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Abstract. We study the convergence rates of neighbor-joining and several new
phylogenetic reconstruction methods on families of trees of bounded diameter.
Our study presents theoretically obtained convergence rates, as well as an empir-
ical study based upon simulation of evolution on random birth-death trees. We
find that the new phylogenetic methods offer an advantage over the neighbor-
joining method, except at low rates of evolution where they have comparable per-
formance. The improvement in performance of the new methods over neighbor-
joining increases with the number of taxa and the rate of evolution.

1 Introduction

Phylogenetic trees (that is, evolutionary trees) form an important part of biological re-
search. As such, there are many algorithms for inferring phylogenetic trees. The ma-
jority of these methods are designed to be used on biomolecular (i.e., DNA, RNA, or
amino-acid) sequences. Methods for inferring phylogenies from biomolecular sequence
data are studied (both theoretically and empirically) with respect to the topological ac-
curacy of the inferred trees. Such studies evaluate the effects of various model con-
ditions (such as the sequence length, the rates of evolution on the tree, and the tree
“shape”) on the performance of various methods.

The sequence length requirement of a method is the sequence length needed by
the method in order to obtain (with high probability) the true tree topology. Earlier
studies established analytical upper bounds on the sequence length requirements of
various methods (including the popular neighbor-joining [ 18] method). These studies
showed that standard methods, such as neighbor-joining, recover the true tree (with high
probability) from sequences of lengths that are exponential in the evolutionary diameter
of the true tree. Based upon these studies, in [5,6] we defined a parameterization of
model trees in which the longest and shortest edge lengths are fixed, so that the sequence
length requirement of a method can be expressed as a function of the number of taxa, n.
This parameterization leads to the definition of “fast-converging” methods, which are
methods that recover the true tree from sequences of lengths bounded by a polynomial
in n once f , the minimum edge length, and g, the maximum edge length, are bounded.
Several fast-converging methods were developed [ 3,4,8,21]. We and others analyzed
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the sequence length requirement of standard methods, such as neighbor-joining (NJ),
under the assumptions that f and g are fixed. These studies [1,6] showed that neighbor-
joining and many other methods can be proven to be “exponentially-converging”, that
is, they recover the true tree with high probability from sequences of lengths bounded
by a function that grows exponentially in n. So far, none of these standard methods are
known to be “fast-converging.”

In this paper, we consider a different parameterization of the model tree space,
where we fix the evolutionary diameter of the tree, and let the number of taxa vary.
This parameterization, suggested by John Huelsenbeck [personal communication], al-
lows us to examine the differential performance of methods with respect to “taxon sam-
pling” strategies [7]. In this case, the shortest edges can be arbitrarily short, forcing the
method to require unboundedly long sequences in order to recover these shortest edges.
Hence, the sequence length requirements of all methods cannot be bounded. However,
for a natural class of model trees, it can be assumed that f = Θ(1/n) (for example,
random birth-death trees fall into this class). In this case even very simple polynomial
time methods converge to the true tree from sequences whose lengths are bounded by
a polynomial in n. Furthermore, the degrees of the polynomials bounding the conver-
gence rates of neighbor-joining and the “fast-converging” methods are identical – they
differ only with respect to the leading constants. Therefore, with respect to this pa-
rameterization, there is no significant theoretical advantage between standard methods
and the “fast-converging” methods. We then evaluate two methods, neighbor-joining
and DCM-NJ+MP (a method introduced in [14]) with respect to their performance on
simulated data, obtained on random birth-death trees with bounded deviation from ul-
trametricity. We find that DCM-NJ+MP obtains an advantage over neighbor-joining
throughout most of the parameter space we examine, and is never worse. That advan-
tage increases as the deviation from ultrametricity increases or as the number of taxa
increases.

The rest of the paper is organized as follows. In Section 2, we present the basic
definitions, models of evolution, methods, and terms, upon which the rest of the paper
is based. In Section 3, we present the theory behind convergence rate bounds for both
neighbor-joining and “fast-converging” methods. We derive bounds on the convergence
rates of various methods for trees in which the evolutionary diameter (but not the short-
est edge lengths) is fixed. We then derive bounds on the convergence rates of these
methods for random trees drawn from the distribution on birth-death trees described
above. In Section 5, we describe our experimental study comparing the performance of
neighbor-joining and DCM-NJ+MP. In Section 6, we conclude with a discussion and
open problems.

