
Evolutionary Morphing

David F. Wiley∗ Nina Amenta∗ Dan A. Alcantara∗ Deboshmita Ghosh∗ Yong J. Kil∗
Eric Delson‡ Will Harcourt-Smith‡ F. James Rohlf§ Katherine St. John‡ Bernd Hamann∗

∗ Institute for Data Analysis and Visualization (IDAV) and Department of Computer Science,
University of California, Davis

‡American Museum of Natural History
§Department of Ecology and Evolution, State University of New York, Stony Brook

ABSTRACT

We introduce a technique to visualize the gradual evolutionary
change of the shapes of living things as a morph between known
three-dimensional shapes. Given geometric computer models of
anatomical shapes for some collection of specimens - here the
skulls of the some of the extant members of a family of monkeys
- an evolutionary tree for the group implies a hypothesis about the
way in which the shape changed through time. We use a statistical
method which expresses the value of some variable - in this case
the shape - at an internal point in the tree as a weighted average of
the values at the leaves. The framework of geometric morphomet-
rics can then be used to define a shape-space, based on the corre-
spondences of landmark points on the surfaces, within which these
weighted averages can be realized as actual surfaces.

Our software provides tools for performing and visualizing such an
analysis in three dimensions. Beginning with laser range surfaces
scans of skulls, we use our landmark editor to interactively place
landmark points on the surface. We use these to compute a tree-
morph which smoothly interpolates the shapes across the tree. Each
intermediate shape in the morph is a linear combination of all of the
input surfaces. We create a surface model for an intermediate shape
by warping all the input meshes towards the correct shape and then
merging them together. Our merging procedure is novel. Given
several similar surface meshes, we compute a weighted average be-
tween them by averaging their associated trivariate squared distance
functions, and then extract the extremal surface which traces out the
“valleys” along which the averaged function is nearly zero.
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1 INTRODUCTION

Darwin’s theory of evolution was originally applied using morphol-
ogy - discrete qualitative features such as number of toes, and also
quantitative shape differences, such as elongation of a limb - to
place species within the tree of life. While genomic sequence data
is now the basis of most phylogenies (evolutionary trees), morphol-
ogy continues to be an essential part of evolutionary biology. One
important reason is that the morphology of fossils, rather than com-
parisons between genomic data, provides our only direct evidence
for extinct species.

For instance, the shape of the skull is very important in the study
of human evolution, and that of our primate relations. Quantitative
differences, such as shape of the cranium or brow ridge, are essen-
tial in defining the criteria for comparison between skulls. The idea
that qualitative shape differences can be analyzed in terms of the
transformations required to “morph” one shape into another goes
back at least to D’Arcy Thompson’s classic 1917 book On Growth
and Form, from which Figure 1 is taken.

The statistical analysis of geometric shape transformations is the
program of geometric morphometrics. In addition to evolutionary
biology, morphometric techniques are also used widely in develop-
mental biology, medical image analysis, and other areas.

We describe a three-dimensional tree-morph visualizing the evo-
lutionary changes implied by a given evolutionary tree. Surface
meshes captured by a laser range scanner from cranial specimens
for the existing species appear at the leaves. The interior nodes and
interior points of the edges of the evolutionary tree correspond to
hypothetical ancestor species. These we visualize by computing
synthetic surface meshes for the shapes at the internal nodes and at
a dense set of points sampled along the edges. We can “play” the
morph by displaying the precomputed meshes, either interactively,
by sliding a cursor along branches of the tree, or as an animation.

This project goal was intended as an example application to drive
the development of computer tools for three-dimensional morpho-
metric analysis and visualization. A major contribution of this pa-
per is that it introduces a challenging collection of visualization



problems to the scientific visualization community. Three aspects
of the project deserve particular attention. The first is our interac-
tive landmark editor, which makes it easy for a user to place dense
sets of landmark points on input models. The editor facilitates an
essential (and very tedious) step in traditional morphometric analy-
sis, and it has already had additional impact beyond our application;
it is currently being applied to additional problems by the paleon-
tologists on our team. Second, the multiple-alignment and interpo-
lation procedures we use, while standard in morphometrics, differ
from those common in computer graphics in interesting ways; in
particular, they are carefully designed to cause the differences mea-
sured or displayed to reflect, as well as possible, the intrinsic shape
differences between the input objects and to avoid introducing arti-
facts into the transformation, even visually pleasing ones. The third

