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Abstract: Trees are a canonical structure for representing evolutionary histories. Many
popular criteria used to infer optimal trees are computationally hard, and the number of
possible tree shapes grows super-exponentially in the number of taxa. The underlying
structure of the spaces of trees yields rich insights that can improve the search for optimal
trees, both in accuracy and running time, and the analysis and visualization of results. We
review the past work on analyzing and comparing trees by their shape as well as recent
work that incorporates trees with weighted branch lengths.

Keywords: tree metrics, treespace, maximum parsimony, maximum likelihood.

Tree structures have long been used to represent the evolutionary histories of sets of species. For
example, the tips of the trees represent extant species and the internal nodes represent speciation
events. Despite its simplicity, the tree model captures much of the complexity of the underlying
phenomena. However, the sheer number of possibilities forces many simply presented operations
on trees to be computationally hard. For example, the maximum parsimony criteria (Farris, 1970;
Fitch, 1971) that seeks the tree with the minimal number of changes across the edges is compu-
tationally hard to compute exactly (Foulds and Graham, 1982). The addition of weights on the
branches, to denote quantities such as amount of evolutionary change, the time, or the confidence
on the existence of the branch, adds complexity to the model (Felsenstein, 1973, 1978). A pop-
ular corresponding optimality criteria for weighted trees, the maximum likelihood criteria, is also
computationally hard (Roch, 2006).

The power of the tree model comes from the same property that adds the complexity: the
vast number of trees to explain different possible evolutionary scenarios. This review focuses on
organizing sets of trees, viewed through the lens of improving the efficiency of exact and heuristic
algorithms that operate on trees. For each set of n leaves, the set of possible trees can be organized
into a space with a distance that delineates neighbors. This rigorous mathematical concept has
very practical uses: almost all software tools used to find optimal phylogenetic trees rely on some
variant of a local search strategy, where the next tree in the search is chosen from the neighbors
of a current tree. Choosing the appropriate metric for the neighbors can greatly simplify searches
for optimal trees, turning unsuccessful searches into efficient ones by employing the appropriate
metric (e.g. Charleston (1995); Maddison (1991); Urheim et al. (2015), Figure 1). While we touch
on the underlying mathematical beauty in these structures and related algorithms, we have omitted
many results of mathematical interest and focused on how understanding the underlying space can
improve the search for optimal trees and the analysis of sets of trees.

There are two distinct classes of tree spaces: those that correspond to tree rearrangement metrics
and those that correspond to vector-based metrics (Figures 2 and 3). This paper first addresses
the tree rearrangement metrics. While ignoring edge weights, the tree rearrangement moves and
associated metrics are extremely powerful for both weighted and unweighted trees and are included
in many software tools (e.g. Goloboff et al. (2008); Guindon et al. (2010); Ronquist et al. (2012);
Tamura et al. (2013); Stamatakis et al. (2007)). These metrics yield discrete treespaces that can
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Figure 1. a) An analogy to organizing points via different metrics is the points reached in
walking 10 minutes (dark blue) versus the points reached by walking or transit in 10 minutes
time (light blue). Image generated with Isoscope (Gortana et al., 2014). b) Similarly, an
NNI (dark blue) and SPR (light blue) neighborhood of the same point in the 7-leaf treespace.

be modeled by undirected graphs. We then address the vector-based metrics that primarily yield
continuous treespaces. Some of these metrics allow edge weights to be incorporated seamlessly into
the analysis. The use of these latter spaces in phylogenetics is novel and many techniques are being
refined, but the ability to compute meaningful statistics makes this a powerful tool for phylogenetic
analysis.

1. Definitions

This section includes some basic definitions related to trees and metrics. For a more thorough
introduction, see Semple and Steel (2003).

Trees. A simple and elegant way to represent the evolutionary relationships between species is
with a tree T = (V,E), that is, a connected graph with no cycles (Figure 3(a)). The trees can
be further decorated to include a root node, representing the hypothetical ancestor of the species
under study. When rooted, the branches can be viewed as directed away from the root. Other
than the root, all internal (non-leaf) nodes have degree three or higher. If all internal nodes are
of degree three, then the tree is called binary or fully resolved. Nodes of degree four or more in a
tree are called polytomies. A tree with no internal edges is called the star tree. For each branch
(or edge) of a tree, there is a corresponding bipartition or split on the set of leaves–namely, the
two sets of leaves that would result from removing the edge. Trees can be augmented by assigning
lengths to the edges (often representing the amount of evolutionary change across the edge or the
confidence in that edge) and are called weighted or continuous trees (Figure 3). Every tree induces
a set of splits that are pairwise compatible (that is, the splits A1|B1 and A2|B2 have at least one
of the intersections A1 ∩ A2, A1 ∩ B2, B1 ∩ A2, and B1 ∩ B2 empty). Buneman (1971) showed
that if a set of splits is pairwise compatible then it uniquely determines a tree. For each set of n
leaves, there are N = 2n−1 − 1 possible splits of the leaves (all possible ways to partition n objects
into two non-empty sets). Since trees are acyclic, only a limited number of splits can be present
in any given tree (at most 2n − 3 splits). Each tree can be written as a vector where coordinates
correspond to the length of the edges in the tree (Figure 4). For edges that do not occur in the
tree, the corresponding coordinate is set to 0.