2 Basics

In this section, we present the basic definitions, models of evolution, methods, and
terms, upon which the rest of the paper is based.
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2.1 Model Trees

The first step of every simulation study for phylogenetic reconstruction methods is to
generate model trees. Sequences are then evolved down these trees, and these sequences
are used, by the methods in question, to estimate the model tree. The accuracy of the
method is determined by how well the method reproduces the model tree. Model trees
are often taken from some underlying distribution on all rooted binary trees with n
leaves. Some possible distributions include the uniform (all binary trees on n leaves are
equiprobable) and the Yule-Harding distribution (a distribution based upon a model of
speciation).

In this paper, we use random birth-death trees with n leaves as our underlying dis-
tribution. To generate these trees, we view speciation and extinction events occurring
over a continuous interval. During a short time interval,∆t, a species can split into two
with probability b(t)∆t, and a species can become extinct with probability d(t)∆t. The
values of b(t) and d(t) depend on how much time has passed in the model. To generate
a tree with n taxa, we begin this process with a single node and continue until we have a
tree with n taxa (with some non-zero probability some processes will not produce a tree
of the desired size since all nodes could go “extinct” before n species are generated; if
this happens, we repeat the process, until a tree of the desired size is generated). Under
this distribution, trees have a natural length assigned to each edge– that is the time t
between the speciation event that began that edge and the event (which could be either
speciation or extinction) that ended that edge.

Birth-death trees are inherently ultrametric, that is, the branch lengths are propor-
tional to time. In all of our experiments we modified each edge length to deviate from
this assumption that sites evolve under the strong molecular clock. To do this, we multi-
plied each edge by a random number within a range [1/c, c], where we set c to be some
small constant. We call this constant the deviation factor.

2.2 Models of Evolution

Under the Kimura 2-Parameter (K2P) model [10], each site evolves down the tree under
the Markov assumption, but there are two different types of nucleotide substitutions:
transitions and transversions. A transition is a substitution of a purine (an adenine or
guanine nucleotide) for a purine, or a pyrimidine (a cytosine or thymidine nucleotide)
for a pyrimidine; a transversion is a substitution of a purine for a pyrimidine or vice
versa. The probability of a given nucleotide substitution depends on the edge and upon
the type of substitution. A K2P tree is defined by the triplet (T, {λ(e)}, ts/tv), where
λ(e) is the expected number of times a random site will change its nucleotide on e, and
ts/tv is the transition/transversion ratio. In our experiments, we fix this ratio to 2, one
of the standard settings.

It is sometimes assumed that the sites evolve identically and independently down the
tree. However, we can also assume that the sites have different rates of evolution, and
that these rates are drawn from a known distribution. One popular assumption is that the
rates are drawn from a gamma distribution with shape parameter α, which is the inverse
of the coefficient of variation of the substitution rate. We use α = 1 for our experiments
under K2P+Gamma. With these assumptions, we can specify a K2P+Gamma tree just
by the pair (T, {λ(e)}).
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2.3 Statistical Performance Issues

A phylogenetic reconstruction method is statistically consistent under a model of evo-
lution if for every tree in that model the probability that the method reconstructs the tree
tends to 1 as the sequence length increases. Under the assumption of a K2P+Gamma
evolutionary process, if the transition/transversion ratio and shape parameter are known,
it is possible to define pairwise distances between taxa so that distance-based methods
(such as neighbor-joining) are statistically consistent [11]. Real biomolecular sequences
are of limited length. Therefore, the length k of the sequences affects the performance
of the methodM significantly. The convergence rate of a methodM is the rate at which
it converges to 100% accuracy as a function of the sequence length.

2.4 Phylogenetic Reconstruction Methods

We briefly discuss the two phylogenetic methods we use in our empirical studies:
neighbor-joining and DCM-NJ+MP. Both methods have polynomial running time.

Neighbor-Joining: Neighbor-joining [18] is one of the most popular distance based
methods. Neighbor-joining takes a distance matrix as input and outputs a tree. For ev-
ery two taxa, it determines a score, based on the distance matrix. At each step, the
algorithm joins the pair with the minimum score, making a subtree whose root replaces
the two chosen taxa in the matrix. The distances are recalculated to this new node, and
the “joining” is repeated until only three nodes remain. These are joined to form an
unrooted binary tree.