Figure 1: Spatial relationship between human, chimpanzee, and ba-
boon skull, as envisioned by D’Arcy Thompson in 1917. The overall
shape is recognizably similar, and the transformation between them
describes the shape difference. In modern morphometric studies,
the statistical analysis of the transformation is based on a matrix of
selected landmark points from the surfaces, while warps of the em-
bedding space, such as the one pictured here, are more often used
for visualization of the results.

contribution is our novel method for merging several similar input
meshes, with weights, which is designed to handle non-manifold
surfaces with boundaries. Our merging procedure is based on a
functional representation of the surfaces using the trivariate squared
distance function rather than the more usual signed distance func-
tion, and extracts an extremal surface from the blended distance
function. Extremal surfaces have previously been used in the con-
text of point-set surface modeling. Our method does not require
implicit, closed or oriented surfaces as input.

1.1 Geometric Morphometrics

Geometric morphometrics is a branch of biostatistics dealing with
the analysis of shape. Some good references are the “classic” text
by Bookstein [4], a survey article by Adams, Rohlf and Slice [1],
and an accessible recent textbook by Zelditch et al. [21].

Scientists need to be able to define and analyze statistically signif-
icant variables expressing object shape. This task is difficult be-
cause the choice of what to measure and analyze affects the results.
Rather than measuring specific distances, angles, and so on, the
approach used in geometric mophometrics is to choose a discrete
set of homologous (or “corresponding”) landmark points on all of
the object surfaces. The shape is then represented by its set of land-
mark points; this representation subsumes measurements of specific
distances between landmarks, angles produced by three landmarks,
etc. A dense enough set of landmark points provides a sampled
representation of the shape.

The Procrustes distance between pairs of landmark sets is defined
as the square-root of the sum-squared distance between all pairs
of corresponding landmark points, when the two landmark sets are
scaled, rotated and translated so that this distance is minimized.

This distance imposes a geometry on the space of landmark con-
figurations. Unfortunately, the interpolation we need for our tree-

morph is complicated by the fact that the pairwise alignments do
not produce a multiple mutual alignment of all the landmark sets;
if we align A to B and B to C, we find that A is not aligned to C.
The common practice is to iteratively compute an averaged consen-
sus configuration of the landmark points which minimizes the total
squared Procrustes distance from all of the input landmark sets, and
then all of the landmark sets are aligned to this consensus configu-
ration. This process is called General Procrustes Alignment (GPA).

When applying this process to two-dimensional images, the aver-
aged shape represented by the consensus configuration is often vi-
sualized by warping one of the input images so that the input land-
marks are brought into coincidence with the consensus landmarks.
This is typically done using a thin-plate spline (TPS), which opti-
mizes a particular smoothness criterion.

1.2 Application to Primate Evolution

We use this well-accepted morphometric framework to define the
“correct” interpolation of the skull shapes for some species of Old
World monkeys. The Old World monkeys evolved in the same time
and place as early humans, making them a particularly interesting
group to study. There are many extinct species of Old World mon-
keys, known from fossils, so that there is a lot of interesting data
related to their evolutionary history. Yet this history, defined as the
exact shape of the evolutionary tree, continues to be a matter of
controversy.

We have used a laser range scanner to capture the three-dimensional
shapes of the skulls of many species of Old World monkeys, both
extant and fossil, as part of a larger effort to develop a database of
three-dimensional primate morphology. We use some of this data
to provide a method for visualizing some of the morphometric es-
timates of skull-shape variation which are relevant to the evolution
of the group. We selected five extant species sampling both sub-
families of Old World monkeys, and a best-estimate of an evolu-
tionary tree of the five, derived from DNA sequence data, which is
available only for the extant, but not the extinct, species. We then
visualize what the sequence-based tree implies about the morphol-
ogy of ancient monkeys by interpolating the skull shapes across the
tree. Figure 2 shows the tree.