2



C D E

A

B

G

F C
F

A

B

D

E

G
E

A

C

D

G

F

B
A

F

C

B

D

E

G

(a) (b) (c) (d)

Figure 2. Tree rearrangements: (a) The starting tree, (b) the interchange of neighboring
subtrees yields a tree one Nearest Neighbor Interchange (NNI) move away, (c) A Subtree
Prune and Regraft (SPR) move: the subtree (A,B) is pruned from the initial trees and
reattached, and (d) a Tree Bisection and Reconnection (TBR) move: the edge separating
ABC from DEFG is bisected and reconnected by a new edge.

The number of possible trees is huge. When there are 4 leaves, {1, 2, 3, 4}, the number of possible
trees is the number of ways to group the species into sets of size 2: 12|34, 13|24, and 14|23. For 5
leaves, there are 15 different possible trees (Figure 5(a)). If the number of leaves of the tree is n,
the number of possible tree shapes or ‘topologies’ grows super-exponentially in n. The number
of leaf-labelled unrooted trees is (2n − 5)!! = 1 · 3 · 5 · · · (2n − 5) (Schröder, 1870). Similarly, the
number of rooted trees is (2n− 3)!!.

Given the tremendous number of possible trees as the number of leaves grows large, the or-
ganization of these trees has profound effects on the success of the search for optimal trees and
visualization (Hillis et al., 2005). Counting the number of moves needed to transform one tree into
another in a search induces a measure of how similar or different trees are. Measures of similarity
can also be based on the overlap of the edges (often listed as vectors of all possible edges for the
space). Different metrics yield different neighbors and provide a way to adjust the range and depth
of the search (Figure 1). We consider the set of trees for a set S of n taxa, which with a distance
metric, forms a treespace. A natural coordinate system for points (i.e. trees) in treespace is the
splits on S (Figure 4). When each tree has an optimality score, it is called a landscape (Bastert
et al., 2002).

Complexity. We give a very brief overview of time complexity; for a thorough treatment, see
Cormen et al. (2001). When working with large data sets, the amount of time it takes to compute
the answer can often trump the correctness, since if it takes too long to compute the answer exactly,
it cannot be used. Complexity refers to the amount of time (or space) needed to compute an answer,
often parametrized by the number of inputs. For example, to find the longest branch length in a
tree with n leaves, you can examine each edge in turn and store the branch length if is longer than
the best seen thus far. This can be accomplished in time proportional to the largest number of
edges possible in a tree on n leaves, 2n− 3 edges. Since 2n− 3 is a linear function in n, we say this
algorithm would run in linear time (in n) or has a worst-case running time complexity of n (written
O(n) and pronounced “big-Oh of n”). Similarly, if you want to alphabetize the taxon names for
n species, there are many algorithms that can accomplish this. A simple one, “bubbleSort,” can
order a list of n items in time proportional to n2, and thus has worst-case time complexity of O(n2)
(Cormen et al., 2001). If a problem has lower and upper bounds on its running time proportional
to f(n), we say it runs in θ(f(n)) (often called “tight bounds” on the running time). All problems
that have an algorithm with worst-case running time of O(nk) for some k are in the class P of
problems with polynomial running time. Problems whose solutions can be checked in polynomial
time are in the class NP of problems with non-deterministic polynomial time algorithms.

Finding the optimal tree, under the most popular criteria, is NP-hard (Foulds and Graham, 1982;
Roch, 2006). That is, one can check quickly, when given a tree, if it has a score better than some
bound. However, there is no known polynomial-time algorithm for finding such a tree. While it
is not known if NP-hard problems can be solved quickly in polynomial time (this open question
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Figure 3. (a) A tree on 5 leaves. Each edge induces a bipartition or split on the leaves,
e.g. the internal edges induce the splits: 12|345 and 123|45. (b) The same tree with branch
lengths. In the orthant, the horizontal axis corresponds to the weight of 12|345, and the
vertical axis to the weight of 123|45.

has generated much interest and a million dollar prize (Clay Mathematics Institute, 2000)), NP-
hardness is viewed as difficult to compute effectively. NP-hardness is usually framed in terms of
worst-case instance of complexity, or longest amount of time to solve any instance of the problem.
While it is practical to know the maximal amount of time a problem instance could take, this
masks the differences between NP-hard problems. A way to capture easy instances of NP-hard
problems is to identify a parameter that captures the difficulty of the problem. Roughly, the
ability to efficiently calculate instances that are small with respect to some parameter is called
fixed parameter tractability (FPT). For example, while the TBR and SPR tree distances are NP-
hard, for a fixed distance k on n-leaf trees, they are tractable and can be calculated quickly in n,
that is, in ncf(k) where c is a constant and f(k) is a function that does not depend on n (Allen
and Steel, 2001; Bonet and St. John, 2010; Bordewich and Semple, 2004; Whidden et al., 2013).

