
A Linear-time Majority Tree Algorithm

Nina Amenta1, Frederick Clarke2, and Katherine St. John2,3

1 Computer Science Department
University of California, 2063 Engineering II

One Sheilds Ave, Davis, CA 95616.
amenta@cs.ucdavis.edu

2 Dept. of Mathematics & Computer Science
Lehman College– City University of New York

Bronx, NY 12581
fclarke72@aol.com, stjohn@lehman.cuny.edu

3 Department of Computer Science
CUNY Graduate Center, New York, NY 10016

Abstract. We give a randomized linear-time algorithm for computing
the majority rule consensus tree. The majority rule tree is widely used
for summarizing a set of phylogenetic trees, which is usually a post-
processing step in constructing a phylogeny. We are implementing the
algorithm as part of an interactive visualization system for exploring dis-
tributions of trees, where speed is a serious concern for real-time interac-
tion. The linear running time is achieved by using succinct representation
of the subtrees and efficient methods for the final tree reconstruction.

1 Introduction

Making sense of large quantities of data is a fundamental challenge in com-
putational biology in general and phylogenetics in particular. With the recent
explosion in the amount of genomic data available, and exponential increases in
computing power, biologists are now able to consider larger scale problems in
phylogeny: that is, the construction of evolutionary trees on hundreds or thou-
sands of taxa, and ultimately of the entire “Tree of Life” which would include
millions of taxa. One difficulty with this program is that most programs used for
phylogeny reconstruction [8, 9, 17] are based upon heuristics for NP-hard opti-
mization problems, and instead of producing a single optimal tree they generally
output hundreds or thousands of likely candidates for the optimal tree. The usual
way this large volume of data is summarized is with a consensus tree.

A consensus tree for a set of input trees is a single tree which includes features
on which all or most of the input trees agree. There are several kinds of consensus
trees. The simplest is the strict consensus tree, which includes only nodes that
appear in all of the input trees. A node here is identified by the set of taxa in the
subtree rooted at the node; the roots of two subtrees with different topologies,
but on the same subset of taxa, are considered the same node. For some sets
of input trees, the strict consensus tree works well, but for others, it produces

2 Amenta, Clarke, & St. John

Fig. 1. The tree visualization module in Mesquite. The window on the left shows a
projection of the distribution of trees. The user interactively selects subsets of trees
with the mouse, and, in response, the consensus tree of the subset is computed on-the-
fly and displayed in the window on the right. Two selected subsets and their majority
trees are shown.

a tree with very few interior (non-terminal) nodes, since if a node is missing in
even one input tree it is not in the strict consensus. The majority rule consensus
tree includes all nodes that appear in a majority of input trees, rather than all
of them. The majority rule tree is interesting for a much broader range of inputs
than the strict consensus tree. Other kinds of consensus tree, such as Adams
consensus, are also used (see [3], §6.2, for an excellent overview of consensus
methods). The maximum agreement subtree, which includes a maximal subset
of taxa for which the subtrees induced by the input trees agree, gives meaningful
results in some cases in which the majority rule tree does not, but the best
algorithm has an O(tn3+nd) running time [7] (where d is the maximum outdegree
of the trees), which is not as practical for large trees as the majority rule tree.
Much recent work has been done on the related question of combining trees on
overlapping, but not identical, sets of taxa ([2, 13–16]).

In this paper, we present a randomized algorithm to compute the majority
rule consensus tree, where the expected running time is linear both in the number
t of trees and in the number n of taxa. Earlier algorithms were quadratic in n,

Lecture Notes in Computer Science 3

which will be problematic for larger phylogenies. Our O(tn) expected running
time is optimal, since just reading a set of t trees on n taxa requires Ω(tn)
time. The expectation in the running time is over random choices made during
the course of the algorithm, independent of the input; thus, on any input, the
running time is linear with high probability.

