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Abstract

We show that subtree prune and regraft (uSPR) distance on unrooted trees is fixed parameter
tractable with respect to the distance. We also make progress on a conjecture of Steel [9] on
the preservation of uSPR distance under chain reduction, improving on lower bounds of Hickey
et al. [7].
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1 Introduction

Phylogenies, or evolutionary histories, are a crucial tool in biology. Often thousands of phylogenies
are generated for a set of taxa [10]; comparing these phylogenetic trees is an essential step in
determining the topology of the optimal tree. This paper focuses on the computational complexity
of the popular phylogenetic distance based on the subtree prune and regraft (SPR) tree operation
(defined in Section 2). Roughly, an SPR move between two trees breaks a subtree from the first
tree and regrafts it to an edge of the second tree (see Figure 1), and the SPR distance between
two trees is the minimal number of SPR moves that transforms one tree to the other. Another
popular distance is based on the tree bisection and reconnection (TBR) tree operation (defined
formally in Section 2). Informally, a TBR move removes an edge in a tree creating two trees,
and then reconnects the two trees using an edge from each (see Figure 1 for an example and
comparison between the two measures). Calculating the TBR distance is NP-hard [6]. Allen and
Steel [1] showed that the distance is also fixed parameter tractable (FPT) (Hallett and McCartin
[5] improved the FPT algorithm for TBR, which also gives a 4-approximation for calculating this
distance). Allen and Steel used a correspondence between the TBR distance and the size of the
maximum agreement forest (roughly, disjoint subtrees that can be arranged to form both of the
trees) [6]. Then, they showed that natural rules for reducing trees preserve the distance (also
defined in Section 2). SPR distance is preserved under one of these rules; Steel [9] conjectures that
the second rule is also preserved.

SPR distance differs between rooted and unrooted trees [4]. Bordewich and Semple [4] examined
these issues for SPR distance on rooted trees (rSPR). Namely, they showed that calculating the
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1 SPR move ← Initial Tree → → 1 TBR move

Figure 1: Left: A SPR move: a subtree is “pruned” and regrafted. Right: a TBR move: an edge
is removed, creating two subtrees, and a new edge is added “reconnecting” the trees. All resulting
vertices of degree 2 are contracted, so, the end result of both moves is a phylogenetic tree.

rSPR distance is NP-hard and FPT. These results rely on a correspondence between the rSPR
distance between two trees and an agreement forest of those two trees. Using the agreement
forests, they showed that natural reduction rules of Allen and Steel [1] preserve rSPR distance,
yielding both the FPT result and solving Steel’s conjecture in the affirmative for rooted trees.
Approximation algorithms, with provable bounds, for rSPR have been developed by Bonet et al.
[2] and Bordewich et al. [3].

While the first reduction rule (subtree reduction) preserves most distances between trees, it is
unknown whether the second reduction rule (chain reduction) does for uSPR distance. The latter is
Steels conjecture for SPR distance [9]. The work of Bordewich and Semple [4] proves the conjecture
true for rSPR distance. For uSPR distance, Hickey et al. [7] proved that the uSPR distance is NP-
hard and gave insight into Steels conjecture. They show that applications of the chain reduction
rule can reduce the uSPR distance by at most two. The latter follows by an elegant argument that
reduces applications of the chain reduction rule to that of a known distance-preserving reduction:
subtree reduction rule (see Figure 2). Previously, the FPT of uSPR was not known, though the
work of Hallett and McCartin [[5] provides an 8-approximation for calculating the uSPR distance
[8].

In the present paper, we prove two new results about the uSPR distance: uSPR distance is
fixed parameter tractable (with parameter, the distance between the trees), and applications of
the chain reduction rule can reduce the uSPR distance by at most one, making progress towards
solving the conjecture of Steel [9]. Unlike previous proofs, our FPT result does not rely on a
correspondence between agreement forests and distances and the preservation of distances under
the chain reduction rule. So, while we give a proof for FPT for uSPR (that also gives alternative
proofs for TBR and rSPR), the conjecture itself remains an open problem.

2 Background and Definitions

The following definitions follow those of Allen and Steel [1] and Bordewich and Semple [4].

Definition 1 An phylogenetic tree, T , is a binary tree whose leaves or degree one vertices are
labeled by a set of species, and the non-leaf vertices are unlabelled and have degree three. For rooted
trees, we have that the root vertex has degree two. An edge incident to a leaf is called a pendant
edge, and otherwise it is an internal edge. We define the size of T , |T |, to be the number of
leaves of T .
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Definition 2 Given two phylogenetic trees T1 and T2 on the same leaf set, a (common) chain is
three or more adjacent subtrees that occur identically in both trees (see T1 and T2 in Figure 3).