Visualizations of the intermediates (the hypothetical species at inte-
rior points of the tree) are interesting in at least two ways. Scientists
want to answer questions like, “Are the skull shapes predicted by
this model biologically plausible?”’, and “Where would this known
fossil fit into the tree we hypothesize from genomic data?” The vi-
sualizations of the subset of the skull shape-space defined by the
tree help to answer both kinds of questions.

This project is one specific example in which visualizing the three-
dimensional morphs defined by morphometric theories can be used
in biological applications. We believe that similar shape-space vi-
sualizations could be used for, among other examples, verifying
models of developmental biology , characterizing degenerative dis-
ease processes such as Alzheimers, and the study of the change of
shape as a function of size (allometry).

1.3 Technical Overview

Our goal was to produce a three-dimensional tree-morph visualiz-
ing the evolutionary hypothesis presented by a specific evolution-
ary tree using input models captured by a laser range scanner. The
output of our procedure is a set of polygonal surface models, each
one representing an intermediate shape corresponding to an interior
point of the tree. Each of these intermediate models is a weighted



Figure 2: The input surface meshes, from laser range scans of the crania of existing monkey species, are shown on the right at the leaves of
this tree. The surface meshes at the internal nodes, placed at the estimated dates at which the species are hypothesized to have diverged,
represent the skull shapes of the hypothetical ancestors. They were produced by our morph, as weighted averages of the input surfaces. There
is an interpolated shape corresponding to each point within an edge as well.

average of the input models; they differ only in the choice of the
weights, which are computed as described in Subsection 2.2.

We faced two main challenges. First, we needed to carefully incor-
porate all of the theoretical assumptions commonly used in mor-
phometric analysis into our tree-morph, so that the results would
accurately reflect the statistical analysis, and be credible and inter-
esting to primatologists. Second, we needed to handle the captured
skull models, which are not manifold, have holes and occasional
self-intersections, have color information, and are reasonably large
(over a half-million triangles each). We developed the following
procedure.

1. Landmark entry: The user interactively places landmark
points at biologically meaningful locations providing homol-
ogous points on each of the input specimens.

2. Alignment and target computation: For each set of weights,
we simultaneously align the landmark sets to each other and
produce a weighted average target configuration of the land-

mark points, using a weighted version of the iterative Gener-
alized Procrustes Alignment procedure mentioned above.

3. Warp: We compute a TPS warp from each input surface so
that its landmarks coincide with the target configuration, and
warp all surface vertices into the target space.

4. Blend: We compute a narrow-banded distance field around
each surface and produce a weighted average squared distance
field. Extracting the extremal surface, which lies along the
“valley” of this function, produces the output surface.

Each of these steps is described in more detail in the following sec-
tions.

Our method is applicable to rigid objects; it is not intended to han-
dle morphs in which the conformation varies as well as the shape,
such as a moving arm or leg.



1.4 Related Work

Existing geometric morphometric software has mainly focused on
the alignment and multivariate statistical analysis of specimens,
with less emphasis on either landmark placement interfaces or vi-
sualization. Morpheus [18], morphologika [14], and the TPS suite
of programs [15] are the packages most widely-used by morpholo-
gists.

Placing landmark points on 3D specimens for morphometric anal-
ysis is generally done using 3D contact digitizers on the actual ob-
jects, with the collected points automatically stored into a spread-
sheet. This is extremely tedious, so that landmark sets consisting
of tens of points are typical. For virtual 3D images of specimens,
such as laser range surface or CT scans, there are generic software
packages that allow the user to collect points and save them into
an output file. These programs are not specialized to the landmark
placement task, so the process remains quite cumbersome even for
digital data.

The interesting visualization problem of morphing primate skull
shapes across an evolutionary tree was first approached by Delson
et al. [7] using the three-dimensional analog of the practice from
morphometrics mentioned above, in which the transformation from
one shape to another determined by the landmark points is visual-
ized by warping one of the input surface models. This approach has
the drawback that the visualization of the intermediate produced by
warping one input surface is not the same as the visualization pro-
duced by warping another instead. Our work improves on this first
approach in that our novel surface merging technique allows us to
produce a single surface mesh which accurately represents the de-
sired proportions of the input shapes. Also, since we can generate
many more landmarks, we achieve a better representation of the
shape and its variation.