We were motivated to find an efficient algorithm for the majority rule tree,
because we wanted to compute it on-the-fly in an interactive visualization appli-
cation [1]. The goal of the visualization system is to give the user a more sensitive
description of the distribution of a set of trees than can be presented with a sin-
gle consensus tree. Figure 1 shows a screen shot. The window on the left shows
a representation of the distribution of trees, where each point corresponds to a
tree. The user interactively selects subsets of trees and, in response, the consen-
sus tree of the subset is computed on-the-fly and displayed. This package is built
as a module within Mesquite [10], a framework for phylogenetic computation by
Wayne and David Maddison. See Section 4 for more details.

Our original version of the visualization system computed only strict con-
sensus trees. We found in our prototype implementation that a simple O(tn2)
algorithm for the strict consensus tree was unacceptably slow for real-time in-
teraction, and we implemented instead the O(tn) strict consensus algorithm of
Day [6]. This inspired our search for a linear-time majority tree algorithm.

Having an algorithm which is efficient in t is essential, and most earlier al-
gorithms focus on this. Large sets of trees arise given any kind of input data on
the taxa (e.g. gene sequence, gene order, character) and whatever optimization
criterion is used to select the “best” tree. The heuristic searches used for max-
imizing parsimony often return large sets of trees with equal parsimony scores.
Maximum likelihood estimation, also computationally hard, generally produces
trees with unique scores. While technically one of these is the optimal tree, there
are many others for which the likelihood is only negligibly sub-optimal. So, the
output of the computation is again more accurately represented by a consensus
tree.

Handling larger sets of taxa is also becoming increasingly important. Maxi-
mum parsimony and maximum likelihood have been used on sets of about 500
taxa, while researchers are exploring other methods, including genetic algorithms
and super-tree methods, for constructing very large phylogenies, with the ulti-
mate goal of estimating the entire “Tree of Life”. Our visualization system is
designed to support both kinds of projects. It is also important for the visual-
ization application to have an algorithm which is efficient when n > t, so that
when a user selects a small subset of trees on many taxa some efficiency can be
realized.

1.1 Notation

Let S represent a set of taxa, with |S| = n. Let T = {T1, T2, . . . , Tt} be the
input set of trees, each with n leaves labeled by S, with |T | = t.

Without loss of generality, we assume the input trees are rooted at the branch
connecting a distinguished taxon s0, known as the outgroup, to the rest of the

4 Amenta, Clarke, & St. John

s0 s1 s2 s3 s4 s0 s1 s2 s3 s4 s0 s1 s2 s3s4 s0 s1 s2 s3 s4

T1 T2 T3 Majority rule
consensus tree

Fig. 2. Three input trees, rooted at the branch connecting s0, and their majority tree
(for a > 1/2 majority). The input trees need not be binary.

tree. If T is given as unrooted trees, or trees rooted arbitrarily, we choose an
arbitrary taxon as s0 and use it to root (or re-root) the trees.

Consider a node i in an input tree Tj . Removing the branch from i towards
the root divides Tj into the subtree below i and the remainder of the tree (in-
cluding s0). The induced bipartition of the taxa set into two subsets identifies
the combinatorial type of node i. We can represent the bipartition by the subset
of taxa which does not include s0; that is, by the taxa at the leaves of the sub-
tree rooted at i. If B is the bipartition, this set is S(B). We will says that the
cardinality of B, and of i, is the cardinality of S(B). For example, in Figure 2,
s1s2 | s0s3s4s5 is a bipartition of tree T1 and S(s1s2 | s0s3s4s5) = {s1s2}. The
cardinality of this bipartition is 2.

The majority rule tree, or Ml tree, includes nodes for exactly those bipar-
titions which occur in more than half of the input trees, or more generally in
more than some fraction l of the input trees. Margush and McMorris [11] showed
that this set of bipartitions does indeed constitute a tree for any 1/2 < l ≤ 1.
McMorris, Meronk and Neumann [12] called this family of trees the Ml trees
(e.g. the M1 tree is the strict consensus tree); we shall call them all generically
majority rule trees, regardless of the size of the majority.