Definition 3 A subtree prune and regraft (SPR) operation on a phylogenetic tree is defined
as cutting any edge and pruning a subtree t, and then regrafting the subtree by the same cut edge
to a new vertex obtained by subdividing an edge in T − t. Any resulting vertex of degree two is
contracted, so that the result is a phylogenetic tree (see Figure 1).

The SPR distance between two phylogenetic trees T1 and T2 on the same leaf set, denoted
by dSPR(T1, T2), is the minimum number of SPR operations required to convert T1 into T2. To
distinguish between the distances on rooted and unrooted trees, we will refer to this measure as
rSPR and uSPR, respectively.

Definition 4 A tree bisection and reconnection (TBR) operation on an unrooted phylogenetic
tree T is defined as removing any edge, giving two new subtrees t1 and t2, which are then reconnected
by creating a new edge betweeen the midpoints of any edge in t1 and any edge in t2. Any resulting
vertex of degree two is contracted, so that the result is a phylogenetic tree (see Figure 1).

The TBR distance between two trees T1 and T2, dTBR(T1, T2), is the minimal number of TBR
moves needed to transform T1 into T2.

In our proofs, we will distinguish edges that are changed or altered by a sequence of moves.
More formally,

Definition 5 The T1 be phylogenetic trees, and m1 an uSPR move, that when applied to T1 yields
the tree T2. Label the edges involved in the uSPR tree as follows: esubtree is the edge cut by
move m and regrafted to the edge, etarget, and the initial neighboring edges in T1 to esubtree are
esource1 and esource2. We say that the edge esubtree is broken by the move m1, and there was
an insertion on etarget. We will call all four edges, esubtree, etarget, esource1, esource2, altered
by the move m.

B1

esource
1

esubtree

CB

A

D
T2

A

esource
2

etarget

move m
DC

T

We extend the definition of altered edges (and similarly broken edges and insertions) to a se-
quence of moves, inductively from above. For a sequence of moves, m1, m2, . . . ,mk+1 applied to T1,
let Tk be the result of applying m1, m2, . . . ,mk to T1. Define the altered edges of T1, under moves
m1, m2, . . . ,mk+1 to be the union of the altered edges of T1 under moves m1, m2, . . . ,mk with the
altered edges of Tk under move mk+1.

Originally linked to tree measures by Hein et al. [6], agreement forests are an useful tool for
calculating and showing hardness for tree measures.

Definition 6 Let T1 and T2 be two phylogenetic trees on the same leaf set, L. An agreement
forest (AF) for T1, T2 is a collection F = {t1, . . . , tk} of phylogenetic trees such that if we let Lj

be the leaves of tree tj for j ∈ {1, . . . , k}, then the following are satisfied:
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Figure 2: Subtree Reduction Rule: Common subtrees in the phylogenetic trees T1 and T2 are
replaced by a single leaf, to yield new trees T ′1 and T ′2.
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Figure 3: Chain Reduction Rule: Common chains in trees T1 and T2 are replaced by chains of
length 3, yielding the new trees T ′1 and T ′2.

1. L1, . . . , Lk partitions L (that is, the subtrees partition the leaf set),

2. tj = T1|Lj = T2|Lj for all j ∈ {1, . . . , k} (that is, the subtrees occur as induced subtrees of T1

and T2), and

3. for both i = 1 and i = 2, the trees {Ti|Lj | j = 1, . . . , k} are vertex-disjoint subtrees of Ti (that
is, the subtrees are vertex disjoint in both T1 and T2).

A maximum agreement forest (MAF) for T1 and T2 is an agreement forest for T1 and T2 with
minimal number of subtrees in the forest over all possible agreement forests for T1 and T2.

Allen and Steel [1] showed that the TBR distance between two trees is one less than the size of the
TBR maximum agreement forest of the two trees.

We will now define the reduction rules used on pairs of trees:

Definition 7 We consider three reduction rules for pairs of trees T1 and T2:

• Subtree Reduction Rule: Replace a subtree that occurs identically in both trees by a single
leaf with a new label (see Figure 2).

• Chain Reduction Rule: Replace a chain of subtrees that occur identically in both trees by
three new leaves with new labels correctly oriented to preserve the direction of the chain. (see
Figure 3).