When the shapes are captured by computed tomography rather than
laser range scans, the trivariate density functions for the different
specimens can be blended, after warping to align significant fea-
tures. This idea has been applied to visualizing the evolution of
toads by Hodges et al. [9]. The problem of merging similar sur-
faces is replaced, in this case, with the problem of isosurfacing
as the function is averaged across time, which is also non-trivial.
We believe that producing more landmarks is one way this process
could be improved.

We also draw on methods known in computer graphics and visual-
ization. We were inspired by one particularly relevant project [2],
in which a collection of full-body scans of humans was aligned to a
closed synthetic “base mesh”. The base mesh could then be warped
to resemble any of the inputs, or a linear combinations of the in-
puts. This method produces a “space of human body shapes” useful
in computer graphics, for instance for generating crowds of digital
extras. In morphometrics, there is a strong emphasis on produc-
ing results which are derived from the data rather than introduced
for computational convenience, so we wanted to avoid the synthetic
base mesh; also, we had no appropriate mesh to use.

Instead, we use a warp-and-merge paradigm to produce the in-
termediate surface models. Our method is closely related to ear-
lier work on morphing using implicit functions [6] (and see also
[19]). Coinciding with the common practice in morphometrics, this
method uses the TPS to warp models so that they resemble each
other closely. Surfaces are then merged by converting each input
surface into a signed distance function defined over a finite three-
dimensional domain, taking a weighted average of the functions,
and extracting the zero-set of the resulting function. An implicit
method, in which each surface is represented as a trivariate func-
tion, is appealing for this application since we can take a weighted

average of functions in a straightforward way. The existing method
works well for closed input surfaces. Our inputs, however, do not
have well-defined interiors, which makes it more difficult to define
a signed distance function. Therefore we have developed an alter-
native method based on the squared distance function.

2 METHOD

2.1 Landmark Placement

An essential part of the project was developing the landmark edi-
tor, an interactive tool with several specific user interface features to
help users generate and place landmarks. A basic but important fea-
ture is that the homology between the landmarks on two input sur-
faces is shown explicitly; with conventional methods, the user had
to imply the homology by carefully selecting landmarks in a spe-
cific order. In the landmark editor, two surface meshes are shown
at the same time in the main window. Figure 3 shows a screenshot.
A second text window shows the correspondences between pairs of
landmark points; the windows are linked, so that selecting a corre-
spondence in the text window highlights the selected points on the
surface meshes, and the user can see that they are indeed homolo-
gous. Points can of course be added, deleted and adjusted in any
order.

Conventional tools use only single points to denote landmark fea-
tures, which are typically placed at biologically distinctive homolo-
gous points on each specimen. We show the surface normal as well
as the point itself as the user adjusts the landmark, which helps to
place it exactly, especially on high-curvature features.

Not all shape differences can be captured in this way. To cap-
ture curvature or the area in smooth regions we also want to dis-
tribute points on these surfaces which can be placed in correspon-
dence; such points are called semi-landmarks. We use curve and
patch primitives to place large numbers of semi-landmarks easily.
These primitives are three-dimensional Bezier curves or patches,
with control points placed by the user on the surface. After the user
has placed a curve or patch, the system generates a user-controlled
number of semi-landmark points to quickly and accurately cover
the primitive. The semi-landmarks are distributed as a sequence
or grid, and then projected onto the surface. The orientation of
curves and patches is shown with arrows, since it is easy to get
these swapped; and the user can re-orient a patch or curve to cor-
rect a mis-match without having to move the points.

Consider, for example, the task of placing points around an eye
socket. The conventional method is to manually place dozens of
points, in a particular order and spacing, around the socket. With
the landmark editor, the user only needs to place a few points to
define curve primitives around the socket.

Bookstein [5] introduced a method for optimizing the positions of
semi-landmarks on a curve or surface, minimizing the energy mea-
sure of the induced TPS warps. We have implemented this method,
and it seems to have minimal effect on our semi-landmarks, which
are generally well-spaced to begin with. We have not yet integrated
this optimization step into the system.