Optimality Criteria. We briefly outline the two most popular optimality criteria (see Hillis et al.
(1996) for a more thorough treatment of the subject). Given character sequences for a set of species,
our goal is to reconstruct the tree that best explains the data.

Maximum Parsimony. Seeks the most parsimonious tree– the one with the smallest tree length or
parsimony score, which is, roughly, the minimum amount of evolution across the edges of the tree,
measured by the sum of character state changes (Farris, 1970; Fitch, 1971). While computing a
tree length is linear in the number of leaves, the overall problem of finding the most parsimonious
tree is NP-hard (Foulds and Graham, 1982).

Maximum Likelihood. Seeks the tree that is most consistent with the observed data. Given a model
of evolution, trees are evaluated by the likelihood that they generated the observed sequences
assigned to their leaves. The branch lengths (representing the evolutionary change expected) are
used as parameters of the model (Felsenstein, 1973, 1978). For a single tree, this calculation, along
with estimating the parameters of the model, can be computationally expensive (linear in number
of leaves, but with a large constant factor). The overall problem of finding the maximum likelihood
tree is NP-hard (Roch, 2006).
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T0 = (1, 2, 3, 4, 5) 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
T1 = ((1, 2), (3, (4, 5)) 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
T2 = ((1, 2), (4, (3, 5)) 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0

(a) (b)

Figure 4. (a) Representing trees, T0, T1, and T2, as vectors of splits. (b) The Robinson-
Foulds (Manhattan or L1) distance is the sum of the pairwise distances which is 2 for all

three pairs of these trees. The Branch Distance Score (Euclidean or L2) is
√

2 for all three
pairs of these trees. The BHV metric seeks the shortest path inside the space. For the pairs
of trees T0 and T1 and T0 and T2, the distance matches the Euclidean distance of

√
2. For

the trees, T1 and T2 which lie on different orthants, the distance is 2.

2. Discrete Treespaces

The treespaces generated from tree rearrangement metrics are often called ‘discrete treespaces’:
they can be modeled by graphs where the trees are vertices and the edges are single, discrete, moves
(Figure 5). As the name suggests, each of these moves rearranges or ‘edits’ the original tree to
create a new tree. While these moves and metrics have the same goal: to compare and organize
sets of trees, they do so in very different ways. An analogy is that the treespace is a map (Figure 1).
For the moves defined below, the NNI move is analogous to ‘walking’, while the SPR and TBR
moves are analogous to ‘transit and walking’. Starting at the same point, you can go more places if
you are allowed to both walk and take transit, over just walking. In this analogy, a neighborhood
of a point, under a mode of transportation, is all places you can reach in one time unit. Similarly,
the diameter is the greatest distance (measured in unit steps) you can travel in the space, and
varies under the different modes of transportation. To carry the analogy farther, generalized NNI
(Sankoff et al., 1994) and p-ECR (Ganapathy et al., 2003) measures (described below) are similar
to bicycling, since each covers similar regions to walking, but can cover more ground, without the
‘jump’ to new NNI neighborhoods found in SPR or TBR. The matching move of (Diaconis and
Holmes, 2002) (described below), which creates random walks that are rapidly mixing, is analogous
to ‘flying’. While these moves can be computed quickly and are used for searching for optimal
trees, their corresponding distance metrics are computationally hard. These tree rearrangement
moves are also used to traverse the space of trees with branch lengths.

Metrics & Neighbors. We outline metrics based on tree rearrangements (and will define those
based on vectors in Section 3). We begin with the most common– NNI, SPR, and TBR– and
mention some of their variants: generalized NNI and e-PCR. The corresponding distance for a
given tree rearrangement move is the minimal number of such moves to transform one tree to
another. A neighborhood of a tree T is all trees within one move of T (or equivalently for tree
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Figure 5. (a) The NNI treespace of 5-leaf trees. Nodes are labelled using extended split
notation: “12|3|45” refers to the tree with splits “12|345” and “123|45”. The highlighted
circle corresponds to the orthants illustrated in the BHV space for unrooted 5-leaf trees (b).
The shortest path (geodesic) between trees depends both on the tree shape and the branch
lengths. The dashed lines show geodesics that visit auxiliary orthants, while the dotted path
passes through the origin.

rearrangement metrics: within distance 1 of T ). The diameter of a space is the maximal distance
between any two trees under the metric.