See Figure 2 for a simple example. While this example shows binary trees, the
algorithm also works for input trees with polytomies (internal nodes of degree
greater than three).

1.2 Prior Work

Our algorithm follows the same intuitive scheme as most previous algorithms.
In the first stage, we read through the input trees and count the occurrences
of each bipartition, storing the counts in a table. Then, in the second stage, we
create nodes for the bipartitions that occur in a majority of input trees - the
majority nodes - and “hook them together” into a tree.

Lecture Notes in Computer Science 5

An algorithm along these lines is implemented in PHYLIP [8] by Felsenstein
et al.. The overall running time as implemented seems to be O((n/w)(tn+x lg x+
n2)) where x is the number of bipartitions found (O(tn) in the worst case, but
often O(n)), and w is the number of bits in a machine word. The bipartition B
of each of tn input nodes is represented as a bit-string: a string of n bits, one
per taxon, with a one for every taxon in S(B) set and a zero for every taxon not
in S(B). This requires dn/we machine words per node, and accounts for (n/w)
factor in the bound. The first term is for counting the bipartitions. The x lg x
term is for sorting the bipartitions by the number of times each appears; it could
be eliminated if the code was intended only to compute majority trees. The n2

term is the running time for the subroutine for hooking together the majority
nodes. For each majority node, every other majority node is tested to see if it is
its parent, each in dn/we time.

For the strict consensus tree, Day’s deterministic algorithm uses a clever
O((lg x)/w) representation for bipartitions. If we assume that the size of a ma-
chine word is O(lg x), so that for instance we can compare two bipartitions in
O(1) time, then we say that Day’s algorithm achieves an optimal O(tn) running
time. Day’s algorithm does not seem to generalize to other Ml trees, however.
Wareham, in his undergraduate thesis at the Memorial University of Newfound-
land with Day [18], developed an O(n2 + t2n) algorithm, which only uses O(n)
space. It uses Day’s data structure to test each bipartition encountered sepa-
rately against all of the other input trees. Majority trees are also computed by
PAUP [17], using an unknown (to us) algorithm.

Our algorithm follows the same general scheme, but we introduce a new
representation for each bipartition of size O((lg x)/w) ≈ O(1), giving an O(tn)
algorithm for the first counting step, and we also give an O(tn) algorithm for
hooking together the majority nodes.

2 Majority Rule Tree Algorithm

Our algorithm has two main stages: scanning the trees to find the majority
bipartitions (details in Section 2.1) and then constructing the majority rule tree
from these bipartitions (details in Section 2.2). It ends by checking the output
tree for errors due to (very unlikely) bad random choices. Figure 3 contains
pseudo-code for the algorithm.

2.1 Finding Majority Bipartitions

In the first stage of the algorithm, we traverse each input tree in post-order,
determining each bipartition as we complete the traversal of its subtree. We count
the number of times each bipartition occurs, storing the counts in a table. With
the record containing the count, we also store the cardinality of the bipartition,
which turns out to be needed as well.

A first thought might be to use the bit-string representation of a bipartition
as an address into the table of counts, but this would be very space-inefficient:

6 Amenta, Clarke, & St. John

Input: A set of t trees, T = {T1, T2, . . . , Tt}.
Output: The majority tree, Ml, of T

Algorithm:
Start-up: Pick prime numbers m1 and m2

and random integers for the hash functions h1 and h2.
1. For each tree T ∈ T ,
2. Traverse each node, x, in post order.
3. Compute hashes h1(x) and h2(x)
4. If no double collision, insert into hash table (details below).
5. If double collision, restart algorithm from beginning.
6. For each tree T ∈ T ,
7. Let c point to the root of T
8. Traverse each node, x, in pre order.
9. If x is a majority node,

10. If not existing in Ml, add it, set its parent to c.
11. Else x already exists in Ml, update its parent (details below).
12. In recursive calls, pass x as c.
13. Check correctness of tree Ml.