DCM-NJ+MP: The DCM-NJ+MP method is a variant of a provably fast-converging
method that has performed very well in previous studies [ 14]. In these simulation stud-
ies, DCM-NJ+MP outperforms, in terms of topological accuracy, the methodsDCM ∗-
NJ (of which it is a variant) and neighbor-joining.

The method works as follows: let dij be the distance between taxa i and j.

– Phase 1: For each q ∈ {dij}, compute a binary tree Tq , by using the Disk-Covering
Method from [6], followed by a heuristic for refining the resultant tree into a binary
tree. Let T = {Tq : q ∈ {dij}}. (Readers interested in more details of how Phase I
is handled should see [6].)

– Phase 2: Select the tree from T which optimizes the parsimony criterion.

If we consider all
(
n
2

)
thresholds in Phase 1, DCM-NJ+MP takesO(n6) time. However,

if we consider only a fixed number p of thresholds, DCM-NJ+MP takes O(pn 4).

2.5 Measures of Accuracy

There are many ways of measuring error between trees. We use the Robinson-Foulds
(RF) distance [16] which is defined as follows. Every edge e in a leaf-labeled tree T
defines a bipartition πe on the leaves (induced by the deletion of e), and hence the tree
T is uniquely encoded by the set C(T ) = {πe : e ∈ E(T )}, where E(T ) is the set of
all internal edges of T . If T is a model tree and T ′ is the tree obtained by a phylogenetic
reconstruction method, then the error in the topology can be calculated as follows:
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– False Positives: C(T ′) − C(T ).
– False Negatives: C(T ) − C(T ′).

The RF distance is |C(T )�C(T ′)|
2(n−3) , i.e., the average of the false positive and the false

negative rates.

3 Theoretical Results on Convergence Rates

In [1], the sequence length requirement for the neighbor-joining method under the
Cavender-Farris model was bounded from above, and extended to the General Markov
model in [5]. We state the result here:

Theorem 1. ([1,5]) Let (T,M) be a model tree in the General Markov model. Let

λ(e) = − log |det(Me)|, and set λij =
∑

e∈Pij

λ(e).

Assume that f is fixed with 0 < f ≤ λ(e) for all edges e ∈ T . Let ε > 0 be given.
Then, there are constants C and C ′ (that do not depend upon f ) such that, for

k =
C

f2
log neC

′(max λij)

then with probability at least 1−ε, neighbor-joining on S returns the true tree, where S
is a set of sequences of length k generated on T . The same sequence length requirement
applies to the Q∗ method of [2].

From Theorem 1 we can see that as the edge length gets smaller, the sequence length
has to be larger in order for neighbor-joining to return the true tree with high probability.
Note that the diameter of the tree and the sequence length are “exponentially” related.

3.1 Fixed-Parameter Analyses of the Convergence Rate

Analysis when both f and g Are Fixed: In [8,21], the convergence rate of neighbor-
joining was analyzed when both f and g are fixed (recall that f is the smallest edge
length, and g is the largest edge length). In this setting, by Theorem 1 and because
maxλij = O(gn), we see that neighbor-joining recovers the true tree, with probability
1 − ε, from sequences that grow exponentially in n. An average case analysis of tree
topologies under various distributions shows that maxλ ij = Θ(g

√
n) for the uniform

distribution and Θ(g logn) for the Yule-Harding distribution. Hence, neighbor-joining
has an average case convergence rate which is polynomial in n under the Yule-Harding
distribution, but not under the uniform distribution.

By definition, “fast-converging” methods are required to converge to the true tree
from polynomial length sequences, when f and g are fixed. The convergence rates of
fast-converging methods have a somewhat different form. We show the analysis for the
DCM∗-NJ method (see [21]):
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Theorem 2. ([21]) Let (T,M) be a model tree in the General Markov model. Let

λ(e) = − log |det(Me)|, and set λij =
∑

e∈Pij

λ(e).

Assume that f is fixed with 0 < f ≤ λ(e) for all edges e ∈ T . Let ε > 0 be given.
Then, there are constants C and C ′ (that do not depend upon f ) such that, for

k =
C

f2
logneC

′(width(T ))

then with probability at least 1 − ε, DCM ∗-NJ on S returns the true tree, where S is
a set of sequences of length k generated on T , and width(T ) is a topologically defined
function which is bounded from above by maxλ ij and is also O(g logn).

Consequently, fast-converging methods recover the true tree from polynomial length
sequences when both f and g are fixed.