Nearest Neighbor Interchange (NNI). A nearest neighbor interchange swaps subtrees on opposite
sides of an internal edge. The distance is the minimal number of moves needed to transform one
tree into another (Figures 2 and 6), and computing it is NP-hard (Li et al., 1996). While used less
for heuristic search, there has been renewed interest since it is embedded into the continuous BHV
treespace (see Section 3). The size of a NNI neighborhood is 2n− 6 (Robinson, 1971), the distance
is NP-hard to compute, and the diameter of the induced treespace has tight bounds dominated by
n log2 n (Li et al., 1996).

Subtree Prune and Regraft (SPR). Due to its connection to recombination and hybridization,
subtree-prune-and-reconnect (SPR) is used both to analyze phylogenies and in searches of treespace
(Hillis et al., 1996). An SPR move between two unrooted trees breaks a subtree from the first tree
and reattaches it to an edge of the second tree, contracting resulting vertices of degree two (Fig-
ure 2). Since SPR can differ depending on whether the underlying trees are rooted or not, “rSPR”
and “uSPR” are used to refer to SPR on rooted and unrooted trees, respectively. Calculating
the rSPR and uSPR distances, the minimal number of moves to transform one tree to another,
has been shown to be NP-hard and FPT (Bonet and St. John, 2010; Bordewich and Semple, 2004;
Hickey et al., 2008). Further, there are approximation algorithms that give answers within provable
bounds (Bonet et al., 2006; Bordewich et al., 2008; Whidden et al., 2013). Every NNI move is an
SPR move. The size of an uSPR neighborhood is 2(n− 3)(2n− 7) (Allen and Steel, 2001), where
n is the number of leaves. The diameter of the uSPR space is n− θ(

√
n) (Ding et al., 2011). Song

(2003) showed explicit formulas for the size of the rSPR neighborhood (which depends on the shape
of the tree) and showed the diameter of the rSPR space satisfies similar bounds to uSPR space.
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Figure 6. (a) Three 5-leaf trees that differ by a single NNI moves (arrows). (b) The same
tree shapes represented in the continuous treespace. Each orthant contains all trees with
the same underlying topology.

Generalized NNI (Lazy SPR). Developed by Sankoff et al. (1994) to traverse treespace more quickly,
the move approximates an SPR move by a fixed number of NNI moves (also called ‘lazy SPR’ and
used in RAxML (Stamatakis et al., 2007)). That is, if the number of fixed moves is 5, all trees that
can be reached within 5 NNI moves of the starting tree are considered one generalized NNI move
from it. These moves have the advantage of the quickness of computing NNI moves but lack the
ability of SPR to see more diverse trees quickly.

Tree Bisection and Reconnection (TBR). A tree bisection and reconnection (TBR) operation re-
moves an edge from a tree and adds a new edge to reconnect the subtrees, contracting resulting
vertices of degree two (Figure 2). The TBR distance between two phylogenetic trees T1 and T2 is
the minimum number of TBR operations required to convert T1 into T2. As with SPR, TBR is a
popular and effective way to move through treespace when searching for heuristically useful solu-
tions. Calculating TBR distance is NP-hard and fixed parameter tractable (Allen and Steel, 2001).
Every SPR move is a TBR move. The size of a TBR neighborhood is bounded by (2n− 3)(n− 3)2

(Humphries and Wu, 2013). The diameter of the space is n− θ(
√
n) (Ding et al., 2011).

Combining Neighborhoods. Several authors have focused on combining the best properties of several
different types of neighborhoods. This includes the p-ECR neighborhoods of Ganapathy et al.
(2003) which generalizes the NNI operation by allowing p edges to be contracted and then refined.
Goeffon et al. (2008) use “progressive neighborhoods” that evolve as the heuristic search progresses
through the landscape.

Exploring Treespace. Each of the moves above can be used to explore the treespace, either as a
basis of a random walk or as part of a heuristic search algorithm. The success of the search, both in
terms of accuracy and efficiency, depends on the choice of the move since each organizes the search
space in a different way.
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Walks of Treespace. Searches for optimal trees are often walks or paths of the space: sequences of
trees where each tree in the sequence differs from the previous tree by a single move. For the NNI,
SPR, and TBR spaces, there are walks of the treespace that visit every tree exactly once (often
called Hamiltonian paths) (Gordon et al., 2013). Given the immense size of the spaces, visiting
every node (even just once) requires too much calculation for all but small n. Instead, the space
is sampled either by a random walk or by a local search (see below). Diaconis and Holmes (2002)
show a bijection between matchings and rooted, binary phylogentic trees, and interchange pairs in
the matchings to make steps in a random walk. Unlike the metrics above, these steps “mix up”
the tree and can be used to explore new regions of the search space. The resulting Markov chains
are ‘rapidly mixing’ (roughly, after 1

2n log n moves, the resulting tree is essentially random with
respect to the uniform distribution (all trees occurring with equal probability)).