Fig. 3. The pseudo-code for the majority tree algorithm

there are at most O(tn) distinct bipartitions, but 2n possible bit-strings. A better
idea, used in our algorithm and in PHYLIP, is to store the counts in a hash-table.

Hash Tables: Our algorithm depends on the details of the hash-table imple-
mentation, so we briefly include some background material and terminology (or
see, for example, [5], Chapter 11). We use a function, the hash function, to com-
pute the address in the table at which to store the data. The address is called
the hash code, and we say an element hashes to its address. In our case, the hash
function takes the 2n possible bipartitions into O(tn) hash table addresses; but
since at most tn of the possible bipartitions actually occur in the set of input
trees, on average we put only a constant number of bipartitions at each address.
More than one bipartition hashing to the same table address is called a collision.
To handle collisions, we use a standard strategy called chaining: instead of stor-
ing a count at each table address, we store a linked list of counts, one for each
bipartition which has hashed to that address. When a new bipartition hashes to
the address, we add a new count to the linked list. See Figure 4.

Universal Hash Functions: As the hash function, we use a universal hash
function ([5], §11.3.3, or [4]), which we call h1 (the reader expecting an h2 later
will not be disappointed). As our program starts up, it picks a prime number
m1 which will be the size of the table, and a list a = (a1, . . . , an) of random
integers in (0, . . . ,m1 − 1). We can select m from a selection of stored primes
of different sizes; only the a need to be random. Let B = (b1, . . . , bn) be the
bit-string representation of a bipartition. The universal hash function is defined

Lecture Notes in Computer Science 7

s0 s1 s2 s3 s4

0

10

3537

1311

4082 5393
3701

2865

m1 = 11, m2 = 6229

0 1 2 3 4

h1 2 0 7 8 10
h2 3537 1311 4082 3701 3281

Fig. 4. Storing nodes in the hash table: Assume we have the five leaf tree on the left,
T1, and two universal hash functions (and associated prime numbers) given by the table
below. The IDs stored in the hash table for the beginning of a post-order traversal of T1

are shown; the circled node was the last one processed. First s0 was processed, storing
h2(s0) = 3537 at h1(s0) = 2. Similarly s1 and s2 were processed, and then their parent,
storing h2 = 1311 + 4082 mod 6229 into h1 = 0 + 7 mod 11, and so on.

as

h1(B) =
n∑

i=1

biai mod m1

Notice that h1(B) is always a number in 0, . . . ,m1 − 1.
Using this universal hash function, the probability that any two bipartitions

B1 and B2 collide (that is, that h1(B1) = h1(B2)) is 1/m1 [4], so that if we
choose m1 > tn the expected number of collisions is O(tn).

Collisions: To detect and handle these collisions, we use a second universal hash
function h2 to produce an ID for each bipartition. We represent a bipartition
in the hash table by a record which includes the ID as well as the running
count of the number of times the bipartition occurs. To increment the count of
a bipartition B, we go to the table address h1(B) and search the linked list for
the record with ID h2(B). If no such record exists, we create one and give it a
count of one.

It is possible that a double collision will occur; that is, that for two biparti-
tions B1, B2, we have h1(B1) = h1(B2) and also h2(B1) = h2(B2). Since these
two events are independent, the probability that B1 and B2 have a double col-
lision is 1/(m1m2). Notice that although we have to choose m1 ≈ tn to avoid
wasting space in the table, we can choose m2 to be very large so as to minimize
the probability of double collisions. If we choose m2 > ctn, for any constant

8 Amenta, Clarke, & St. John

c, the probability that no double collisions occur, and hence that the algorithm
succeeds, is at least 1−O(1/c), and the size of the representation for a bipartition
remains O(lg tn + lg c).

Nonetheless, we need to detect the unlikely event that a double collision
occurs. If so, we abort the computation and start over with new random choices
for the parameters a of the hash functions.