Analysis when maxλij Is Fixed: Suppose now that we fix maxλij but not f . In this
case, neither neighbor-joining nor the “fast-converging” methods will recover the true
tree from sequences whose lengths grow polynomially in n, because as f → 0, the
sequence length requirement increases without bound. However, for “random” birth-
death trees, the expected minimum edge length is Θ(1/n). Hence, suppose that in ad-
dition to fixing maxλij we also require that f = Θ(1/n). In this case, application
of Theorem 1 and Theorem 2 shows that neighbor-joining and the “fast-converging”
methods all recover the true tree with high probability from O(n 2 logn)-length se-
quences. The theoretically obtained convergence rates differ only in the leading con-
stant, which in neighbor-joining’s case depends exponentially on maxλ ij , while in the
case of DCM ∗-NJ’s this rate depends exponentially on width(T ). Thus, the perfor-
mance advantage of a fast-converging method– from a theoretical perspective– depends
upon the difference between these two values. We know that width(T ) ≤ maxλ ij

for all trees. Furthermore, the two values are essentially equal only when the strong
molecular clock assumption holds. Note also that when the tree has a low evolutionary
diameter (i.e., when maxλij is small), then the predicted performance of these methods
suggests that they will be approximately identical. Only for large evolutionary diame-
ters should we obtain a performance advantage by using the fast-converging methods
instead of neighbor-joining.

In the next section we discuss the empirical performance of these methods.

4 Earlier Performance Studies Comparing DCM-NJ+MP to NJ on
Random Trees

In an earlier study [14], we studied the performance of the neighbor-joining (NJ)
method, and several new variants of the disk-covering method. The DCM-NJ+MP
method was one of these new variants we tested. Our experiments (some of which
we present here) showed that for random trees (from the uniform distribution on binary
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tree topologies) with random branch lengths (also drawn from the uniform distribu-
tion within some specified range), the DCM-NJ+MP method was a clear improvement
upon the NJ method with respect to topological accuracy. The DCM-NJ+MP method
was also more accurate in many of our experiments than the other variants we tested,
leading us to conclude that the improved performance on random trees might extend to
other distributions on model trees.

Later in this paper we will present new experiments, testing this conclusion on ran-
dom birth-death trees with a moderate deviation from ultrametricity. Here we present a
small sample of our earlier experiments, which shows the improved performance and
indicates how DCM-NJ+MP obtains this improved performance.

Recall that the DCM-NJ+MP method has two phases. In the first phase, a collection
of trees is obtained, one for each setting of the parameter q. This inference is based upon
dividing the input set into overlapping subsets, each of diameter bounded from above by
q. The NJ method is then used on each subset to get a subtree for the subset, and these
subtrees are merged into a single supertree. These trees are constructed to be binary
trees, and hence do not need to be further resolved. This first phase is the “DCM-NJ”
portion of the method. In the second phase, we select a single tree from the collection
of trees {Tq : q ∈ dij}, by selecting the tree which has the optimal parsimony score
(i.e., the fewest changes on the tree).

The accuracy of this two-phase method depends upon two properties: first, the first
phase must produce a set of trees so that at least some of these trees are better than
the NJ tree, and second, the technique (in our case, maximum parsimony) used in the
second phase must be capable of selecting a better tree than the NJ tree. Thus, the
first property depends upon the DCM-NJ method providing an improvement, and the
second property depends upon the performance of the maximum parsimony criterion as
a technique for selecting from the set {Tq}. In the following figures we show that both
properties hold for random trees under the uniform distribution on tree topologies and
branch lengths.

In Figure 1, we show the results of an experiment in which we scored each of the
different trees Tq for topological accuracy. This experiment is based upon random trees
from the uniform distribution. Note that the best trees are significantly better than the NJ
tree. Thus, the DCM-NJ method itself is providing an advantage over the NJ method.

In Figure 2 we show the result of a similar experiment in which we compared several
different techniques for the second phase (i.e., for selecting a tree from the set {T q}).
This figure shows that the Maximum Parsimony (MP) technique obtains better trees
than the Short Quartet Support Method, which is the technique used in the second phase
of the DCM ∗-NJ method. Furthermore, both DCM-NJ+MP and DCM ∗-NJ improve
upon NJ, and this improvement increases with the number of taxa.

