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Abstract

Fast-converging methods for reconstructing phylogenetic

trees require that the sequences characterizing the taxa be

of only polynomial length, a major asset in practice, since

real-life sequences are of bounded length. However, of the

half-dozen such methods proposed over the last few years,

only two fulfill this condition without requiring knowledge

of typically unknown parameters, such as the evolutionary

rate(s) used in the model; this additional requirement

severely limits the applicability of the methods. We say that

methods that need such knowledge demonstrate relative fast

convergence, since they rely upon an oracle. We focus on

the class of methods that do not require such knowledge and

thus demonstrate absolute fast convergence. We give a very

general construction scheme that not only turns any relative

fast-converging method into an absolute fast-converging one,

but also turns any statistically consistent method that

converges from sequences of length O(eO(diam(T ))) into an

absolute fast-converging method.

1 Introduction

Phylogenetic reconstruction methods build an evolu-
tionary tree from a collection of taxa given, for example,
by molecular sequences. These methods are designed to
recover the “true” evolutionary tree as often as possible.
Not all are guaranteed to do so with high probability
under reasonable conditions; even those that offer this
guarantee vary considerably in their requirements. Un-
der some models of evolution, no method can be guaran-
teed to recover the true tree with high probability, due
to unidentifiability. Under other models, many methods
will be able to recover the tree if given long enough se-
quences. The latter methods are said to be statistically
consistent under the model of evolution. Formally, a
method is statistically consistent for a specific model of
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evolution if, for every model tree (i.e., rooted tree and
the associated random variables) and every ε > 0, there
is a sequence length k (which depends on the method,
the model tree, and ε) such that the method recovers the
topology (the edges) of the model tree with probability
at least 1−ε, if it is given sequences of length at least k.
For many models (such as the Jukes-Cantor model [13],
the simplest four-state model, as well as more complex
models, such as the General Markov (GM) [19] model),
even simple distance methods are easily established to
be statistically consistent.

The sequence length required by a method is a sig-
nificant aspect of its performance since real data sets are
of limited length. (Computational requirements are also
important, but it is possible to wait longer or get more
powerful machines, while it is not possible to get longer
sequences than exist in nature.) Consequently, experi-
mental and analytical studies have attempted to bound
the sequence lengths required by different phylogenetic
methods. Methods that perform well (with respect to
topology estimation) from sequences of realistic lengths
(bounded by at most a few thousand nucleotides) are
very desirable, especially if the topological accuracy re-
mains good when the rate of evolution and number of
taxa increase.

In an earlier paper [12], we defined the notion of fast
convergence under the Jukes-Cantor model of evolution.
In this paper we introduce the concept of absolute
fast convergence and extend this definition to more
general models, such as the General Time Reversible
Markov model. A method is absolute fast-converging if
it is fast-converging and does not need to know any
of the parameters of the model in order to achieve
fast convergence. In the Jukes-Cantor model, such
parameters might be the minimum (f) or maximum (g)
expected number of times a site changes on any edge
in the tree. A method can be fast converging only if it
is given knowledge of one or both of these values: such
a method is not absolute fast-converging and we say
instead that it is relative fast-converging.

Only a few methods have been proved to be abso-
lute fast-converging even under the simple Jukes-Cantor
model: two “DCM-boosted” quartet methods [12] and



the Short-Quartet methods [8, 9]. Methods that have
been proved relative fast-converging under the Jukes-
Cantor model include DCM-boosted neighbor-joining
(DCM-NJ) [12], the Harmonic Greedy Triplets (HGT)
method of Csűrös and Kao [4], and a method of Cryan,
Goldberg, and Goldberg (CGG) [3]. These methods
are only relative fast-converging under the Jukes-Cantor
model, rather than absolute fast-converging, because
they require knowledge of f or g; without such knowl-
edge, they have to guess the parameter (or, more pre-
cisely, they have to guess which of the trees they have
constructed is the correct tree). Their guessing strate-
gies are not provably correct. Consequently, in absence
of knowledge about f and g, these methods are not even
statistically consistent.

In this paper, we describe a very simple algorithm,
which we call Short Quartet Support (SQS). This al-
gorithm selects the true tree (under the GM model)
with high probability from a collection of trees, given
sequences of only polynomial length. Since SQS does
not require knowledge of the model parameters, it can
be used to turn a relative fast-converging method into
an absolute fast-converging method. Consequently,
a straightforward use of SQS produces absolute fast-
converging versions of the relative fast-converging meth-
ods DCM-Neighbor-Joining [12], HGT [4], and CGG [3].

SQS can also be combined with the first phase of
the Disk-Covering Method (DCM) [12] to produce a
technique we call DCM∗ for reducing the dependency
of methods on sequence lengths. In particular, DCM∗

turns methods that converge from sequence lengths that
grow exponentially in the diameter (the longest path
length in the tree) into methods that are absolute fast-
converging. Since the diameter of an n-leaf tree can
be as large as n − 1 and is typically Ω(

√
n), this tech-

nique turns methods that are statistically consistent,
but not even relative fast-converging, into absolute fast-
converging methods. Finally, SQS provides a very gen-
eral framework within which absolute fast-converging
methods can be developed.

We state our results in terms of the General Time
Reversible Markov model of evolution, which contains,
as a special case, the Jukes-Cantor model.

