be more

accurate should keep track of license plate number and issuing state.)

Want to “bin” tickets by license plates (“Plate ID”),
and then count the size of bins.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 36 / 51

Counting Tickets per Car

How can tell which car got the most tickets?

Need to a unique way to identify different cars.
Luckily, cars almost always have license plates– unique by state.
(For this simple exercise, assume each license plate ID is unique– not unreasonable

since every state has a different schema for assigning numbers, but to be more

accurate should keep track of license plate number and issuing state.)

Want to “bin” tickets by license plates (“Plate ID”),
and then count the size of bins.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 36 / 51

Counting Tickets per Car

How can tell which car got the most tickets?

Need to a unique way to identify different cars.

Luckily, cars almost always have license plates– unique by state.
(For this simple exercise, assume each license plate ID is unique– not unreasonable

since every state has a different schema for assigning numbers, but to be more

accurate should keep track of license plate number and issuing state.)

Want to “bin” tickets by license plates (“Plate ID”),
and then count the size of bins.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 36 / 51

Counting Tickets per Car

How can tell which car got the most tickets?

Need to a unique way to identify different cars.
Luckily, cars almost always have license plates– unique by state.

(For this simple exercise, assume each license plate ID is unique– not unreasonable

since every state has a different schema for assigning numbers, but to be more

accurate should keep track of license plate number and issuing state.)

Want to “bin” tickets by license plates (“Plate ID”),
and then count the size of bins.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 36 / 51

Counting Tickets per Car

How can tell which car got the most tickets?

Need to a unique way to identify different cars.
Luckily, cars almost always have license plates– unique by state.
(For this simple exercise, assume each license plate ID is unique– not unreasonable

since every state has a different schema for assigning numbers, but to be more

accurate should keep track of license plate number and issuing state.)

Want to “bin” tickets by license plates (“Plate ID”),
and then count the size of bins.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 36 / 51

Counting Tickets per Car

How can tell which car got the most tickets?

Need to a unique way to identify different cars.
Luckily, cars almost always have license plates– unique by state.
(For this simple exercise, assume each license plate ID is unique– not unreasonable

since every state has a different schema for assigning numbers, but to be more

accurate should keep track of license plate number and issuing state.)

Want to “bin” tickets by license plates (“Plate ID”),

and then count the size of bins.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 36 / 51

Counting Tickets per Car

How can tell which car got the most tickets?

Need to a unique way to identify different cars.
Luckily, cars almost always have license plates– unique by state.
(For this simple exercise, assume each license plate ID is unique– not unreasonable

since every state has a different schema for assigning numbers, but to be more

accurate should keep track of license plate number and issuing state.)

Want to “bin” tickets by license plates (“Plate ID”),
and then count the size of bins.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 36 / 51

Your Turn: Binning Data

Sample program:

import pandas as pd

tickets = pd.read csv(’tickets.csv’)

#Print out the data frame:

print(tickets)

#Print out licence plates:

print(tickets["Plate ID"])

#Print out plates & number of tickets each got:

print(tickets["Plate ID"].value counts())

#Print 10 worst & number of tickets:

print(tickets["Plate ID"].value counts()[:10])

For the sample data set, there were few cars that got more than a
ticket a day...

K. St. John (Hunter & AMNH) Session 2 20 November 2019 37 / 51

Your Turn: Binning Data

Sample program:
import pandas as pd

tickets = pd.read csv(’tickets.csv’)

#Print out the data frame:

print(tickets)

#Print out licence plates:

print(tickets["Plate ID"])

#Print out plates & number of tickets each got:

print(tickets["Plate ID"].value counts())

#Print 10 worst & number of tickets:

print(tickets["Plate ID"].value counts()[:10])

For the sample data set, there were few cars that got more than a
ticket a day...

K. St. John (Hunter & AMNH) Session 2 20 November 2019 37 / 51

Your Turn: Binning Data

Sample program:
import pandas as pd

tickets = pd.read csv(’tickets.csv’)

#Print out the data frame:

print(tickets)

#Print out licence plates:

print(tickets["Plate ID"])

#Print out plates & number of tickets each got:

print(tickets["Plate ID"].value counts())

#Print 10 worst & number of tickets:

print(tickets["Plate ID"].value counts()[:10])

For the sample data set, there were few cars that got more than a
ticket a day...

