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Abstract

A nearest-neighbor-interchange (NNI)-walk is
a sequence of unrooted phylogenetic trees,
T1, T2, . . . , Tk where each consecutive pair of
trees differs by a single NNI move. We give
tight bounds on the length of the shortest NNI-
walks that visit all trees in a subtree-prune-and-
regraft (SPR) neighborhood of a given tree. For
any unrooted, binary tree, T , on n leaves, the
shortest walk takes Θ(n2) additional steps more
than the number of trees in the SPR neighbor-
hood. This answers Bryant’s Second Combinato-
rial Challenge from the Phylogenetics Challenges
List, the Isaac Newton Institute, 2011, and the
Penny Ante Problem List, 2009.

Index Terms: Analysis of Algorithms and
Problem Complexity; Biology and Genetics;
Trees; Graphs and Networks.

1 Introduction

Evolutionary histories, or phylogenies, are essen-
tial structures for modern biology [12]. Finding
the optimal phylogeny is NP-hard, even when
we restrict to tree-like evolution [9, 15]. As such,
heuristic searches are used to search the vast set
of all trees. There are many search techniques
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used (see [19] for a survey), but most rely on lo-
cal search. That is, at each step in the search,
the next tree is chosen from the “neighbors” of
the current tree. A popular way to define neigh-
bors is in terms of the subtree-prune-and-regraft
(SPR) metric (defined in Section 2). Current
techniques for computing SPR neighborhoods
are computationally intensive. Finding an effi-
cient way to traverse these neighborhoods would
have significant impact on the running time of
searches for optimal phylogenetic trees. The sec-
ond “Walks on Trees” challenge of Bryant [5, 17]
focuses on efficiently traversing this neighbor-
hood via the nearest-neighbor-interchange (NNI)
tranformations (defined in §2). Bryant asks:

An NNI-walk is a sequence
T1, T2, . . . , Tk of unrooted binary
phylogenetic trees where each consec-
utive pair of trees differs by a single
NNI.

ii. [Question] Suppose we are given a
tree T . What is the shortest NNI-walk
that passes through all the trees that lie
at most one SPR (subtree-prune-and-
regraft) move from T?

Bryant’s challenges were posed as part of
the New Zealand Phylogenetic Meetings’ Penny
Ante Problems [5] as well as the Challenges prob-
lems from the most recent Phylogenetics Pro-
gramme at the Isaac Newton Institute [17]. We
prove that the shortest walk takes Θ(n2) more
steps than the theoretical minimum that visits
every tree exactly once (that is, a Hamiltonian
path). This builds on past work [7] that showed
that such a Hamiltonian path was not possible.
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Figure 1: The trees on the left and center differ by a single NNI move. The tree on the right differs by a
single SPR move from the center tree.

2 Background

This section includes definitions and results that
we use from Allen and Steel [1]. For a more
detailed background, see Semple and Steel [16].

Definition 1. An unrooted binary phylo-
genetic tree (or more briefly a tree) is a tree
whose leaves (degree 1 vertices) are labelled bi-
jectively by a (species) set S, and such that each
non-leaf vertex is unlabelled and has degree three.
We let UB(n) denote the set of such trees for
S = {1, . . . , n}.

Each internal edge, e, of a tree T ∈ UB(n)
yields a natural bipartition, or split of the leaves.
We write A | B if there is an edge which parti-
tions the leaf set, S, into the two sets A and B.
TA refers to the smallest subtree of T containing
leaves only from A, and E(T ) refers to the edges
of T . A sibling pair consists of two leaves that
have the same parent. A “caterpillar tree” refers
to the unrooted tree with exactly 2 sibling pairs.

The nearest-neighbor-interchange (NNI) dis-
tance was introduced independently by Das-
Gupta et al. [8] and Li et al. [14]. Roughly,
an NNI operation swaps two subtrees that are
separated by an internal edge.