• c-Chain Reduction Rule: Replace a chain of pendant leaves that occur identically in both
trees by c new leaves with new labels correctly oriented to preserve the direction of the chain.

The first two reduction rules have been important tools in showing fixed parameter tractability
results for tree distances. The third rule, a variant on the second, is introduced here to show the
FPT result for calculating the uSPR distance. The subtree reduction rule is distance preserving for
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Figure 4: Notation for common chains: We call the pendant edges of the chain: p1, . . . , pc, the
internal edges of the chain: e1, . . . , ec−1. e0 and ec refer to the edges incident, but not part of, the
common chain.

the uSPR operation, as well as TBR and rSPR operations [1]. The chain rule is distance preserving
for the TBR and rSPR operations [1, 4], and it is unknown whether it is also distance preserving
for the uSPR operation (this is Steel’s conjecture [9] on which this paper presents some progress).
These reductions are essential to proofs of fixed parameter tractability for TBR [1] and rSPR [4],
providing a way to reduce the initial trees to smaller trees (with equivalent distance) whose size is
bounded by the parameter, the distance between the trees. The usefulness of this technique and
similarity of the measures suggests Steel’s conjecture [9] that the chain rule preserves SPR distance
is true for unrooted trees. Hickey et al. [7] show that the applications of the chain rule reduce the
distances by at most two. We improve that bound by one, making progress on the conjecture.

The following additional notation will be used in the paper: let T1, T2 be unrooted phylogenetic
trees, labeled by the same leaf set, with a common chain of elements, 1, 2, . . . , c. We will refer to
the pendant edges of the chain as p1, . . . , pc, and the internal edges of the chain as e1, . . . , ec−1. e0

and ec refer to the edges incident, but not part of, the common chain (see Figure 4). Finally, we
will use the notation T j

1 and T j
2 to make explicit the fact that the trees have a common chain of

length j: 1, 2, . . . , j.

3 Fixed Parameter Tractability of uSPR

We show the fixed parameter tractability of uSPR distance, with parameter, the distance, k. We
note that this argument also applies to TBR and rSPR distances, giving an alternative proof of
these results.

Theorem 1 Let T1 and T2 be two unrooted phylogenetic trees on the same taxa set. Let n be the
number of taxa in the trees, and let k be the uSPR distance between T1 and T2. The uSPR distance
between T1 and T2 can be calculated in O(f(k)n) time, where f(k) is a function that does not depend
on n.

The proof of the theorem relies on two straightforward lemmas, that also generalize to other
distances, such as rSPR and TBR distance. The first lemma states that if the common chain
between two trees is sufficiently larger than the minimal number of moves to transform one tree to
the other, then all trees with larger chains have the same distance.

Lemma 1 Let T j
1 and T j

2 be two trees such that duSPR(T j
1 , T j

2 ) = k. Suppose also j > 9k. Then
for all m ≥ j, duSPR(Tm

1 , Tm
2 ) = k.
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Proof: Let m1, . . . ,mk : T j
1 → T j

2 be a minimal sequence of moves. We first show that there
exists i < j such that the subsequence, pi, ei, and pi+1, are not altered by any of the moves
m1, . . . ,mk. As noted in the definition of altered edges, at most 4k edges of T1 are altered by a
sequence of k moves. By the Pigeonhole Principle, if there are more than two times the number
of chain elements as there are altered edges, the desired subsequence of unaltered edges existed.
As noted in the definition of altered edges, at most 4k edges of T1 are altered by a sequence of k
moves. So, the length of the common chain needs to be greater than 2(4k + 1). By hypothesis,
j > 9k > 2(4k + 1), and thus, there exists an i such that pi, ei, and pi+1 are not altered by any of
the moves m1, . . . ,mk.

At this point, we can insert m − j new elements onto the edge ei to create trees T ′1 and T ′2.
By construction, T ′1 and T ′2 have a common chain of length m and are isomorphic to Tm

1 and Tm
2 .

Further, m1, . . . ,mk : T ′1 → T ′2. So, by a simple relabeling, there exists m′1, . . . ,m
′
k : Tm

1 → Tm
2 .