K. St. John (Hunter & AMNH) Session 2 20 November 2019 37 / 51

Your Turn: Binning Data

Sample program:
import pandas as pd

tickets = pd.read csv(’tickets.csv’)

#Print out the data frame:

print(tickets)

#Print out licence plates:

print(tickets["Plate ID"])

#Print out plates & number of tickets each got:

print(tickets["Plate ID"].value counts())

#Print 10 worst & number of tickets:

print(tickets["Plate ID"].value counts()[:10])

For the sample data set, there were few cars that got more than a
ticket a day...

K. St. John (Hunter & AMNH) Session 2 20 November 2019 37 / 51

Your Turn: Binning Data

Sample program:
import pandas as pd

tickets = pd.read csv(’tickets.csv’)

#Print out the data frame:

print(tickets)

#Print out licence plates:

print(tickets["Plate ID"])

#Print out plates & number of tickets each got:

print(tickets["Plate ID"].value counts())

#Print 10 worst & number of tickets:

print(tickets["Plate ID"].value counts()[:10])

For the sample data set, there were few cars that got more than a
ticket a day...

K. St. John (Hunter & AMNH) Session 2 20 November 2019 37 / 51

Your Turn: Binning Data

Sample program:
import pandas as pd

tickets = pd.read csv(’tickets.csv’)

#Print out the data frame:

print(tickets)

#Print out licence plates:

print(tickets["Plate ID"])

#Print out plates & number of tickets each got:

print(tickets["Plate ID"].value counts())

#Print 10 worst & number of tickets:

print(tickets["Plate ID"].value counts()[:10])

For the sample data set, there were few cars that got more than a
ticket a day...

K. St. John (Hunter & AMNH) Session 2 20 November 2019 37 / 51

Your Turn: Binning Data

Sample program:
import pandas as pd

tickets = pd.read csv(’tickets.csv’)

#Print out the data frame:

print(tickets)

#Print out licence plates:

print(tickets["Plate ID"])

#Print out plates & number of tickets each got:

print(tickets["Plate ID"].value counts())

#Print 10 worst & number of tickets:

print(tickets["Plate ID"].value counts()[:10])

For the sample data set, there were few cars that got more than a
ticket a day...

K. St. John (Hunter & AMNH) Session 2 20 November 2019 37 / 51

Your Turn: Binning Data

Sample program:
import pandas as pd

tickets = pd.read csv(’tickets.csv’)

#Print out the data frame:

print(tickets)

#Print out licence plates:

print(tickets["Plate ID"])

#Print out plates & number of tickets each got:

print(tickets["Plate ID"].value counts())

#Print 10 worst & number of tickets:

print(tickets["Plate ID"].value counts()[:10])

For the sample data set, there were few cars that got more than a
ticket a day...

K. St. John (Hunter & AMNH) Session 2 20 November 2019 37 / 51

Binning Data: Parking Tickets

In groups, write programs for:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 38 / 51

Binning Data: Parking Tickets

In groups, write programs for:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 38 / 51

Binning Data: Parking Tickets

In groups, write programs for:

Which car got the most tickets?

What color of car is most likely to get a ticket?

What type of license gets the most tickets?

Are all states equally represented in license plates that get tickets?

Which location yields the most tickets?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 38 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 39 / 51

Variations on the Theme: OpenData Film Permits

K. St. John (Hunter & AMNH) Session 2 20 November 2019 40 / 51

Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 41 / 51

Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 41 / 51

Example: OpenData Film Permits

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 41 / 51

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

K. St. John (Hunter & AMNH) Session 2 20 November 2019 42 / 51

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

K. St. John (Hunter & AMNH) Session 2 20 November 2019 42 / 51

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

K. St. John (Hunter & AMNH) Session 2 20 November 2019 43 / 51

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

K. St. John (Hunter & AMNH) Session 2 20 November 2019 44 / 51

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

K. St. John (Hunter & AMNH) Session 2 20 November 2019 45 / 51

Example: OpenData Film Permits

Download the data as a CSV file and store on your computer.

Python program:

K. St. John (Hunter & AMNH) Session 2 20 November 2019 46 / 51

In Groups: OpenData Film Permits

Can approach the other questions in the same way:

What’s the most popular street for filming?

What’s the most popular borough?