We have also implemented a method that transfers landmark prim-
itives from one surface to another semi-automatically. The user
places enough landmarks to produce a crude warp, which is then
used to transfer the rest of the landmarks; the user then has to ad-
just their positions, but just transferring the overall configuration
simplifies the experience and reduces errors. We also export the



Figure 3: Screen capture of our landmark editor. Two input meshes
are shown in the large pane and the upper left, while the two warped
models are overlayed in the lower left. The yellow arrow indicates
the patch orientation.

points generated by our process, which allows existing morphome-
tric packages to use them. Figure 4 shows an entire set of exported
landmark points for one of our crania.

Figure 4: A full set of 853 landmarks placed on one of the scanned
crania. These were created using 45 are single points, 32 curves and
9 surface patches.

Using this interface, it is easy to create large sets of correctly cor-
responding landmark and semi-landmark points. On each cranium
in our example application, we use 853 landmarks. While placing
these was indeed tedious (it took our novice users about three hours
per skull), it would have been completely infeasible using previous
methods.

Collecting landmarks and semi-landmarks on object surfaces is the
first step in virtually every three-dimensional morphometric analy-
sis, so our landmark editor will be useful in many projects beyond
our visualization application. It is currently being used and tested
by the primatologists on our team for a separate research project in-
vestigating congruence between joint surfaces in the primate skele-
ton, in which a grid of points are placed on the opposing joint sur-
faces. So far landmarks have been collected on laser range scan
surfaces of over 80 primate lower limb-bone specimens, and results
are being analyzed. The software is greatly facilitating an otherwise
lengthy and complex process.

2.2 Weights

Each internal point of the tree corresponds to an intermediate skull
shape, which is a weighted average of the skull shapes at the leaves.
The weights are determined using a principle known in evolutionary
biology as squared-change parsimony: the integral of the squared
change of the variable over the tree should be minimized, within
the constraints imposed by the values of the variable at the leaves.
This principle is sometimes used to estimate the structure of the
evolutionary tree from the values at the leaves [20]. Here we are
concerned with the easier problem in which the structure of the tree,
including the lengths of the branches, is given, and we just want to
compute the values of the variables at the internal nodes.

Minimizing the squared change [can be implemented using] a gen-
eralized least-squares computation, in which the influence of each
leaf on an internal node is weighted using a covariance matrix de-
rived from the structure of the tree. Assuming a simple Brownian
motion model of evolution,] the the variance of the difference be-
tween two points on an evolutionary tree is expected to be propor-
tional to the amount of evolutionary time separating the two points.

The formula derived from this principle is given in a paper by Rohlf
[16] (Equations 16, 17). We use this formula to assign, for a given
internal point in the tree, a set of weights w1, . . . ,wk for each of the
k surfaces.

2.3 Alignment and Target Configuration

Given k sets of homologous landmark points, and weights
w1, . . . ,wk, we now want to compute the surface corresponding to
an internal point of the tree.

The first step in this process is Generalized Procrustes Alignment,
an iterative procedure that simultaneously determines the target
configuration for the landmark points (the positions of the land-
marks on the output surface) and aligns the input landmark sets to
the target configuration. This procedure, due to Gower [8], is fun-
damental to morphometrics; it is used to separate the difference in
the landmark configurations due to actual shape differences from
that due to differences in scale, translation and orientation.

We begin by scaling each input set of landmark points so that the
sum of the squared distances between all of the points and the center
of gravity is one. The scale variation can be re-introduced into the
visualization at the end, as in Figure 2.

We pick one of the input configurations of landmark points, arbi-
trarily, as the first iteration of the target configuration. Then in each
iteration, we align all of the input landmark sets to the proposed
target configuration. We use Horn’s algorithm [10], which gives an
efficient, closed form solution to the problem of finding the rota-
tion and translation of an input landmark set minimizing the sum
of squared distances between each landmark point and the homolo-
gous point in the target configuration. After aligning all input land-
mark sets, we compute the new target configuration by taking the
weighted average of all of the homologous copies of each landmark
point. We terminate the iterative process when the target configura-
tion is “stable”. Fewer than ten iterations are typically needed.