If B1 and B2 represent bipartitions with different numbers of taxa, we can
detect the double collision right away, since we can check to make sure that both
the IDs and the cardinality in the record match before incrementing a count.
Similarly if B1 and B2 are bipartitions corresponding to leaves we can detect
the double collision immediately by checking that the two taxa match before
incrementing the count. The final remaining case of detecting a double collision
for two bipartitions B1, B2, both with cardinality k > 1, will be done later by a
final check of output tree against the hash table.

Implicit Bipartitions: To achieve an O(tn) overall running time, we need
to avoid computing the O(n/w)-size bit-string representations for each of the
O(tn) bipartitions. Instead, we directly compute the hash codes recursively at
each node, without explicitly producing the bit-strings.

Fact 1 Consider a node with a bipartition represented by bit-string B. Let the
two children of this node have bipartitions with bit-strings BL and BR. Then

h1(B) = h1(BL) + h1(BR) mod m1

This is true because Bl and Br represent disjoint sets of taxa, so that

h1(B) =

(∑
BL

biai mod m1

)
+

(∑
BR

biai mod m1

)

where ai is the prime number assigned to i by the universal hash function. A
similar statement of course holds for h2, and when B has more than two children.

We can use this fact to compute the hash code recursively during the post-
order traversal. We store the hash codes in the tree nodes as we compute them.
At a leaf, we just look up the hash code in the array a; for the leaf containing
taxon i, the hash code is ai. For an internal node, we will have already computed
the hash codes of its children h1(BL) and h1(BR), so we compute h1(B) in
constant time using Fact 1. The reader may wish to go over the example of the
computation in Figure 4.

We compute the cardinality of the bipartition in constant time at each node
similarly using recursion.

2.2 Constructing the Majority Tree

Once we have all the counts in the table we are ready to compute the majority
rule consensus tree. The counts let us identify which are the majority bipartitions

Lecture Notes in Computer Science 9

that appear in more than lt trees. But since the bipartitions are represented
only implicitly, by their hash functions, hooking them up correctly to form the
majority rule tree is not totally straightforward. We use three more facts.

Fact 2 The parent of a majority bipartition B in the majority rule tree is the
majority bipartition B′ of smallest cardinality such that B is a subset of B′.

Fact 3 If majority bipartition B′ is an ancestor of majority bipartition B in an
input tree Tj, then B′ is an ancestor of B in the majority rule tree.

Fact 4 For any majority bipartition B and its parent B′ in the majority rule
tree, B and B′ both appear in some tree Tj in the input set. In Tj, B′ is an
ancestor of B, although it may not be B′s parent.

Fact 4 is true because both B and B′ appear in more than l ≥ t/2 trees, so they
have to appear in some tree together, by the pigeon-hole principle.

We do a pre-order traversal of each of the input trees in turn. As we traverse
each tree, we keep a pointer to c, the last node corresponding to a majority
bipartition which is an ancestor of the current node in the traversal. As we
start the traversal of a tree T , we can initialize c to be the root, which always
corresponds to a majority bipartition. Let C be the bipartition corresponding to
c.

At a node i, we use the stored hash codes to find the record for the bipartition
B in the hash table. If B is not a majority node, we ignore it. If B is a majority
node and a node for B does not yet exist in the output tree, we create a new
node for the output tree and with its parent pointer pointing to C. If, on the
other hand, a node in the outut tree does exist for B, we look at its current
parent P in the output tree. If the cardinality of P (stored in the hash table
record for P) is greater than the cardinality of C, we switch the parent pointer
of the node for B to point to the node for C. When we are done, each node B in
the output tree, interior or leaf, points to the node of smallest cardinality that
was an ancestor in any one of the input trees. Assuming there was no double
collision, Facts 2, 3, and 4 imply that the output tree is the correct majority rule
consensus tree.

2.3 Final check

After constructing the majority rule tree, we check it against the hash table in
order to detect any occurrence of the final remaining case of a double collision,
when two bipartitions B1, B2 of the same cardinality k > 1 have the same
value for both h1 and h2. Recall that, if B1, B2 are singletons or have different
cardinalities, double collisions would already have been detected when putting
the data into the hash table.