This gives duSPR(Tm
1 , Tm

2 ) ≤ k. Since duSPR(Tm
1 , Tm

2 ) ≥ duSPR(T j
1 , T j

2 ) for all m > j, we have
duSPR(Tm

1 , Tm
2 ) = k. �

To show the theorem, we prove a second lemma, similar to Lemma 3.4 of [1] that shows that
completely reduced pairs of trees are bounded by a function depending only on k, the uSPR distance
(and not on n, the number of taxa in the trees). The original lemma of [1] bounds the size of the
reduced trees under the subtree and chain rules. We extend the proof to give bounds on the size
of the reduced trees when using the c-chain rule.

Lemma 2 Let T1 and T2 be phylogenetic trees on the same leaf set. Let T ′1 and T ′2 be the reduction
of T1 and T2 under the subtree and 9k-chain reduction rules. Then if duSPR(T1, T2) ≤ k, then
|T ′1| ≤ 76k2.

Proof: First, we will show that if dTBR(T1, T2) ≤ k, then |T ′1| ≤ 76k2. We note that since
dTBR(T1, T2) ≤ 2duSPR(T1, T2) [1] that this will give the desired result. We will do this by modifying
the proof of Lemma 3.4 of [1] to hold for trees with chains of length at most 9k.

Suppose that dTBR(T1, T2) ≤ k. Then dTBR(T ′1, T
′
2) = k′ ≤ k and there exists a MAF for T ′1

and T ′2 such that F = {t0, . . . , tk′} of size k′ + 1. By analyzing the maximum number of possible
edges and leaves in F (that is, modulo the reduction rules), we get the desired bounds. We first
count edges related to each tj ∈ F .

Let tj be a tree of the MAF F for T ′1 and T ′2. Let Ij be the set of edges of tj that are incident
with edges of either T1 or T2 that are not in tj . Let t′j be the minimal subtree of tj containing
among its edges the set Ij . Note that t′j could equal tj . Let t′′j be the tree obtained from t′j by
replacing each maximal path that contains no edge from Ij by a single edge. Let Fj be the set of
these new edges, and Pj the set of pendant edges of t′′j . At this point, it is clear that:

Fact 1: Pj ⊆ Ij ,

Fact 2: Ij ∪ Fj is a disjoint partition of the edges of t′′j , and

Fact 3: Any vertex of t′′j of degree two is incident with at least one edge from Ij .

Also let ij = |Ij |, fj = |Fj | and pj = |Pj |. Then since tj has chains of length at most 9k and
the subtree reduction rule has been applied, the size of tj is at most

|tj | ≤ pj + 9k · fj (1)
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This follows from 1) the subtrees of tj corresponding to an edge Pj can be replaced by a single leaf
by the subtree reduction rule; and 2) the collection of subtrees corresponding to an edge in Fj can
be replaced by at most 9k leaves by the 9k-chain rule.

Now, let vd denote the number of vertices of t′′j of degree d. Then,

v1 + 2v2 + 3v3 = 2(ij + fj) = 2(v1 + v2 + v3 − 1).

The first equality is by counting the edges of t′′j twice and summing the degrees of the nodes. The
second is because in a tree the number of edges is one less the number of vertices.

By rearranging the previous equation and noting that v1 = pj , we have: v3 = pj − 2. We also
have that fj is the total number of edges of t′′j minus ij (by Fact 2), so,

fj = (v1 + v2 + v3 − 1)− ij .

By Fact 1 and Fact 3 and the fact that each edge in Pj gives rise to at most one vertex of degree
2, we have that

v2 ≤ pj + 2(ij − pj).

Substituting the last three equations into Equation 1 (and noting that v1 = pj ≤ ij),we obtain
that the size of tj is at most:

|tj | ≤ pj + 9k · [(v1 + v2 + v3 − 1)− ij ]
≤ pj + 9k · [(pj + (pj + 2(ij − pj) + (pj − 2)− 1)− ij ]
= pj + 9k · [ij + pj − 3]
= (9k + 1)pj + 9kij − 9k · 3
≤ 19kij

Summing over the k + 1 trees of the MAF of T1 and T2, we have:

|T ′1| =
k∑

j=0

19kij = 19k
k∑

j=0

ij ≤ 19k · 4k = 76k2.

The inequality follows from Lemma 3.3 of [1] which states that the possible incident edges to the
components of the MAF in T1 (and similarly for T2 ) are bounded by 2k−2, and thus

∑k
j=0 ij < 4k.

