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Abstract

We prove that the spaces of unrooted phylogenetic trees are Hamiltonian for two popular

search metrics: Subtree Prune and Regraft (SPR) and Tree Bisection and Reconnection (TBR).

Further, we make progress on two conjectures of Bryant on searching phylogenetic treespace:

treespace under the Nearest Neighbor Interchange (NNI) metric has a 2-walk, and there exists

SPR neighborhoods without complete NNI walks.

1 Introduction

Finding the evolutionary history, or phylogeny, for a set of species is a core activity in biology and is

used for classifying species, building the “Tree of Life,” designing the flu vaccine, and determining

the origins of viruses such as HIV [?]. These phylogenies, are often modelled by unrooted, leaf-

labelled trees [?] and finding the optimal tree for biological data is NP-hard [?, ?]. To improve

these computationally expensive searches, we focus on the underlying space of trees, under metrics

induced by popular operations used to search the space of all trees with n leaves. We make progress

towards solving two conjectures of Bryant [?] on the shortest walk of the full treespace and of a

SPR neighborhood under the NNI metric. We show that there is a Hamiltonian circuit of treespace

for the SPR and TBR metrics and for the NNI metric for n < 8. Further, we show there exists a
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Figure 1: The two possible NNI operations on an internal edge (u, v).

2-walk for treespace under the NNI-metric. Towards the second conjecture of Bryant, we show that

for every n > 5, there is an SPR neighborhood for which there is no NNI walk.

Prior work has focused on the complexity of calculating the metrics (all three are NP-hard

to compute [?, ?, ?, ?]) as well as calculating the diameter of the space. By work of Li et al.

and DasGupta et al. [?, ?], the diameter for NNI is Θ(n lg n), while Allen and Steel showed that

the diameter of the space for SPR and TBR is Θ(n). Bastert et al. [?] examined the space of

trees under NNI in terms of coherent algebras and spectrum. Motivated by the computationally

expensive searches of treespace, Bryant [?] posed the questions of how many NNI moves are needed

to visit all trees, and similarly how many NNI moves are needed to traverse an SPR neighborhood.

2 Background

We briefly outline the background needed for this paper. For a more thorough overview, see Semple

and Steel [?] and Corman, Leiserson, and Rivest [?].

2.1 Phylogenetic Trees and Distances

The evolutionary relationship between various biological organisms can be represented as a leaf-

labelled tree where the tree is rooted if the evolutionary origin is known. We focus on binary (or

“fully resolved”), unrooted trees. The leaf labels often represent DNA or protein sequences, and

the internal nodes correspond to speciation events. Finding the optimal evolutionary tree for a set

of species is NP-hard [?, ?]. Biologically inspires operations are used to heuristically search the

space of all trees. These search heuristics often produce different evolutionary trees on the same
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Figure 2: The trees on the left and center differ by a single SPR move. The tree on the right differs by a
single TBR move from the center tree.

set of species. In order to compare phylogenies, several metrics for measuring distance have been

defined in literature.

The Nearest Neighbor Interchange (NNI) is a distance metric introduced independently by Das-

gupta et al. [?] and Li et al. [?]. An NNI operation swaps two subtrees that are separated by an

internal edge in order to generate a new tree [?] (see Figure ??).

Definition 1. The NNI distance, Dnni(T1, T2), between two trees T1 and T2 is defined as the

minimum number of NNI operations required to change one tree into the other.

The complexity of computing the NNI distance was open for over 25 years, and was proven to

be NP-complete by Allen and Steel [?]. For a tree with n uniquely labeled leaves, there are n − 3

internal branches. Thus, there are 2(n− 3) NNI rearrangements for any tree. The trees that are a

single rearrangement of a given tree form its 1-neighborhood under the NNI metric.

The most popular move used to search treespace is the Subtree-Prune-and-Regraft (SPR).

Roughly, an SPR move prunes a selected subtree and then reattaches it on an edge selected from

the remaining tree (see Figure ??).

Definition 2. The SPR distance, DSPR = (T1, T2), between two trees is the minimal number of

SPR moves needed to transform the first tree into the second tree (see Figure ??).