To check the tree, we do a post-order traversal of the completed majority
rule tree, recursively computing the cardinality of the bipartition at each node,
and checking that these cardinalities match those in the corresponding records

10 Amenta, Clarke, & St. John

in the hash table. If we find a discrepancy, this indicates a double collision and
we discard the majority rule tree and run the algorithm again with new random
choices for the parameters a of the hash functions.

Claim. Any remaining double collisions are detected by checking the cardinali-
ties.

Proof: Let us consider the smallest k for which a double collision occurs, and
let B1, B2 be two of the bipartitions of cardinality k which collide. Since the
double collision was undetected in the first stage, there is some record B in the
hash table, with cardinality k, representing both B1 and B2. Whenever B1 or
B2 was encountered during the first stage of the algorithm, the count for B was
incremented.

In the second reconstruction stage, a node in the output tree is created for
B as soon as either B1 or B2 is encountered in the traversal of some input tree.
Consider a bipartition C which is a child of B1 (equivalently B2) in the correct
majority rule tree. At the end of stage two, there will be a node for C in the
output tree. Its parent pointer will be pointing to B, since in some input tree B1

(resp. B2) will be an ancestor of C, with cardinality k, and no majority node of
cardinality less than k will be an ancestor of C in any input tree. Thus the nodes
for all majority bipartitions which would be children of either B1 or B2 in the
correct majority rule tree end up as children of B in the incorrect output tree.
Notice that since B1, B2 have the same cardinality, one cannot be the ancestor
of the other; so the two sets S(B1), S(B2) are disjoint. Therefore the cardinality
of B in the output tree will be 2k, while the cardinality stored in the hash table
for B will be k.

2.4 Analysis summary

The majority rule consensus tree algorithm runs in O(tn) time. It does two
traversals of the input set, and every time it visits a node it does a constant
number of operations, each of which requires constant expected time (again,
assuming that w = O(lg x)). The final check of the majority tree takes O(n)
time.

The probability that any double collision occurs is 1/c, where c is the constant
such that m2 > ctn. Thus the probability that the algorithm succeeds on its
first try is 1 − 1/c, the probability that r attempts will be required decreases
exponentially with r, and the expected number of attempts is less than two.

3 Weighted trees

The majority rule tree has an interesting characterization as the median of the
set of input trees, which is useful for extending the definition to weighted trees.
When a bipartition is not present in an input tree we consider it to have weight
zero, while when a bipartition is present we associate with it the positive weight
of the edge determining the bipartition in the rooted tree. Now consider the

Lecture Notes in Computer Science 11

medial weight of each bipartition over all input trees, including those that do
not contain the bipartition. A bipartition which is not contained in a majority
of the input trees has median weight zero. A bipartition in a majority of input
trees has some positive median weight.

Note that it is simple, although space-consuming, to compute this median
weight for each majority bipartition in O(nt) time. In the second pass through
the set of input trees, we store the weights for each majority edge in a linked list,
as they are encountered. Since there are O(n) majority bipartitions and t trees
the number of weights stored is O(nt). The median weight for each bipartition
can then be computed as the final tree is output, using a textbook randomized
median algorithm which runs in O(t) time per edge ([5], §9.2).

4 Implementation

Our majority rule consensus tree algorithm is implemented as part of our tree-
set visualization system, which in turn is implemented within Mesquite [10].
Mesquite is a framework for phylogenetic analysis written by Wayne and David
Maddison, available for download at their Web site [10]. It is designed to be
portable and extensible: it is written in Java and runs on a variety of operating
systems (Linux, MacIntosh OS 9 and X, and Windows).