�
The fixed parameter tractability follows directly from the previous two lemmas:
Proof of Theorem: Let T1 and T2 be phylogenetic trees on the same leaf set, and let k be an

integer. The algorithm to decide if duSPR(T1, T2) ≤ k is:

1. Reduce T1 and T2 using the subtree reduction rule and the 9k-chain reduction rule. Let T ′1
and T ′2 be the result of repeatedly applying the rules to T1 and T2 until no further reduction
is possible. This part of the algorithm is linear in the size of T1 and T2 [2]. By Lemma 1, if
duSPR(T ′1, T

′
2) = k, then duSPR(T1, T2) = k.

2. if |T ′1| > 76k2, then the distance of the original trees is greater than k (by Lemma 2), and
return the answer no.

3. Otherwise, |T ′1| ≤ 76k2. Look at all sequences of k moves that start with T ′1. Since |T ′1| is
bounded by 76k2, the number of sequences is bounded (exponentially) by k, and does not
depend on n, the number of leaves. If some sequence of moves transforms T ′1 into T ′2, return
the answer yes, else return no.

�
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Figure 5: The intermediate trees in Case 2 of Theorem 2.

4 Bounding uSPR

The proof of the lower bound on uSPR distance is inspired by the proof of Hickey et al. [7]. They
alter the initial trees to obtain trees, distance one from the originals, with the common chain as
subtrees (similar to T ′1 in Figure 5) and apply the subtree reduction rule. This clever transformation
gives a lower bound of two less than the distance. By careful analysis of the sequence of moves that
transforms the first tree into the second, we give a sharper lower bound for uSPR distance under
the chain reduction rule:

Theorem 2 An application of the chain reduction rule to common chains cannot reduce the uSPR-
distance of two phylogenetic trees by more than 1.

Proof: Let T1 and T2 be the given trees with a common chain of 1, . . . , l, and let T 3
1 and T 3

2 be
the result of applying the chain rule. Let duSPR(T1, T2) = k.

To show that duSPR(T 3
1 , T 3

2 ) ≥ k − 1, we go by cases on the minimal sequences of moves,
m1, . . . ,mk′ , that transform T 3

1 into T 3
2 :

Case 1: There exists a minimal sequence of moves that transforms T 3
1 into T 3

2 that either
does not break the chain edges, p1, e1, p2 or does not break the chain edges p2, e2, p3. If this is the
case, then insert elements 4, . . . , l on e1 (e2 respectively) to yield trees isomorphic to T1 and T2.
Other elements may be inserted on e1 (e2, respectively), but since p1, e1, p2 (p2, e2, p3, respectively)
are not broken, these additional elements are moved by subsequent moves. Thus, the distance
k = duSPR(T1, T2) = duSPR(T 3

1 , T 3
2 ) = k′.

Case 2: The minimal sequence of moves that transforms T 3
1 into T 3

2 breaks all three pendant
edges: {p1, p2, p3}. We can show a stronger result: duSPR(T1, T2) = duSPR(T 3

1 , T 3
2 ). Towards a

contradiction, assume that duSPR(T1, T2) > duSPR(T 3
1 , T 3

2 ). Then there exists a sequence of moves,
m1, . . . ,mk′ : T 3

1 → T 3
2 where k′ < k. In T 3

1 and T 3
2 , replace the chain element 3 by a chain subtree

with leaves 3, . . . , l + 2. Call the resulting trees T ′1 and T ′2 (see T ′1 and T ′2 in Figure 5). Since T 3
1

and T 3
2 can be obtained from T ′1 and T ′2 by applying the subtree reduction rule to the subtree chain

with leaves 3, . . . , l + 2, duSPR(T ′1, T
′
2) = duSPR(T 3

1 , T 3
2 ).

Now, consider the trees T l+2
1 and T l+2

2 as defined in Section 2. T l+2
1 can be converted to T ′1 by

a single move (break el+2 and connect to e2, illustrated in Figure 5 between T l+2
1 and T ′1). Call

this move m0. Similarly, T l+2
2 can be converted to T ′2 by a single move, mk′+1 (see trees T ′2 and

T l+2
2 in Figure 5). Now, the sequence of moves m0, m1, . . . ,mk′ , mk′+1 transforms T l+2

1 into T l+2
2 .