2.4 Warp

The next step in the process is to warp each input model so that its
landmark set coincides with the target landmark configuration. Fol-
lowing the common practice in morpometrics, suggested by Book-
stein [4], we use the TPS defined by two sets of landmark points to



warp each input surface mesh. Since we use a dense set of land-
marks, the warp brings the input models very close together.

The TPS defines a deformation of three-space which takes one set
of landmarks into another. Of all such deformations, the TPS is
the one that minimizes an energy functional based on a notion of
“bending energy”, related to the curvature of three-space induced
by the warp. Conveniently, it is possible to get a closed-form so-
lution for the TPS warp, since it can be expressed as a weighted
sum of radial basis functions centered at the landmark points. The
weights are determined by solving a linear system, which in this
application can be done in a straightforward manner.

2.5 Merging

All of the warped input surfaces are close to each other. The gross
differences between input models have been eliminated, and the
remaining task is to produce a single output surface which averages
the remaining differences, again using the weights w1, . . .wk. Using
the weights in the merging step means that near a leaf node of the
evolutionary tree, the data at the leaf dominates not only the shape
to which the surfaces are warped but also the proportions in which
they are blended. As a result, the space of shapes produced in the
morph exactly interpolates the input shapes.

2.5.1 Averaged Squared Distance Function

We compute the squared distance field on a uniform voxel grid
around each input mesh Mi, to within a small distance α (we use
1/8 the largest dimension of the model). Since the surfaces are very
close together, many voxels will be farther than α from any surface
and we will never write to them. We save memory by breaking the
volume into 4×4×4 blocks, and keeping a low-resolution version
of the entire volume in which each location addresses one block and
points to the actual storage for the block. Only when we first write
to a block do we actually allocate its storage; for blocks to which
we never write, the pointer in the low-resolution volume remains
null.

We compute the squared distance from each voxel within dis-
tance α to the surface exactly using the closest point transform
(CPT) code distributed by Mauch [12], which implements his ro-
bust computational-geometry-based method. This code finds for
each voxel w the nearest foot-point on the polyhedral input surface:
a foot-point is a surface point x such that a sphere centered at w is
tangent to the surface at x. The nearest foot-point is also the clos-
est surface point. We modified the code to find not only the closest
foot-point but also the second-closest as well, for reasons described
below.

We use the CPT code to find the trivariate squared distance func-
tion di for each Mi, and also the exact gradient ∇di of the squared
distance. Note that the gradient is the same as the unsigned dis-
tance function, times two. Averaging the di produces a single scalar
trivariate function d, and, because of the linearity of the derivative
operator, averaging the ∇di produces its exact gradient ∇d.

Color is also averaged. Each triangle in the input mesh is assigned
the average colors of its three vertices (we could have interpolated
the vertex colors across the triangle but the differences are negligi-
ble at the grid resolution we are using). The color ci of every voxel
closest to this triangle then inherits this triangle color. The colors
at the voxels are averaged to produce the average color c. After
the surface is extracted, color is assigned to each of its vertices by
interpolating the surrounding voxels.

2.5.2 Extremal Surface

The squared distance di from one input surface Mi is zero at the
surface, and its gradient is the zero vector, but the average d is not
exactly a squared distance function - it has small, but not zero val-
ues, near the input surfaces - and its gradient is exactly zero only
a set of discrete minimum points. Our desired output surface lies
along the two-dimensional valley in d near where the input sur-
faces were all zero. To extract a surface from the valley, our basic
approach is to consider the directional derivative of d, in a direction
v roughly perpendicular to the input surfaces. Finding this direction
v at every point is the tricky part of the process, which we describe
in following section. Once we have an appropriate vector field v,
the directional derivative

g = ∂d/∂v =
∇d · v

2
is a signed function, whose zero set is taken as the desired output
surface. See Figure 5.
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Figure 5: Averaging multiple squared distance functions produces a function

which is similar to a squared distance function, but generally not zero anywhere.

In one dimension the squared distance function is a parabola in two-space, and

the average of several is also a parabola. In higher dimensions the situation

is similar, although complicated by the fact that the input surface normals

do not match exactly. Taking a directional derivative in a direction v roughly

perpendicular to the desired surface produces a signed function, with its zeros

defining the bottom of the parabolic “valley”.