The calculation of SPR distances has been proven NP-complete for both rooted and unrooted

trees [?, ?]. Approximation algorithms for SPR on rooted trees exist [?, ?]. A generalization of the

SPR is the Tree-Bisection-Reconnnection (TBR) operation. Roughly, a TBR move breaks an edge
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Figure 3: Walks of Treespace: Left: The solid edges are a 1-walk (Hamiltonian path) of 5-species treespace
under the NNI metric. Right: For 6-species treespace, an SPR neighborhood with the NNI connections,
illustrating that no NNI 1-walks exists.

of the tree and then selects two edges on the resulting subtrees and connects the selected edges by

a new edge.

Definition 3. The TBR distance, DTBR = (T1, T2), between two trees is the minimal number of

TBR moves needed to transform the first tree into the second tree (see Figure ??).

We note that NNI ⊆ SPR ⊆ TBR [?]. That is every NNI move is also an SPR move which is

also a TBR move. We use this fact to extend our results from the SPR to TBR metrics. Each

metric induces a discrete metric space on the set of n leaf trees. Since these spaces are defined both

by the number of leaves in the underlying trees as well as the metric chosen, we will refer to these

spaces as the n-species treespace under the said metric. The majority of this paper concentrates

on the n-species treespace under the NNI metric and SPR metric. Figure ?? show the 5-species

treespace under the NNI metric.

2.2 Walks

We focus on the shortest paths needed to visit all trees in a given treespace. In particular, we are

interested in the length of the shortest path that visits all trees with the goal of bounding searches

for the optimal phylogenetic tree.

Definition 4. An undirected graph G has a k-walk if a walk along the edges can visit every vertex

at most k times.

The special case of k = 1 is often referred to as a Hamiltonian path:
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Figure 4: Theorem 1: Left: the circuit that visits all trees in 4-species space. Center: the expansion of
each tree by a new leaf (the sets Si) and the connection between them. Right: A Hamiltonian circuit of
5-species space under the SPR (and TBR) metric.

Definition 5. An undirected graph G has a Hamiltonian path if a walk along the edges can visit

every vertex exactly once. A Hamiltonian cycle is a walk along the edges of an undirected graph

that visits every vertex exactly once and ends at the beginning vertex, also know as a Hamiltonian

circuit.

A Hamiltonian path is traceable and can be verified in polynomial time and finding a Hamilto-

nian cycle is NP-complete. [?]. A 2-walk is also traceable and can be verified in polynomial time.

When a Hamiltonian path is unavailable, a 2-walk can be used to reduce the maximum number of

times a single tree is evaluated by a search algorithm.

3 Walks of Treespace

We show that for every n, n-species treespace under the popular SPR and TBR metrics has a

Hamiltonian circuit. Further, we show that under the NNI metric, for every n, n-species treespace

has a 2-walk.

3.1 Hamiltonian Circuits under the SPR and TBR Metric

Since every SPR move is also a TBR move, it suffices to show that there is a Hamiltonian path for

treespace under the SPR metric.
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Theorems 1. For every n, there exists an Hamiltonian circuits of the n-species treespace under

the SPR and TBR metrics.

Proof. Proof by induction on n. For n = 4, there are exactly three trees, and they form a complete

graph under the SPR metric, and thus have a Hamiltonian circuit.

For n > 4: assume true for n-species treespace and show for (n + 1)-species treespace. Let

t1, t2, . . . , t(2n−5)!! be the trees of the n-species treespace. Each (n+1)-species trees can be uniquely

generated by adding a n+1 leaf to an edge of one of the n-species trees [?]. Let Si be the set of (n+1)-

species trees generated from ti for i = 1, 2, . . . , (2n − 5)!!. We note that each Si forms a complete

graph under the SPR metric (see Figure 3). By inductive hypothesis, there exists a Hamiltonian

circuit, Hn, on the n-species treespace which will form the “backbone” of a Hamiltonian circuit

for the (n+ 1)-species treespace. To create a Hamiltonian circuit for (n+ 1)-species treespace, we

replace each ti with the set Si. Since Si is a complete graph, we can find a Hamiltonian path with

any starting and ending points.

Define the Hamiltonian circuit Hn+1 as follows: For each Si, let hi be the Hamiltonian path

that begins with the tree with 1 and n + 1 as sibling pairs and ends with the tree n and n + 1

as sibling pairs. Begin the circuit of S1 by traversing the trees in h1. Attach the last tree in h1

to the last tree in h2. This is possible, since by construction, the new leaf is attached in identical

positions, and these two trees can be connected by the first edge in Hn. Continue by following the

path h2 in reverse until reaching the first tree in its path. By similar construction, Hn+1 can be

extended to traverse the first (2n− 5)!!− 1 sets of trees. Since the number of these sets is odd, we

need to do something slighly different for the last two sets. For S(2n−5)!!−1, choose h(2n−5)!!−1 to

be the Hamiltonian path from the tree with 1 and n + 1 as a sibling pair and the tree with 2 and

n+ 1 as a sibling pair. And for the last set, S(2n−5)!!, choose h(2n−5)!! to be the Hamiltonian path

from the tree with 2 and n + 1 as a sibling pair and the tree with n and n + 1 as a sibling pair.