Definition 2. Allen and Steel [1]: Any inter-
nal edge of an unrooted binary tree has four
subtrees attached to it. A nearest-neighbor-
interchange (NNI) move occurs when one sub-
tree on one side of an internal edge is swapped
with a subtree on the other side of the edge, as
illustrated in Figure 1. The NNI distance,

dNNI(T1, T2), between two trees T1 and T2 is de-
fined as the minimum number of NNI operations
required to change T1 into T2.

The complexity of computing the NNI dis-
tance was open for over 25 years and was proven
to be NP-complete by Allen and Steel [1]. For a
binary tree with n uniquely labeled leaves, there
are n − 3 internal branches. Thus, there are
2(n− 3) NNI rearrangements for any tree.

One of the most popular moves used to
search treespace is the subtree-prune-and-regraft
(SPR). Roughly, an SPR move prunes a selected
subtree and then reattaches it on an edge se-
lected from the remaining tree.

Definition 3. Allen and Steel [1]: A subtree-
prune-and-regraft (SPR) move on a phyloge-
netic tree T is defined as cutting any edge and
thereby pruning a subtree, t, and then regrafting
the subtree by the same cut edge to a new ver-
tex obtained by subdividing a pre-existing edge in
T–t. We also apply a forced contraction to main-
tain the binary property of the resulting tree (see
Figure 1). The SPR distance, dSPR(T1, T2),
between two trees is the minimal number of SPR
moves needed to transform T1 into T2.

For trees, T1 and T2, we will say that T1 has a
unique SPR move from T2 if and only if there is
exactly one subtree t that can be pruned from T2

and regrafted to form T1. Computing the SPR
distance is NP-complete [4, 11]. Approximation
algorithms for calculating the SPR distance on
rooted trees exist [2, 3].

2



Figure 2: The SPR neighborhood of a 7-leaf cater-
pillar tree, indicated by the center triangle. There is
an edge between two trees if they differ by a single
NNI move. The lighter (yellow) nodes show the trees
in the orbit that prunes a leaf from one of the sibling
pairs.

Definition 4. Let T0 be an unrooted, binary
tree. Define NSPR(T0) to be the SPR neigh-
borhood of T0; namely,

NSPR(T0) = {T | dSPR(T0, T ) ≤ 1}

When the tree is obvious, we will drop the
argument and call the neighborhood NSPR.

Definition 5. Let T0 be an unrooted, binary tree
and S ⊂ NSPR(T0). Define NNNI(S, T0) to be
the NNI-neighbors of S; namely,

NNNI(S, T0) = {T | ∃T ′ ∈ S, dNNI(T, T ′) ≤ 1
and dSPR(T0, T ) ≤ 1}

Definition 6. An NNI-walk is a sequence,
T1, T2, . . . , Tk of unrooted binary phylogenetic
trees where each consecutive pair of trees differs
by a single NNI move. An NNI-walk of a set
S that visits only elements of S and visits each
element at least once and at most k times, it is
called a NNI k-walk of S. An NNI 1-walk is
also called a Hamiltonian path.

3 Results

We give tight bounds on the shortest NNI-walk
of any SPR neighborhood, improving on previ-
ous work [7] that showed that there exist trees for

Figure 3: The orbit of the edge, e = 1 2 3 4 |
5 6 7 8 9 10, for an unrooted 10-leaf tree. The tree
is shown in the background with edge e highlighted.
The trees (red dots) are shown relative to the target
edge in the initial tree with blue lines indicating trees
that differ by an NNI move. The edges adjacent to
e yield the initial tree when used as the target edge.

which the shortest NNI-walks are not Hamilto-
nian. We introduce the new concept of an orbit
of an edge, e; roughly, it is all the trees that re-
sult from regrafting the pruned edge, e, in either
direction. More formally:

Definition 7. Define for each edge e of the tree
T0, the orbit of e, Oe, to be all the trees that are
one SPR move from T0 where the edge broken by
the SPR move is e.

As in the definition of the SPR move, we allow
the “empty move” of regrafting to an edge ad-
jacent to the pruned edge, yielding the starting
tree (see Figure 2). Allen and Steel [1] character-
ized some properties of the SPR neighborhood:

Theorem 8. Allen and Steel [1]: Let T0 be an
unrooted phylogenetic tree on n leaves and let
NSPR be all trees that are at most a single SPR
move from T0.