This approach is a variant of the extremal surface construction,
which was developed for extracting surfaces from noisy tensor
fields [13] and used recently for point-set surfaces [3]. Since the
function g is locally nearly linear, extracting the output surface us-
ing marching cubes [11] works well and produces smooth surfaces
free of “jaggy” artifacts (this method can fail near very thin fea-
tures or surface self-intersections, where we do see some typical
marching cubes artifacts).

2.5.3 The Vector Field

To produce the vector field v, we average the ∇di as unoriented
rather than oriented vectors. This kind of averaging makes sense
only when the vectors at a voxel are “nearly parallel” to each other.
Specifically, we require that the smaller angle between the two lines
supporting any two vectors di at the voxel is at most π/4; otherwise
the voxel is “divergent”. In the usual case in which the vectors are
“nearly parallel”, we re-orient the vectors so that every pair has pos-
itive inner product; we can then average the re-oriented vectors to
produce v. The effects of this averaging are illustrated in Figure 6.

Divergent voxels are handled differently, as discussed in subsec-
tion 2.5.5.

2.5.4 Consistent Orientation

Observe that if, in the example in Figure 6, we orient all of the
vectors in v to be pointing upwards, and then compute the signed



Figure 6: The gradient vector fields ∇di for two similar surfaces are shown at

the top. The usual vector average of the ∇di produces the average gradient

field ∇d on the lower left; notice that the vectors converge to a couple of

minimum points. On the lower right, we show v, formed by averaging the gi

as unoriented vectors. Notice that it remains nearly perpendicular to both the

input surfaces.

function g = ∇d · v, we find that g is negative at the bottom of the
picture and positive at the top, and the zero crossing occurs in the
region where ∇d is zero or nearly parallel to the input surfaces.

The next step in our process is indeed to find a consistent global ori-
entation for v. While the original work of Medioni et.al. on noisy
data suggested that a consistent orientation is not strictly necessary
(see [13], Appendix C), we found that in our application a consis-
tent orientation is required to get reasonable results.

Our approach is to propagate an orientation through the voxel grid,
beginning by assigning an arbitrary orientation at some voxel at
which v is defined. We then propagate this orientation to its neigh-
bors, then onto their neighbors, and so on. The sequence in which
we propagate is essential to achieving a consistent global orienta-
tion. This order is determined by a putting the neighbors into a
priority queue and orienting the highest priority neighbor first.

The priority function we use combines two sub-functions. The first
is designed to avoid propagating the orientation across the medial
axis, so that the orientation of v agrees near the surface and “flips”
in orientation are located near the medial axis. So we define a pri-
ority sub-function p1 = d, with lower values having higher priority;
in other words, we propagate along the valleys first, and then out-
wards.

The other issue is that at self-intersecting parts of the surface, near
very thin parts or near sharp edges, the orientation tends to flip
while propagating. We therefore prefer to orient these regions last,
after the “easy” regions have been handled. Detecting these regions
is the reason we modified the CPT code to also find the second clos-
est foot-point. Near thin regions, self intersections and sharp edges,
the closest foot-point f1 and the second closest foot-point f2 are
near each other, and in “easy” regions they are far apart. We define
a second priority sub-function p2 = || f1 − f2|| for every input Mi,
and average the values of p2 when we average the surfaces.

It was not really clear to us how to combine these two priority sub-
functions p1 and p2 to order the priority queue. After trying various
methods and examining the results, we settled on scaling them both
so that the values are comparable, and then averaging them. This
means that the highest priority voxels are high priority according to
both functions.

2.5.5 Clean-up

The resulting surfaces still has some extraneous parts. One issue
is that the two vector fields v and ∇d are perpendicular to each
other near ridges of d as well as valleys, that is, the zero-set S in-
cludes the medial axis of the desired surface as well as the surface
itself. We handle this simply by taking the single largest connected
component of S and deleting the rest; this removes the medial axis
components and also some small noise artifacts near the surface.