Let T ′′1 be the tree T l+2
1 with the chain elements 1 and 2 removed. T ′′2 is defined similarly from

T l+2
2 . By hypothesis, p1 and p2 are broken by moves in m0, m1, . . . ,mk′ , mk′+1. Let m′1, . . . ,m

′
k′

be the result of removing these two moves, with the natural change: any edge that gets attached
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into edges e0, e1, e2, p1 or p2 in the moves m′1, . . . ,m
′
k′ , will now get attached to an edge that

will be the contraction of e1, e2 and e3. So, m′1, . . . ,m
′
k′ transforms T ′′1 into T ′′2 . Finally, using

a simple relabeling of chain elements, T ′′1 is isomorphic to T1 and T ′′2 is isomorphic to T2. This
implies duSPR(T1, T2) = duSPR(T ′′1 , T ′′2 ) ≤ k′, which is a contradiction since we assumed that
duSPR(T1, T2) = k > k′.

Case 3: There exists a minimal sequence of moves m1, . . . ,mk′ transforming T 3
1 into T 3

2 where
exactly two of the pendant edges, {p1, p2, p3}, are broken. This follows by a similar argument to
above, where the chain element that is replaced by the subtree is the one not broken by the minimal
sequence of moves.

Case 4: There exists a minimal sequence of moves m1, . . . ,mk′ transforming T 3
1 into T 3

2 where
exactly one of the pendant edges, {p1, p2, p3}, is broken. The argument is similar to Case 2 but
does not yield as strong a result. We show duSPR(T 3

1 , T 3
2 ) ≥ k−1, instead of a strict inequality. We

create trees as in Case 2, inserting a subtree with a chain of l+1 new elements on one of the pendant
edges that is not broken. This gives a sequence of moves m0, m1, . . . ,mk′ , mk′+1 : T l+1

1 → T l+1
2 .

Unlike the previous two cases, there is only one pendant edge that is broken by m1, . . . ,mk′ . Let
m′1, . . . ,m

′
k′+1 be the result of removing this move, and T ′′1 and T ′′2 the result of removing the

corresponding chain element from T ′1 and T ′2. Then, we have m′1, . . . ,m
′
k′+1 : T ′′1 → T ′′2 . Under a

simple relabeling of chain elements, T ′′1 is isomorphic to T1 and T ′′2 is isomorphic to T2. This implies
k = duSPR(T1, T2) = duSPR(T ′′1 , T ′′2 ) ≤ k′ + 1, which gives duSPR(T 3

1 , T 3
2 ) = k′ ≥ k − 1.

Case 5: None of the above. Then every sequence of minimal moves transforming T 3
1 into T 3

2

breaks at leaset one of {e1, e2}, and it does not contain any moves breaking any pendant chain
edges p1 or p2 or p3.

Let m1, . . . ,mk′ : T 3
1 → T 3

2 be a minimal sequence of moves. Assume, without loss of generality
that the edge, e2 is broken in the direction of p3, by move mi, that is the component containing p3

is the target of the move mi. Also, assume that this is the first move where either e1 or e2 is broken.
Let Si−1 be the result of applying moves m1, m2, . . . ,mi−1 to T 3

1 . Then, duSPR(Si, T
3
2 ) = k′− i− 1

via the moves mi, mi+1, . . . ,mk′ .
In Si−1 and T 3

2 , replace the chain element 3 by a subtree chain with leaves l, . . . , 3. Call the
resulting trees S′i−1 and T ′2 (see Figure 6). Since Si and T 3

2 can be obtained from S′i and T ′2 by
applying subtree reduction rule to the chain, l, . . . , 3, duSPR(S′i−1, T

′
2) = duSPR(Si−1, T

3
2 ) = k′−i−1.

Now, let mk′+1 break e2 and connect it to the pendant edge, p3, above the last chain element 3.
This gives: m′i, . . . ,m

′
k′+1 : S′i → T2 and duSPR(S′i, T2) = k′ − i + 1.

We note that changing slightly the moves m1, m2, . . . ,mi−1, we can transform tree T1 into S′i−1.
Recall that e1, e2, p1, p2, p3, are not broken in steps m1, m2, . . . ,mi−1. We transform the moves
by: if some edge gets attached into p3, e2 (and in the move mi stays with leaf 3), or e3, in the
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new move, attach it to el. The other moves are identical. Let us call this new set of moves:
m′1, m

′
2, . . . ,m

′
i−1. By construction, these new moves that transform T1 into S′i−1. Combining the

two sets of moves, we obtain m′1, . . . ,m
′
i−1, m

′
i, . . . m

′
k′+1 : T1 → T2. Thus, k = duSPR(T1, T2) ≤

k′ + 1 = duSPR(T 3
1 , T 3, 2) + 1.

Therefore, duSPR(T1, T2) ≥ k − 1. �
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