We continue the circuit Hn+1 across h(2n−5)!!−1 and h(2n−5)!!, connecting the last tree in h(2n−5)!!

to the first tree in h1.

It is easy to check that this circuit visits every tree and is thus a Hamiltonian circuit of (n+ 1)-

species space under the SPR metric. Since SPR ⊂ TBR, the result also holds for TBR.
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3.2 2-Walk under the NNI Metric

For the NNI metric, we can generalize the argument of Theorem ??. We rely on the fact that every

set of (n+ 1)-leaf trees generated from a single n leaf trees (the sets Si above) can be traversed by

a 2-walk. We note that these sets Si for NNI are not complete graphs (unlike for SPR and TBR)

and further there exists sets for n > 6 where no Hamiltonian path is possible. Thus, our argument

for a Hamiltonicity for treespaces under the SPR and TBR metrics will not extend to NNI, and the

existence of a Hamiltonian walk through an n-species treespace under the NNI metric is currently

unknown. We can however proof the existence of a 2-walk through any n-species treespace.

Theorem 1. For every n, there exists a 2-walk of the n-species treespace under the NNI metric.

Proof. Proof by Induction on n. For n = 4, there are 3 trees connected in a triangle and thus have

a 2-walk.

For n > 4: Let Wn be a NNI 2-walk of the n-species treespace. As in Theorem 1, let Si be the set

of (n+ 1)-species trees generated from ti for i = 1, 2, . . . , (2n− 5)!!. We note that by construction,

each tree in Si corresponds to an edge of the tree ti. Let P be a planar tree drawing of ti and let

Ci be a closed curve such that Ci is within ε of P for sufficiently small ε > 0. Ci induces a 2-walk

of the set Ti, by following the curve counter-clockwise around the nodes of the tree. Following a

similar construction to the proof of Theorem 1, we can build a new 2-walk Wn+1 of the n+1-species

space that visits all the elements of the space.

4 NNI-Walks on SPR Neighborhoods

Bryant [?] asked what is the shortest NNI walk that visits every tree in an SPR neighborhood. We

make progress on this conjecture by showing that for every n, there exists an SPR neighborhood

without a NNI 1-walk.

Theorem 2. For every n ≥ 6, there exists an SPR-neighborhood of the n-species treespace, that

does not have a Hamiltonian path.
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Proof. Figure ?? shows an SPR-neighborhood of 6-species treespace where no NNI 1-walk exists

since 8 nodes of degree 2 (the highlighed “triangles”) only two of which could be traversed in any

path that visits nodes only once. For larger n, we can find similar regions of the SPR neighborhood

that preclude any Hamiltonian path of the SPR neighborhood.

For n ≥ 6, let T = (. . . (((1, 2), 3), 4), . . . n − 1), n), T1 = (. . . (((n, 1), 2), . . . n − 2), n − 1),

T2 = (. . . (((n, 2), 1), . . . n − 2), n − 1), and T3 = (. . . (((1, 2), n), 3), . . . , n − 2), n − 1). T1, T2 and

T3 are each a single SPR move from T and thus part of the SPR neighborhood of T . We note

that dNNI(T1, T2) = dNNI(T2, T3) = dNNI(T3, T1) = 1 and, by analysis by cases, no other NNI

neighbors of T1 and T2 occur in the SPR neighborhood. So, any path from T1 and T2 to the rest

of the space must pass through T3. We refer to T1, T2, and T3 as isolated triangles in the NNI

graph of the neighborhood. Note that 3 other isolated triangles exist– namely the trees resulting by

moving the subtree consisting of n− 1 to neighbor 1 and 2, those resulting by moving the subtree

consisting of 1 to neighbor n − 1 and n, and those resulting by moving the subtree consisting of

2 to neighbor n − 1 and n. To visit all of these isolated triangles in the same path would require

visiting nodes twice. Thus, no Hamiltonian path exists.
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