1. The size of the SPR neighborhood is
|NSPR| = 2(n− 3)(2n− 7) + 1.

2. The trees in NSPR \ {T0} that are not a
unique SPR move from T0 are exactly those
from the 2n− 6 NNI transformations.

3. The number of trees in NSPR\{T0} that can
be obtained by a unique SPR move from T0

is 4(n− 3)(n− 4).

3



From this theorem, we observe:

Observation 9. Let T0 be an unrooted phyloge-
netic tree on n leaves:

1. Every tree T ∈ NSPR(T0) belongs to some
orbit Oe, where e is an edge of T0.

2. Each orbit contains T0.

3. Excluding T0, there are exactly 2n− 6 trees
that are included in at least two orbits.

4. The number of orbits is 2n− 3.

5. The size of each orbit is 2n− 7.

The structure of the orbits echos that of the
underlying tree, since two trees are neighbors in
an orbit exactly when the target edges of the
moves that created them are adjacent. Formally:

Lemma 10. Let T0 be an unrooted phylogenetic
tree on n leaves. Let T1, T2 ∈ NSPR(T0) such
that ∃e ∈ E(T0), T1, T2 ∈ Oe. Let ei be the tar-
get edge of the move that created Ti for i = 1, 2
(that is, T1 is formed by grafting some pruned
subtree of T0 to e1 and T2 is the result of graft-
ing a pruned subtree to e2).

Then, T1 and T2 differ by at most a single NNI
move if and only if e1 and e2 have a common
endpoint in T0 \ {e}.

Proof. ⇐=: Assume that e1 and e2 have a com-
mon endpoint in T0 \ {e}. Let M be the set of
leaves of the subtree pruned by the SPR move
that creates T1. Without loss of generality, let
the split induced by e1 in T0 be ABC | DEM
and the split induced by e2 in T0 be AB |
CDEM , where A,B,C,D,E, and M are sets of
leaves of subtrees of T0. Let TX refer to the sub-
tree with leaves only from the set X.

Since TM is pruned to create T1, we have that
T1 contains the splits: ABCM | DE and ABC |
MDE. If TM is also pruned to create T2, then we
have that T2 contains the splits: ABM | CDE
and AB | CMDE. Thus, T1 and T2 differ by
a single NNI move (swapping TC and TM ), and
the hypothesis holds.

So, assume that TM is not pruned to create
T2, but instead that e is pruned in the other

direction. Let N = S \M , where S is the set of
leaves of T0 and TN is pruned to create T2. By
assumption, e1 is the target of TM and thus an
edge in TN , while e2 is the target of TN and thus
an edge in TM , contradicting that e1 and e2 have
a common endpoint in T0 \ {e}.

=⇒: Assume that T1 and T2 differ by a single
NNI move. Then, there exists an edge e′ ∈ E(T1)
that when removed (along with its endpoints and
adjacent edges), breaks T1 into 4 distinct sub-
trees, TA, TB , TC , TD with leaf sets, A, B,C, D.
The split AB | CD belongs to T1 while BC | AD
belongs to T2. Since both T1 and T2 are in the
same orbit, the same edge e is pruned to create
both. Let ei be the target edge of the move that
created Ti for i = 1, 2. Let M be the set of leaves
of the subtree that is pruned to form T1.

Case 1: TM is properly contained in one of
TA, TB , TC , TD. Without loss of generality, as-
sume TM ( TA, and let A′ = A \ M . Since
T1 is formed from T0 by moving TM , we have
T0|A′∪B∪C∪D = T1|A′∪B∪C∪D. T2 is formed by
moving TM or TA′∪B∪C∪D which implies that
T0|A′∪B∪C∪D = T2|A′∪B∪C∪D. Thus, A′B | CD
and BC | A′D both belong to T0 which is a con-
tradiction.