Mesquite is organized into cooperating of modules. Our visualization system
has been implemented in such a module, TreeSetVisualization, the first published
version of which can be downloaded from our webpage [1]. The module was in-
troduced last summer at Evolution 2002 meeting and has since been downloaded
by hundreds of researchers. In the communications we get from users, majority
trees are frequently requested. The TreeSetVisualization module includes tools
for visualizing, clustering, and analyzing large sets of trees.

The majority tree implementation will be part of the next version of the
module. Figure 1 shows our current prototype. We expect to release the new
version this summer, including the majority tree code and other new features.

5 Acknowledgments

This project was supported by NSF-ITR 0121651/0121682 and computational
support by NSF-MRI 0215942. The first author was also supported by an Alfred
P. Sloan Foundation Research Fellowship. We thank Jeff Klingner for the tree set
visualization module and Wayne and David Maddison for Mesquite, and for en-
couraging us to consider the majority tree. The second and third authors would
like to thank the Department of Computer Sciences and the Center for Compu-
tational Biology and Bioinformatics at University of Texas, and the Computer
Science Department at the University of California, Davis for hosting them for
several visits during 2002 and 2003.

12 Amenta, Clarke, & St. John

References

1. Nina Amenta and Jeff Klingner. Case study: Visualizing sets of evolutionary trees.
In 8th IEEE Symposium on Information Visualization (InfoVis 2002), pages 71–74,
2002. Software available at www.cs.utexas.edu/users/phylo/.

2. B.R. Baum. Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability of combining gene trees. Taxon, 41:3–10, 1992.

3. David Bryant. Hunting for trees, building trees and comparing trees: theory and
method in phylogenetic analysis. PhD thesis, Dept. of Mathematics, University of
Canterbury, 1997.

4. J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.
Journal of Computer and Systems Sciences, 18(2):143–154, 1979.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, Cambridge, MA, second edition, 2001.

6. William H.E. Day. Optimal algorithms for comparing trees with labeled leaves. J.
Classification, 2(1):7–28, 1985.

7. Martin Farach, Teresa M. Przytycka, and Mikkel Thorup. On the agreement of
many trees. Information Processing Letters, 55(6):297–301, 1995.

8. J. Felsenstein. Phylip (phylogeny inference package) version 3.6, 2002. Distributed
by the author. Department of Genetics, University of Washington, Seattle. The
consensus tree code is in consense.c and is co-authored by Hisashi Horino, Akiko
Fuseki, Sean Lamont and Andrew Keeffe.

9. John P. Huelsenbeck and Fredrik Ronquist. Mrbayes: Bayesian inference of phy-
logeny, 2001.

10. W.P. Maddison and D.R. Maddison. Mesquite: a modular system for evolutionary
analysis. version 0.992, 2002. Available from http://mesquiteproject.org.

11. T. Margush and F.R. McMorris. Consensus n-trees. Bulletin of Mathematical
Biology, 43:239–244, 1981.

12. F.R. McMorris, D.B. Meronk, and D.A. Neumann. A view of some consensus
methods for trees. In Numerical Taxonomy: Proceedings of the NATO Advanced
Study Institute on Numerical Taxonomy. Springer-Verlag, 1983.

13. R.D.M. Page. Modified mincut supertrees. Lecture Notes in Computer Science
(WABI 2002), 2452:537–551, 2002.

14. M.A. Ragan. Phylogenetic inference based on matrix representation of trees. Molec-
ular Phylogenetics and Evolution, 1:53–58, 1992.

15. M.J. Sanderson, A. Purvis, and C. Henze. Phylogenetic supertrees: assembling the
trees of life. Trends in Ecology and Evolution, 13:105–109, 1998.

16. Charles Semple and Mike Steel. A supertree method for rooted trees. Discrete
Applied Mathematics, 105(1-3):147–158, 2000.

17. D.L. Swofford. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Meth-
ods). Version 4. Sinauer Associates, Sunderland, Massachusetts, 2002.

18. H. Todd Wareham. An efficient algorithm for computing Ml consensus trees, 1985.
BS honors thesis, CS, Memorial University Newfoundland.