Thus, for random trees from the uniform distribution on tree topologies and branch
lengths, DCM-NJ+MP improves upon NJ, and this improvement is due to both the
decomposition strategy used in Phase 1, and the selection criterion used in Phase 2.

Note however that DCM-NJ+MP is not statistically consistent, even under the sim-
plest models, since the maximum parsimony criterion can select the wrong tree with
probability going to 1 as the sequence length increases.
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Fig. 1. The accuracy of the Tq’s for different values of q on a randomly generated tree
with 100 taxa, sequence length 1000, and an average branch length of 0.05.

Fig. 2. DCM-NJ+MP vs. DCM∗-NJ vs. NJ on random trees (uniform distribution on
tree topologies and branch lengths) with sequence evolution under the K2P+Gamma
model. Sequence length is 1000. Average branch length is 0.05.
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5 New Performance Studies under Birth-Death Trees

5.1 Introduction

In this paper we focused upon the question of whether the improvement in performance
over NJ that we saw in DCM-NJ+MP was a function of the distribution on tree topolo-
gies and branch lengths (both uniform), or whether we would continue to see an im-
provement in performance, by comparison to NJ, when we restrict our attention to a
more biologically based distribution on model trees. Hence we focus on random birth-
death trees, with some deviation from ultrametricity added (so that the strong molecular
clock does not hold). As we will show, the improvement in performance is still visible,
and our earlier claims extend to this case.

5.2 Experimental Platform

Machines: The experiments were run on the SCOUT cluster at University of Texas,
which contains approximately 130 different processors running the Debian Linux oper-
ating system. We also had nighttime use of approximately 150 Pentium III processors
located in public undergraduate laboratories.

Software: We used Sanderson’s r8s package for generating birth-death trees [ 17]
and the program Seq-Gen [15] to randomly generate a DNA sequence for the root and
evolve it through the tree under K2P+Gamma model of evolution. We calculated evo-
lutionary distances appropriately for the model (see [11]). In the presence of saturation
(that is, datasets in which some distances could not be calculated because the formula
did not apply), we used the “fix-factor 1” technique, as defined in [ 9]. In this technique,
the distances that cannot be set using the standard technique are all assigned the largest
corrected distance in the matrix.

The software for DCM-NJ was written by Daniel Huson. To calculate the maximum
parsimony scores of the trees we used PAUP* 4.0 [19]. For job management across the
cluster and public laboratory machines, we used the Condor software package [ 20]. We
generated the rest of this software (a combination of C++ programs and Perl scripts)
explicitly for these experiments.

5.3 Bounded Diameter Trees

We performed experiments on bounded diameter trees, and observed how the error rates
increase as the number of taxa increases. The birth-death trees that we generated using
r8s have diameter 2. In order to obtain trees with other diameters, we multiplied the
edge lengths by factors of 0.01, 0.1, and 0.5, thus obtaining trees of diameters 0.02, 0.2,
and 1.0, respectively. Then, to deviate these trees from ultrametricity, we modified the
edge lengths using deviation factor 4. The resulting trees have diameters bounded from
above by 4 times the original diameter, but have expected diameters of approximately
twice the original diameters. Thus, the final model trees have expected diameters that
are 0.04, 0.4, and 2.0. In this way we generated random model trees with 10, 25, 50,
100, 200, 400, and 800 leaves. For each number of taxa and diameter, we generated 30
random birth-death trees (using r8s).
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5.4 Experimental Design

For each model tree we generated sequences of length 500 using seq-gen, computed
trees using NJ and DCM-NJ+MP. We then computed the Robinson-Foulds error rate
for each of the inferred trees, by comparing it to the model tree that generated the data.

5.5 Results and Discussion

In order to obtain statistically robust results, we followed the advice of McGeoch [ 12]
and Moret [13] and used a number of runs, each composed of a number of trials (a
trial is a single comparison), computed the mean and standard deviation over the runs
of these events. This approach is preferable to using the same total number of samples
in a single run, because each of the runs is an independent pseudorandom stream. With
this method, one can obtain estimates of the mean that are closely clustered around the
true value, even if the pseudorandom generator is not perfect.

The standard deviation of the mean outcomes in our studies varied depending on
the number of taxa. The standard deviation of the mean on 10-taxon trees is 0.2 (which
is 20 percent, since the possible values of the outcomes range from 0 to 1), on 25-taxon
trees is 0.1 (which is 10 percent), whereas on 200, 400 and 800-taxon trees the standard
deviation ranged from 0.02 to 0.04 (which is between 2 and 4 percent). We graph the
average of the mean outcomes for the runs, but omit the standard deviations from the
graphs.