Case 2: TM properly contains one of
TA, TB , TC , TD. Without loss of generality, as-
sume TM ) TA. If M ⊂ A ∪ B, then let
B′ = (A ∪ B) \M . Since T2 is formed by only
moving TM or TB′∪C∪D and BC | AD belongs
to T2, either TM = TA∪B′ is a subtree of TB∪C or
a subtree of TA∪D which is a contradiction. The
subcase where M ⊇ A ∪ B follows by similar
argument.

Case 3: TM is one of TA, TB , TC , TD. With-
out loss of generality, assume TM = TA. Since
T1 and T2 are in the same orbit, we must have
that TA or TB∪C∪D is the subtree pruned to form
T2. Since the split BC | AD belongs to T2, TA

is pruned to form T2. Further, since AB | CD
belongs to T1 while BC | AD belongs to T2, e1

corresponds to the split B | CD in TB∪C∪D while
e2 corresponds to the split BC | D in TB∪C∪D.
So, e1 and e2 share a common endpoint, namely
the intersection point of TB ,TC , and TD.
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The above lemma shows that neighboring trees
in an orbit correspond to adjacent target edges,
implying that the structure of the orbit echoes
the tree structure (see Figure 2). We can further
characterize the adjacent trees in each orbit:

Corollary 11. Let T0 be an unrooted, bi-
nary tree on n leaves. Let e ∈ E(T0)
and T ∈ Oe. Let N = {T ′ ∈ Oe |
T and T ′ differ by an NNI-move}. Then |N | is
2 or 4. If T 6= T0, then there exists T1, T2 ∈ N
such that dNNI(T0, T1) + 1 = dNNI(T0, T2) =
dNNI(T0, T ). Further, if |N | = 4, there ex-
ists T3, T4 ∈ N such that dNNI(T0, T ) + 1 =
dNNI(T0, T3) = dNNI(T0, T4).

Proof. By Lemma 10, the trees that differ by a
single NNI move from T are those whose tar-
get edges are adjacent to the edge e. Since
T is binary, the number of such adjacent trees
is either 2 or 4. Assume that T corresponds
to a target edge that is part of a sibling pair.
Then, let T1 be the tree corresponding to the
target edge that is the other part of the sibling
pair, and T2 be the tree corresponding to the
only edge adjacent to the sibling pair. Then,
dNNI(T0, T1)+1 = dNNI(T0, T2) = dNNI(T0, T ).

Assume that T corresponds to a target edge,
eT , that is not part of a sibling pair. By
Lemma 10, e has 4 adjacent edges. Let e1 re-
fer to the unique edge of T0 on the path from e
to eT and e2 to the edge that shares the common
endpoint of e1 and eT . Let e3 and e4 be the edges
that share the other endpoint of eT . Let Ti be
the tree that corresponds to the target edge ei

for i = 1, . . . , 4. By the underlying tree structure
of T , we have the desired properties.

We can immediately give an upper bound on
the length of an NNI-walk of an SPR neighbor-
hood. The underlying idea is to traverse each or-
bit separately, and then link these paths to form
a traversal of the entire SPR neighborhood:

Lemma 12. For every unrooted, binary tree,
T0, on n leaves, every NNI-walk of its SPR
neighborhood, NSPR(T0), has length at most
|NSPR(T0)|+ O(n2).

Proof. We will break the NNI-walk of the SPR
neighborhood into NNI-walks of the orbit of each
edge in T0.

It suffices to show that there is a 2-walk of
each orbit Oe for e ∈ E(T0). Each tree, T ∈ Oe,
is created by pruning the edge e in T0 and re-
grafting the pruned subtree to another edge in
T0 (see Figures 2 and 2). Every tree in the or-
bit corresponds to an edge in T0 (namely, the
target edge), and the trees in the orbit are con-
nected exactly when their target edges share an
endpoint in T0 by Lemma 10. Thus, the orbit
can be traversed by at most 2(2n − 7) steps by
starting at T0 and following a depth-first-search
of the tree (each tree in the orbit is visited at
most once on the way “down” the search and
once on the way “up” the search).