Heuristic Searches. Many searches follow a local search strategy: start with a tree; at each step,
choose a neighbor of the tree; and repeat. The simplest variation is called hill climbing where the
best-scoring neighbor is chosen. This greedy approach continues until there are no neighbors that
score better or time is exhausted. More sophisticated approaches include pruning of neighborhoods,
using multiple starting points, choosing trees with non-optimal scores with some probability, and
dynamically changing parameters such as step length (see Wheeler (2012) for survey). These are
not random walks of the space (and do not randomly sample all possibilities), and the size of the
neighborhood can have large effects on the computational efficiency of the approaches. For example,
while the NNI neighborhood is linear in n and can be computed quite quickly, it can get trapped
at local optima. The SPR and TBR neighborhoods (whose size is respectively quadratic and cubic
in n) are more difficult to enumerate for larger n but have generally fewer local optima to derail
the search (Kirkup and Kim, 2000; Money and Whelan, 2012; Urheim et al., 2015).

Attraction Basins Under Different Metrics. These treespaces differ in organization and by the
distribution of optimal trees with respect to maximum parsimony optimality criteria. If we view
the treespace as a 2-dimensional map, the score can be viewed as the height above sea level.
When searching for a maximum scoring point, these regions can be viewed as phylogenetic islands
(Maddison, 1991) that rise above some threshold and terraces that are regions where all trees
contain a set of fixed subtrees and have the same score (Sanderson et al., 2011, 2015). When
searching for a minimum scoring point, these islands are called attraction basins: for any optima,
TO, these are all the starting trees that will reach TO using a greedy hill-climbing strategy. Kirkup
and Kim (2000) showed empirically that the NNI treespace has many more attraction basins than
the TBR treespace. Urheim et al. (2015) proved that if all the sequences are compatible, then
maximum parsimony has a single attraction basin under SPR (and TBR since it extends it), but
for NNI, there are terraces where the search will get stuck. Money and Whelan (2012) examined
the yeast data set of Rokas et al. (2003) finding empirically similar distributions for maximum
likelihood optimality.

While the maximum parsimony problem is NP-hard, there do exist instances where finding the
exact answer is possible. Employing branch-and-bound techniques, Hendy and Penny (1982) and
Holland et al. (2005) limit the search space by using the current best score to rule out regions. When
all the character sequences are compatible, it is easy (i.e. takes linear time) to find this perfect
phylogeny (Gusfield, 1991). Ford et al. (2015) employed this for arbitrary character sequences
by partitioning the inputted sequences into compatible subsequences and computing the perfect
phylogeny for each. Since the maximum parsimony score is additive (the score for each character
can be computed separately and then added together), they showed that the global optimum must
exist within a fixed number of steps of these perfect phylogenies. This bounding of the search space
works well empirically for data sets with high consistency index for a tree but eventually devolves
to the entire space as the consistency index decreases.
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Figure 7. The shaded region contains all trees with the splits 12|345 and 123|45
that are within distance 1 of the star tree (origin) under (a) L1 (Robinson-Foulds),
(b) L2 (Branch Score Distance), and (c) L∞ (maximum branch) distance.

3. Continuous Treespaces

While many metrics are defined in terms of tree rearrangements, another class of metrics focuses
on properties of trees that can be represented as vectors. The metrics are based on comparisons of
these vectors. The most common vector representation has the tree’s branch lengths as coordinates.
The computations are independent of the order of the coordinates, thus, any fixed order on the
coordinates can be used. The resulting spaces are often called ‘continuous treespaces’. While there
are N = 2n−1−1 possible splits for n-leaf trees, at most 2n−3 splits can occur in a tree. Similarly,
for a tree vector, we set all coordinates that do not correspond to a split of the tree to 0. Thus, the
vector for any tree can have at most 2n − 3 non-zero coordinates. If a tree vector has fewer than
2n − 3 non-zero coordinates, the corresponding tree is not fully resolved (i.e. it is non-binary). A
“star tree” refers to tree with only n branches (e.g. T0 in Figure 4).

The tree model becomes more complex when we allow branch lengths on the tree edges, but
surprisingly, the metrics become computationally easier. We first review distances that depend
solely on comparison of the vectors, and then restrict to spaces where all vectors correspond to a
tree. For the latter, the distance between two trees is the shortest path between the two trees that
does not leave the space (Figure 5). Billera et al. (2001) showed that the geodesic or shortest path
exists and is unique. We will focus on their space since most statistical and computational tools
have been developed for it.

Other vector-based treespaces have been proposed. Some, in particular those that use triples
or quartets as their coordinates, can be computed quite quickly (Brodal et al., 2013; Sand et al.,
2013) and are finding use, especially for comparing gene and species trees (DeGiorgio and Degnan,
2010). Another class of intriguing spaces is parametrized by the paths between leaves. Much
work is needed for these spaces– both theoretically (such as defining medians and averages when
there are multiple shortest paths between points) as well as algorithmic tools (such as algorithms
and software that can compute distances for more than 3-leaf trees). Given the huge complexity in
computing even small examples and the topology of the underlying space (Gill et al., 2008; Moulton
and Steel, 2004; Engström et al., 2013), this is a daunting task. We briefly explain these spaces
as well as their links to the phylogenetic orange space (defined below) that includes probabilistic
models of evolution (Kim, 2000).