In Figure 3, we show how neighbor-joining and DCM-NJ+MP are affected by in-
creasing the rate of evolution (i.e., the height). The x-axis is the maximum expected
number of changes of a random site across the tree, and the y-axis is the RF rate. We
provide a curve for each number of taxa we explored, from 10 up to 800. The sequence
length is fixed in this experiment to 500. Note that both neighbor-joining and DCM-
NJ+MP have high errors for the lowest rates of evolution, and that at these low rates
of evolution the error rates increase as n increases. This is because for these low rates
of evolution, increasing the number of taxa makes the smallest edge length (i.e., f )
decrease, and thus increases the sequence length needed to have enough changes on
the short edges for them to be recoverable. As the rate of evolution increases, the error
rates initially decrease for both methods, but eventually the error rates begin to increase
again. This increase in error occurs where the exponential portion of the convergence
rate (i.e., where the sequence length depends exponentially on maxλ ij ) becomes sig-
nificant. Note that where this happens is essentially the same for both methods– and
that they perform equally well until that point. However, after this point, neighbor-
joining’s performance is worse, compared to DCM-NJ+MP; furthermore, the error rate
increases for neighbor-joining at each of the “large” diameters, as n increases, while
DCM-NJ+MP’s error rate does not reflect the number of taxa nearly as much.

In Figure 4, we present a different way of looking at the data. In this figure, the
x-axis is the number of taxa, the y-axis is the RF rate, and there is a curve for each
of the methods. We show thus how increasing n (the number of taxa) while fixing the
diameter of the tree affects the accuracy of the trees reconstructed. Note that at low rates
of evolution (the left figure), the error rates for both methods increase with the number
of taxa. At moderate rates of evolution (the middle figure), error rates increase for both
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methods but more so for neighbor-joining than for DCM-NJ+MP. Finally, at the higher
rate of evolution (the right figure), this trend continues, but the gap is even larger – in
fact, DCM-NJ+MP’s error increase looks almost flat.

These experiments suggest strongly that except for low diameter situations, the
DCM-NJ+MP method (and probably the other “fast-converging” methods) will out-
perform the neighbor-joining method, especially for large numbers of taxa and high
evolutionary rates.

0.005 0.01 0.05 0.1 0.5 1.0 1.5 2.0

A
vg

 R
F

Diameter Diameter
0.005 0.01 0.05 0.1 0.5 1.0 1.5 2.0

A
vg

 R
F

Fig. 3. NJ (left graph) and DCM-NJ+MP (right graph) error rates on random birth-death
trees as the diameter (x-axis) grows. Sequence length fixed at 500, and deviation factor
fixed at 4.

Table 1 shows the average running times of neighbor-joining and DCM-NJ+MP on
the trees that we used in the experiments. The DCM-NJ+MP version that we ran looked
at 10 thresholds in Phase 1 instead of looking at all the

(
n
2

)
thresholds.

6 Conclusion

In an earlier study we presented the DCM-NJ+MP method and showed that it outper-
formed the NJ method for random trees drawn from the uniform distribution on tree
topologies and branch lengths. In this study we show that this improvement extends to
the case where the trees are drawn from a more biologically realistic distribution, in
which the trees are birth-death trees with a moderate deviation from ultrametricity. This
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Fig. 4. NJ and DCM-NJ+MP: Error rates on random birth-death trees as the number
of taxa (x-axis) grows. Sequence length fixed at 500 and the deviation factor at 4. The
expected diameter of the resultant trees are 0.02 (for the left graph), 0.2 (for the middle
graph), and 1.0 (for the right graph).

Table 1. The Running Times of NJ and DCM-NJ+MP in Seconds.

Taxa NJ DCM-NJ+MP

10 0.01 1.94
25 0.02 9.12
50 0.06 24.99
100 0.35 132.46
200 2.5 653.27
400 20.08 4991.11
800 160.4 62279.3

study has consequences for large phylogenetic analyses, because it shows that the accu-
racy of the NJ method may suffer significantly on large datasets. Furthermore, since the
DCM-NJ+MP method has good accuracy, even on large datasets, our study suggests
that other polynomial time methods may be able to handle the large dataset problem
without significant error.
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