Another issue is that the vector field v is always pointing inwards to-
wards a boundary edge. The orientation of v has to flip somehow as
it goes around the edge, which introduces a spurious zero-crossing
in g. These we detect by considering |g| as well as the signed value
of g; if |g| is large we are far from the surface and we do not include
surface components from that voxel.

At divergent voxels v is undefined and we do not compute g di-
rectly. Instead, we compute g for the surrounding voxels and then
interpolate the values, by averaging, to fill in the divergent voxels.
We also tried a least-squares fitting, but found that it did not im-
prove the results. Note that this would not be possible without a
consistent orientation for v and hence a consistent sign for g.

3 RESULTS

Figure 7: The extremal merging of five warped input meshes. The
insert on the lower left shows a cross-section taken from the cheek-
bone, showing the variation between the five input meshes in that
area (one of the more difficult for us). The “jaggy” artifacts behind
the eye sockets occur because the thickness between two parallel sur-
faces is less than the resolution of the voxel grid; in this case, some
of the input meshes are actually self-intersecting, as shown in the
insert at upper right.

Figure 2 illustrates our results. The main point is that the synthetic
skulls, created by averaging the input meshes, are virtually indistin-
guishable from the original models. A video, including an anima-
tion of the tree-morph and some examples of interaction with the
landmark editor, accompanies this paper.

The input surface meshes varied in size, from 797K to 433K tri-
angles, except for the Papio model, for which only a medium-
resolution 75K triangle mesh was available. Computing the trivari-
ate distance function from the input mesh is the most expensive part
of the computation, and this is roughly linear in the size of the in-
put mesh. For the animation, we simplified all of the meshes down
to about 75K triangles, since more detail would not be resolved at



video resolution. Note that the trivariate distance function has to be
computed for each frame, since the warp for each frame is different.
We used the full resolution input meshes for the figures.

We did our processing on four Intel 3.2GHZ Hyperthreaded work-
stations, each with 2GB of memory. The distance field for the high-
resolution meshes is computed in about 500 seconds per model on
a voxel grid of size 300× 192× 147, and for the lower resolution
meshes at the same output resolution it requires about 150 seconds.

Other processing, including the GPA, the TPS warp, and the extrac-
tion of the extremal surfaces, required about an hour altogether and
was minor compared to the time required to generate the distance
functions.

Figure 7 shows a larger image of one of our high-resolution mod-
els, with some artifacts, and the input geometry which makes these
areas difficult for our technique to handle.

4 DISCUSSION AND FUTURE RESEARCH

This application raises a number of research questions which we
are interested in pursuing. With respect to primate evolution, we
plan to compare the average ancestral shapes predicted by the sta-
tistical model and illustrated in this visualization with the shapes
of know fossils, both visually and statistically. Integration of fossil
evidence with trees such as ours, whose structure is inferred from
DNA evidence from existing species, has to be based on morpho-
logical features. Visualizations such as these help paleontologists
develop intuition about morphological change and encourage them
to accept or reevaluate statistical models.

Generating landmarks automatically in a way which users would
find sufficiently accurate and biologically meaningful is an impor-
tant area for future research; as more data becomes available, the
need for automation is becoming more pressing. For instance, it
would be very helpful to be able to attract landmark points onto
significant geometric features, especially ridges. More ambitiously,
it would be useful to be able to develop a reliable surface correspon-
dences using only a small number of landmarks, and hence trans-
fer large sets of landmarks almost automatically. There has been
some work on this problem in the graphics community [17] and
extending these techniques to handle inputs which are not closed
manifolds would be very interesting.

The problem of merging multiple similar surfaces, which might in-
clude holes and self-intersections, is challenging, and approaches
other than the one we have taken here might also be successful. In
general, it would be useful to study this and related problems such
as parameterization in the context of “real world” scanned mod-
els and the difficulties they present. An alternative approach to the
merging problem would have been to use the signed distance func-
tion rather than the squared distance; this would allow for an easier
surface extraction process. We spent some time exploring this op-
tion, and even used it in a prototype, but we realized that making it
robust would require investing more effort upfront on the problem
of cleaning the input and producing consistent orientations before
merging. The extremal surface technique we implemented instead
comes down to first averaging the functions and then finding a con-
sistent orientation and cleaning up the output function.
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