Since each orbit contains the initial tree T0,
we can glue together the walks of the orbits to
make a walk of the entire space. Since each orbit
contains at most 2n− 7 trees, the 2-walk of each
of the 2n−3 orbits yields a walk where the num-
ber of steps is bounded by 2(2n − 7)(2n − 3) =
|NSPR(T0)|+ O(n2).

To show the lower bound takes more work and
relies on the fact that the orbits in an SPR neigh-
borhood are, surprisingly, mostly disjoint:

Lemma 13. Let T0, T1, T2 be unrooted binary
trees with T1, T2 ∈ NSPR(T0), dNNI(T1, T2) ≤
1, and T1 and T2 are in different orbits. Then
dNNI(T0, T1), dNNI(T0, T2) ≤ 2.

Proof. Assume that there exists e1, e2 ∈ E(T0),
T1 ∈ Oe1 , T1 6∈ Oe2 , T2 6∈ Oe1 and T2 ∈ Oe2 . Let
M1 be the set of leaves of the subtree pruned with
e1 from T0 to create tree T1. Since T1 and T2

are a single NNI move apart, by definition, there
exists a split in T1, AB | CD that is rearranged
in T2: BC | AD. We will argue, by cases, that
both T1 and T2 are within 2 NNI moves of T0.
Without loss of generality, we will assume that
M1 ∩A 6= ∅.

Case 1: M1 ( A. Then, let A′ = A \M1.
We have that T1 contains the split A′M1B|CD,
and T2 contains the split BC | A′M1D. Since
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T1 is only one SPR move from T0, the structure
of the 2 trees is identical without M1; that is,
T1|A′∪B∪C∪D = T0|A′∪B∪C∪D, and T0 includes
an edge corresponding to the split A′B|CD.
Since T2 does not contain such an edge, the move
that creates it must prune one of TM1 , TA′ , TB ,
TC , or TD. Pruning TM1 is not possible since
T1 and T2 are in different orbits. Pruning TA′ is
only possible if T0 contains the split M1D|A′BC.
T0 can be transformed into T1 by NNI moves
that interchange the neighbor subtrees TM1 and
TC , followed by TM1 and TB . We can similarly
transform T0 into T2 and T1 into T2 with 2 NNI
moves. Thus, dNNI(T0, T1), dNNI(T0, T2) ≤ 2
and the lemma holds.

Pruning TB to create T2 implies that T0 con-
tains the split A′BM1|CD and either T0 = T2

or dNNI(T0, T2) = 2, implying dNNI(T0, T1) =
2. Lastly, pruning TC , or TD is only possi-
ble if T0 = T1, in which case, dNNI(T0, T1) =
0, dNNI(T0, T2) = 1.

Case 2: M1 = A. We have that T1 con-
tains the split M1B|CD and T2 contains the
split BC | M1D. We have three possibilities
for T0; namely, it could contain one of the fol-
lowing three splits: M1B | CD, BC | M1D, or
BD | M1C. We note that these are the three
possible NNI rearrangements for this edge, so,
we have dNNI(T0, T1), dNNI(T0, T2) ≤ 1 and the
lemma holds.

Case 3: M1 ) A. If M1 ∩B = ∅, then M1 =
A ∪ C ∪D (else pruning TM1 would not yield a
connected tree). The argument is similar to Case
2.

If M1 ∩B 6= ∅, then B ⊆M1. If M1 = A ∪B,
then the target edges in T1 and T2 must separate
C and D, and are identical. Similarly, if A∪B (
M1, M1 must contain all of C or all of D, and
the target edges in T1 and T2 must preserve the
rooting of the remaining subtree and are identi-
cal. Thus, dNNI(T0, T1), dNNI(T0, T2) = 0.

We say that U ⊆ Oe is connected if for any
two trees T1, T2 ∈ U there exists U1, . . . , Uk ∈ U
such that U1 = T1, Uk = T2, and U1, . . . , Uk is
an NNI-walk. We call any NNI-walk that begins

and ends at the same tree an NNI-circuit.

Lemma 14. Let T0 be an unrooted binary tree,
e ∈ E(T0), and Oe its orbit. Let U ⊆ Oe be
a connected set consisting of trees more than 2
NNI moves from T0. Then any NNI-circuit of U
takes at least 3

2 (|U | − 1) steps.