Metrics & Neighbors. Representing trees as vectors opens up many ways to compare the trees.
Much beautiful mathematics already exists on vector spaces, and we highlight here the concepts
used for comparing phylogenetic trees (for a more detailed overview, see Rudin (1987)). The
length (or norm) of a vector v is often written ||v||. Some of the metrics used in phylogenetics
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occur in this framework of norms, often called the p-norm or Lp-norm (named in honor of the
mathematician Henri Lebesgue). Rooted triples and quartet metrics can also be represented in
terms of vectors, but using underlying vectors that represent instead of the splits, the triples and
quartets, respectively. The Billera-Holmes-Vogtmann (BHV) space of Billera et al. (2001) is also
defined as the set of all trees with branch lengths but uses the geodesic, or shortest path between
two points that lies completely inside the space, as its metric. While it can be approximated by
metrics that compare vectors, its added requirement that the shortest path lie completely in the
space complicates the computation. This requirement also yields midpoints between trees that are
trees, allowing summary techniques not possible in other spaces. Unlike the tree rearrangement
metrics, many vector-based metrics used for comparing trees can be computed in polynomial time.

Robinson-Foulds (RF). The most commonly used distance, the Robinson-Foulds (RF) distance
(Robinson, 1971), is the sum of the positive difference of branch lengths of the edge set of the
trees (often normalized by the number of edges). While the RF distance was originally defined
for tree topologies, it naturally extends to the continuous as a weighted metric (Figure 4). It
can be computed in linear time (Day, 1985). It is equivalent to the L1 or d1 distances when the
coordinates for missing edges are given the value 0 (Figure 7(a)). It is often referred to as the taxicab
or Manhattan distance since it would be the distance if you were required to traverse the streets
(and not fly over buildings to cut corners). In terms of coordinates, for vectors p = (p1, p2, . . . , pN )
and q = (q1, q2, . . . , qN ), it is:

d1(p,q) = ||p− q||1 =
N∑
i=1

|pi − qi| = |p1 − q1|+ |p2 − q2|+ · · · |pN − qN |

Branch Score Distance. Kuhner and Felsenstein (1994) proposed a distance that summed the
squared differences of branch lengths and then took the square root of this sum (Figure 7(b)).
When the coordinates for missing edges are given the coordinates 0, this can be viewed as the
Euclidean distance or L2 distance on tree vectors, p and q:

d2(p,q) = ||p− q||2 = (

N∑
i=1

|pi − qi|2)1/2 =
√
|p1 − q1|2 + |p2 − q2|2 + · · · |pN − qN |2

Lp and L∞ Distances. This pattern can be continued, and an associated distance can be defined
for any p > 0. Lp distance is a generalization:

dp(p,q) = ||p− q||p = (

N∑
i=1

|pi − qi|p)1/p = (|p1 − q1|p + |p2 − q2|p + · · · |pN − qN |p)1/p

The L∞ norm takes this concept to the limit to get:

d∞(p,q) = ||p− q||∞ = max
i=1,...,N

|pi − qi|

That is, the L∞ distance is the maximum difference between corresponding coordinates (Fig-
ure 7(c)).

Billera Holmes Vogtmann (BHV) Distance. Billera et al. (2001) view weighted trees as vectors of
their split weights yielding an (2n − 3)-dimensional space embedded inside the larger (2n−1 − 1)-
dimensional space of all graphs. The distance between two trees is the geodesic, or shortest path,
inside treespace (Figure 5). This continuous treespace easily handles weighted edges, provides a
rigorous environment to average trees (Billera et al., 2001), and its metric, the BHV distance, is
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Figure 8. (a) The three possible rooted triples on leaves {1, 2, 3} and (b) the three
possible quartets on {1, 2, 3, 4}.

polynomial-time (Owen and Provan, 2011) and can be approximated in linear time (Amenta et al.,
2007). The complexity of computing the metric was open almost a decade and is surprisingly O(n4)
via a clever encoding as a network flow problem on bipartite graphs. Each tree shape corresponds
to an orthant: a copy of R2n−3

+ with each coordinate the length of the edge in the tree (Figure 6).

Rooted Triples. The rooted triples distance counts the number of triples that occur in only one of
the input trees (Critchlow et al., 1996). Like the Robinson-Foulds distance, it can viewed as a L1

distance on vectors. Here, the vectors are all possible rooted triples on n leaves (Figure 8(a)). It
can be computed in O(n log n) (Brodal et al., 2013; Sand et al., 2013). This can be extended to
include weighted branches. The added structure of considering triples makes it useful for estimating
species trees (DeGiorgio and Degnan, 2010).