How many TV episodes were filmed?

K. St. John (Hunter & AMNH) Session 2 20 November 2019 47 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 48 / 51

Design a Challenge

With your group, brainstorm about
a design challenge that:

An interesting publicly
available data set,

To analyze with the pandas
commands we’ve discussed.

K. St. John (Hunter & AMNH) Session 2 20 November 2019 49 / 51

Outline

Recap

Design Challenge: NYC Population

Variations on the Theme

Design a Challenge

Break

Design Challenge: Parking Tickets

Variations on the Theme

Design a Challenge

Wrap Up

K. St. John (Hunter & AMNH) Session 2 20 November 2019 50 / 51

Wrap Up

Introduced pandas for analyzing structured
data.

I Plotting, simple stats functions, and
slicing.

I Didn’t cover: accessing rows,
joining/merging tables, applying
functions, ...

Used publicly available data:

I Great source: NYC Open Data.
I Examined population data, school

attendance, parking tickets, film permits.

If time: share challenges you designed...

See you in three weeks!

K. St. John (Hunter & AMNH) Session 2 20 November 2019 51 / 51

Wrap Up

Introduced pandas for analyzing structured
data.

I Plotting, simple stats functions, and
slicing.

I Didn’t cover: accessing rows,
joining/merging tables, applying
functions, ...

Used publicly available data:

I Great source: NYC Open Data.
I Examined population data, school

attendance, parking tickets, film permits.

If time: share challenges you designed...

See you in three weeks!

K. St. John (Hunter & AMNH) Session 2 20 November 2019 51 / 51

Wrap Up

Introduced pandas for analyzing structured
data.

I Plotting, simple stats functions, and
slicing.

I Didn’t cover: accessing rows,
joining/merging tables, applying
functions, ...

Used publicly available data:

I Great source: NYC Open Data.
I Examined population data, school

attendance, parking tickets, film permits.

If time: share challenges you designed...

See you in three weeks!

K. St. John (Hunter & AMNH) Session 2 20 November 2019 51 / 51

Wrap Up

Introduced pandas for analyzing structured
data.

I Plotting, simple stats functions, and
slicing.

I Didn’t cover: accessing rows,
joining/merging tables, applying
functions, ...

Used publicly available data:

I Great source: NYC Open Data.
I Examined population data, school

attendance, parking tickets, film permits.

If time: share challenges you designed...

See you in three weeks!

K. St. John (Hunter & AMNH) Session 2 20 November 2019 51 / 51

Wrap Up

Introduced pandas for analyzing structured
data.

I Plotting, simple stats functions, and
slicing.

I Didn’t cover: accessing rows,
joining/merging tables, applying
functions, ...

Used publicly available data:

I Great source: NYC Open Data.

I Examined population data, school
attendance, parking tickets, film permits.

If time: share challenges you designed...

See you in three weeks!

K. St. John (Hunter & AMNH) Session 2 20 November 2019 51 / 51

Wrap Up

Introduced pandas for analyzing structured
data.

I Plotting, simple stats functions, and
slicing.

I Didn’t cover: accessing rows,
joining/merging tables, applying
functions, ...

Used publicly available data:

I Great source: NYC Open Data.
I Examined population data, school

attendance, parking tickets, film permits.

If time: share challenges you designed...

See you in three weeks!

K. St. John (Hunter & AMNH) Session 2 20 November 2019 51 / 51

Wrap Up

Introduced pandas for analyzing structured
data.

I Plotting, simple stats functions, and
slicing.

I Didn’t cover: accessing rows,
joining/merging tables, applying
functions, ...

Used publicly available data:

I Great source: NYC Open Data.
I Examined population data, school

attendance, parking tickets, film permits.

If time: share challenges you designed...

See you in three weeks!

K. St. John (Hunter & AMNH) Session 2 20 November 2019 51 / 51

Wrap Up

Introduced pandas for analyzing structured
data.

I Plotting, simple stats functions, and
slicing.

I Didn’t cover: accessing rows,
joining/merging tables, applying
functions, ...

Used publicly available data:

I Great source: NYC Open Data.
I Examined population data, school

attendance, parking tickets, film permits.

If time: share challenges you designed...

See you in three weeks!

K. St. John (Hunter & AMNH) Session 2 20 November 2019 51 / 51