Proof. By induction on the size of |U |.
For |U | = 1: Then any circuit takes 1 ≥

3
2 (|U | − 1) = 0 steps.

For |U | > 1, choose x ∈ U closest to T0. By
Lemma 10, two trees are neighbors in Oe (that
is, are a single NNI move apart) if and only if
there target edges have a common endpoint in
the initial tree T0. Since T0 is binary, each tree
in Oe can have at most 4 possible neighbors.

If x has one neighbor in U , then a circuit of
U must traverse the same edge from x to its
neighbor twice, and the number of steps needed
is at least two more than the number of steps
needed for the smaller set |U | − {x}. By induc-
tive hypothesis, this smaller set takes at least
3
2 (|U − {x}| − 1) steps. So, the number of steps
for U is:

3
2

(|U − {x}| − 1) + 2 ≥ 3
2

(|U | − 1)

If x has two neighbors, x1 and x2 in U , then
U − {x, x1, x2} is disconnected in U by Corol-
lary 11. Let U1 and U2 be the components of
U − {x, x1, x2} such that x1 is adjacent to some
element of U1 and x2 is adjacent to some element
of U2. If dNNI(x1, x2) = 1, then it takes 3 steps
to visit x in a circuit of x, U1, and U2. If they
are not connected, it takes 4 steps. Thus, by in-
ductive hypothesis, the number of steps needed
is:

3
2

(|U1| − 1) +
3
2

(|U2| − 1) + 3 ≥ 3
2

(|U | − 1)

If x has 3 neighbors in U , then by similar ar-
gument, we have the lower bound. If x has 4
neighbors in U , then it is not the closest element
of U to T0, giving a contradiction.

From the last two lemmas, we have that the or-
bits are mostly isolated; the only trees that have
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neighbors from outside their orbits are within 2
steps of T0. An NNI-walk of these isolated re-
gions takes many extra steps. This yields our
lower bound:

Lemma 15. Every NNI-walk of NSPR(T0) has
length |NSPR(T0)|+ Ω(n2).

Proof. Let e ∈ E(T0) and Oe its orbit. By
Lemma 13, every orbit, Oe, has Ω(n) trees that
have no neighbors in other orbits. It follows from
Lemma 10, these trees are in at most two con-
nected sets. By the Pigeonhole Principle, one set
has at least Ω(n) trees. By Lemma 14, it takes
Ω(n) steps to visit the larger connected set. By
Theorem 8, there are 2n−3 orbits, and any NNI-
walk of NSPR must take ≥ (2n−3)Ω(n) = Ω(n2)
extra steps.

The above lemmas immediately show that
Θ(n2) extra steps are needed to traverse the
neighborhood:

Theorem 16. For any unrooted binary tree, T0,
on n leaves, an NNI-walk of NSPR(T0) takes
|NSPR(T0)|+ Θ(n2) steps.

4 Discussion

Finding optimal phylogenetic trees is a computa-
tionally expensive process given the hardness of
the preferred optimality criteria [9, 15]. Searches
of treespace often step from tree to tree, looking
for the optimal tree. A popular way to determine
the next tree is by examining the SPR neighbor-
hood of the current tree (a standard option in
many popular software packages: MrBayes [13],
PAUP [18], and TNT [10]). Unlike NNI moves
which make only local rearrangements to a tree,
SPR moves can move large sections of trees far
away from their original location. As such, NNI
neighborhoods are efficient to calculate, while
the calculation of an SPR neighborhood can be
quite time-consuming. Bryant’s Second Chal-
lenge asks how efficiently can an SPR neighbor-
hood be traversed by NNI moves. We show that
any NNI-walk will need extra steps proportional

to the size of the SPR neighborhood (Θ(n2)),
implying that an NNI-walk does not provide an
efficient alternative. Bryant [6] suggests that
NNI-walks might provide an efficient way to tra-
verse another popular tree neighborhood: tree-
bisection-reconnection (TBR).
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