Quartet Distance. The quartet distance counts the number of quartets that occur in only one of
the input trees. Like the Robinson-Foulds distance, it can viewed as a L1 distance on vectors. Here,
the vectors are all possible quartets on n leaves (Figure 8(b)). It can be computed in O(n log n)
time (Brodal et al., 2004; Sand et al., 2013). This can be extended to include weighted branches.

Path-Distance Spaces. While the above distances look at sets of leaves (e.g. bipartitions of all the
leaves, triplets of leaves, and quartets of leaves), we can also use the distance between leaves, induced
by each tree. Given a tree, T , the corresponding dissimilarity matrix or tree metric, dT : L → R+,
is defined, for any two leaves x, y ∈ L:

dT (x, y) =
∑

e∈PT (x,y)

w(e)

where PT (x, y) is the path of edges between the leaves x and y in the tree, T , and w(e) is the
weight of edge e (see Hillis et al. (1996)). Buneman (1971) gave a simple and elegant condition
(the ‘4-point condition’) to test when a dissimilarity matrix corresponds to a tree. Distance-based
methods such as neighbor joining (Sautou and Nei, 1987) take these matrices and estimate a tree
that matches the observed distances. The set of dissimilarity matrices that correspond to a tree
form a space, with the distance defined as the shortest path in the space (Bandelt and Dress,
1986; Moulton and Steel, 1999, 2004). Given a weighted tree, T , its (additive) path distance can be
represented as a vector of distances between any pair of leaves. For example, an unrooted 5-leaf tree
has (5 · 4)/2 = 10 coordinates. The tree T1 from Figure 4 has coordinates (2, 3, 4, 4, 3, 4, 4, 3, 3, 2)
under the additive-path distance.

The space of all matrices (including those that do not correspond to trees) for n taxa is the
n(n−1)

2 -dimensional space, R+
n(n−1)/2. This is the space of inputs to distance-based reconstruction

methods such as Neighbor Joining (Sautou and Nei, 1987). Restricting to matrices for which the
4-point conjecture holds yields a smaller subspace where each point corresponds to a weighted tree
(Bandelt and Dress, 1986; Moulton and Steel, 1999). The points with the same underlying tree
shace are called ‘cones.’ Due to the restriction to tree metrics, there is a natural correspondence
between the orthants in BHV space and the cones in the space of dissimilarity matrices (just as
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there is a natural correspondence between the points that represent trees in the discrete NNI,
SPR, and TBR treespaces), but the details of how the distances correspond between the spaces
have not been determined. Despite its complex construction, the BHV space has unique shortest
paths (‘geodesics’) between points (Billera et al., 2001). For the path distance spaces, there can be
multiple shortest paths.

A related treespace can be created by multiplying edge weights, instead of adding them, to yield

a (n(n−1)2 )-vector for each n-leaf tree. These edge-product vectors have as coordinates the products
of the negative exponential of the weights of the edges of the path. That is, for leaves x and y in a
tree T :

dTp(x, y) =
∏

e∈P (x,y)

e−w(e) = e−
∑

e∈P (x,y) w(e).

The edge product vector can be easily computed from the additive path vector. For example, for
T1, we have the vector (e−2, e−3, e−4, e−4, e−3, e−4, e−4, e−3, e−3, e−2). The latter are the points of
edge-product space of Moulton and Steel (2004). The space has nice mathematical properties but
lacks unique geodesics and is difficult to visualize for even small trees (Figure 1 of Engström et al.
(2013) illustrates the curved subspace corresponding to a rooted 3-leaf tree). As Moulton and Steel
(2004) and Gill et al. (2008) note, this space is related to the “phylogenetic orange” space of Kim
(2000). In the orange space, the points are probability distributions on the possible leaf labelings
or site patterns. That is, for a fixed number of leaves n and r number of possible character states,
there are rn possible labelings of the leaves. These are used to form the coordinates of the vectors
with the restriction that the coordinate values of these labels sum to 1. For example, a possible
leaf labeling of T2 is leaf 1 is A, leaf 2 is A, leaf 3 is C, leaf 4 is G and leaf 5 is T , or “AACGT.”
The sequence of leaf labelings, {AACGT,CACGT,AACGT, TACGA} would correspond to the
vector (.5, .25, .25, 0, 0, 0, . . . , 0) assuming that AACGT , CACGT , and TACGA are the first three
coordinates. Note that AACGT occurs twice while the other two labelings occur once, and the
coordinate values represent the fraction of time each occurs and thus sum to 1. Given a weighted
tree (T,w), we can define transition rates for each edge to be λ(e) = e−w(e). The Markov process
parametrized by the pair (T, λ) induces a joint probability distribution on the leaf labelings, giving
a correspondence between points in the edge product space and points in phylogenetic orange space.
In the orange space, two trees are assigned the same point if they generate the leaf labelings with
the same probabilities (since the probabilities are exactly the coordinates of the points). More
theoretical and algorithm advances are needed to compute distances and simple statistics such as
averages.

Summary & Consensus Methods. Due to their newness, most continuous spaces lack the
theoretical and algorithmic tools to compute distances efficiently, making it not yet possible to
compute summaries and consensus methods. As such, this section focuses on the spaces that employ
edge weights as their coordinates. The strength of the BHV continuous space is the consensus
and summary statistics that yield resolved weighted trees. Many analyses use sets of trees, and
methods that can capture the important features succinctly are valuable. Commonly used methods
like strict consensus and majority rule consensus are fast to compute but ignore branch lengths and
often return unresolved trees (Amenta et al., 2003; McMorris et al., 1983; Margush and McMorris,
1981; Schuh and Polhemus, 1980). This leads to situations where the summary contains no edges
(particularly troublesome for the strict consensus tree that only contains an edge if it occur in
all of the input trees). Interestingly, the weighted version of the majority rule consensus (which
by construction is always a tree, albeit often unresolved) is the median under the L1 (weighted
Robinson-Foulds) metric. The traditional Euclidean mean, when applied to tree vectors, can yield
vectors that do not correspond to trees. The BHV space with its requirement that the distance be
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the shortest path in the space gives a promising way to ‘average’ sets of trees that captures the
contributions of all the inputted trees.

In this framework, the majority rule tree, is the mode, and the Fréchet mean plays the role of
the average. The Fréchet mean is the tree that minimizes the sum of the squared BHV distances
to the set of trees, T = {T1, . . . , Tm}:

Tµ = min
T

m∑
i=1

dBHV (Ti, T )2

The property that guarantees that the geodesics are unique (that the space is non-positively curved
(Billera et al., 2001)) gives also that the Fréchet mean is unique. Further, an analog to the Law of
Large Numbers holds (Sturm, 2003) yielding an iterative algorithm for approximating the mean.
The Fréchet mean exhibits unexpected non-Euclidean behavior: Miller et al. (2015) showed that
the mean is ‘sticky’: perturbing a tree does not always change the mean, unlike in Euclidean space.
This often occurs when the mean is on a lower dimensional orthant (i.e. the mean tree contains
polytomies), and may explain why other summary methods, such as the majority-rule consensus
tree (McMorris et al., 1983), often give degenerate trees. Independently, Bačák (2012) and Benner
et al. (2014) gave algorithms for computing the median of a set of trees, which is the tree minimizing
the sum of distances to those trees (opposed to squared distances for the Fréchet mean). Being a
robust estimator, the median is even more sticky than the mean in tree space.

More statistical tools are under development. These include best-fit geodesics or one-dimensional
approximations of the data can be computed using stochastic optimization (Nye, 2011, 2014).
Approximate mean hypothesis testing and approximate linear discriminant analysis have also been
developed (Feragen et al., 2013). Additionally, there are a variety of methods for statistical analysis
based on the BHV distance, including measures of the intrinsic curvature of the data (Chakerian
and Holmes, 2012; Cleary et al., 2014a,b). Recently, Nye (2015) showed that Brownian motion on
treespace can be approximated by a random walk, giving a promising way to sample the space,
since computing a distribution under Brownian motion directly for n > 5 is extremely challenging.

Optimality Criteria on Continuous Treespace. While the interplay of metrics and optimality
criteria has been explored for the discrete treespace, less is known for the continuous treespace.
Since branch lengths are part of the maximum likelihood paradigm, it makes sense to compare and
analyze trees including this information, in addition to using the topology. This is also motivated
by the fact there can be multiple local optima for a fixed tree topology (Steel, 1994). In terms of
computing maximum likelihood scores, this implies that the continuous counterpart of hill-climbing,
gradient descent, does not work for computing maximum likelihood scores, even in a single orthant.
Chor et al. (2000) extended the Steel example to give ‘level curves’ of branch lengths that are local
optima. There has been initial work on visualizing the search paths of continuous trees (for example,
Hillis et al. (2005); Park et al. (2010); Whidden and Matsen (2015)) but these visualizations use
mapping of the discrete space even for weighted trees.

4. Conclusion

As we seek optimal trees for biological data and ways to understand the results, the underlying
treespaces chosen for these searches and analysis are an important aspect of their success. When
searching spaces using discrete moves, the SPR moves seems most effective from both theoretical
and empirical results (Kirkup and Kim, 2000; Urheim et al., 2015). The interplay of metrics with
optimality criteria has a large effect on the difficulty of the search. Often searches are done without
first carefully examining the data. As the number of taxa grows, the number of tree shapes grows
super-exponentially and even simple ‘pre-processing’ of the character sequences can have large
effects on the size of the search space, time and accuracy (Charleston, 1995; Ford et al., 2015;
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Holland et al., 2005; Money and Whelan, 2012). When branch lengths are used, the BHV treespace
with efficient metrics and well defined statistical methods seems the most effective at analyzing
search results. For both discrete and continuous treespaces, better understanding of the underlying
structure can improve the search for optima and the analysis of output.
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