2 Basics

2.1 Stochastic models of DNA sequence evolu-
tion. A model of DNA sequence evolution must de-
scribe the probability distribution of the four states,
A,C, T, G, at the root, the evolution of a random site
(i.e., position within the DNA sequence) and how the
evolution differs across the sites. Typically the prob-
ability distribution at the root is uniform (so that all
sequences of a fixed length are equally likely). The evo-

lution of a single site is modeled through the use of
“stochastic substitution matrices,” 4 × 4 matrices (one
for each tree edge) in which every row sums to 1. A
stochastic model of how a single site evolves can thus
have up to 12 free parameters. The simplest such model
is the Jukes-Cantor model, with one free parameter, and
the most complex is the General Markov model, with all
12 parameters [19].

Definition 1. The GM model of single-site evolution
is defined as follows.

1. The nucleotide in a random site at the root is drawn
from a known distribution, in which each nucleotide
has positive probability.

2. The probability of each site substitution on an
edge e of the tree is given by a 4 × 4 stochastic
substitution matrix M(e) in which det(M(e)) is not
0, 1, or −1.

This model is generally used in a context where
all sites evolve identically and independently (the iid
assumption), although sometimes a distribution of rates
across sites is also given. In this paper, we use the GM
model with iid site evolution.

We denote a model tree in the GM model as a pair,
(T, {Me : e ∈ E(T )}), or more simply as (T,M). We
assume that the number of changes obeys a Poisson
distribution. For each edge e ∈ E(T ), we define the
weight of the edge λ(e) to be − log |det(Me)|. This
allows us to define the matrix of leaf-to-leaf distances,
{λij}, with λij =

∑
e∈Pij

λ(e) and where Pij is the
path in T between leaves i and j. Note that {λij} is a
symmetric matrix. It is a well-known fact that, given
the distance matrix {λij}, it is easy to recover the
underlying leaf-labelled tree T in polynomial time.

This general model of site evolution subsumes the
great majority of other models examined in the phyloge-
netic literature, including the Hasegawa-Kishino-Yano
(HKY) model, the Kimura 2-parameter model (K2P),
the Kimura 3-ST model (K3ST), the Jukes-Cantor
model (JC), etc. These models are all special cases
of the General Markov model, because they place
restrictions on the form of the stochastic substitution
matrices (see [14] for more information about stochastic
models of evolution). Most distance-based methods
are statistically consistent under the General Markov
model, because statistically consistent methods exist
for estimating the matrix {λij} above. (A method for
estimating the matrix {λij} is statistically consistent
if each of the distance estimates dij converges to the
true value, λij , as the sequence length increases, with
probability 1.) The “log-det” distances provide such a
statistically consistent estimation of the matrix {λij}



[19]. In our theorems, we will call these distances
simply the GM corrected distances.

In [9], the sequence length needed to obtain
an arbitrarily good estimate of these distances was
estimated, as follows:

Theorem 2.1. Let (T,M) be a model tree in the
GM model. Set λ(e) = − log |det(Me)| and λij =∑

e∈Pij
λ(e). Assume that f, g are fixed with 0 < f ≤

λ(e) ≤ g for all edges e ∈ T . Let ε > 0, δ > 0 be given.
Then, there is a constant C such that, if the sequence
length exceeds

C log neO(g·diam(T ))

then with probability at least 1− δ, we have L∞(d, λ) =
maxij |dij − λij | < ε, where d is the matrix of GM
corrected distances, λ is the matrix of true distances, n
is the number of leaves, and diam(T ) is the topological
diameter of T .

The significance of Theorem 2.1 is seen in the light of
the following theorem:

Theorem 2.2. Let {dij} be an n × n dissimilarity
matrix, {λij} an additive matrix defined by a tree T
with positive edge-weighting λ(e), and f the smallest
edge weight in T , f = mine w(e).

• (From [1] and [8]) If L∞(d, λ) < f/2, then the Q∗

and Neighbor-Joining methods both return tree T
on input d.

• (From [8]) If L∞(d, λ) < f/8, then the Agarwala
et al. method returns tree T on input d.

These two theorems imply the following result.

Theorem 2.3. Let T , M , f , g, n, δ, λ, d, and
diam(T ) be as in Theorem 2.1. Then there is a constant
C > 0 such that, if the sequence length exceeds

C log neO(g·diam(T ))

then, with probability at least 1−δ, the Neighbor-Joining
and Q∗ methods recover the true tree. There is also a
constant C ′ > 0 such that, if the sequence length exceeds

C ′ log neO(g·diam(T ))

then, with probability at least 1−δ, the Agarwala method
recovers the true tree.

Since diam(T ) can be as large as n − 1, the sequence
length requirement of each of these methods is bounded
from above by a function that grows exponentially in
n, even when g is fixed.

2.2 Fast-converging methods. Since letting f be
arbitrarily small or g be arbitrarily large affects the se-
quence length requirement, we are interested in devel-
oping methods for which polynomially long sequences
ensure accuracy under the General Markov model, when
both f and g are fixed, but arbitrary. In order to define
this concept precisely, we first parameterize the General
Markov model.

Definition 2. GMf,g contains those (T,M) ∈ GM for
which f ≤ λ(e) ≤ g holds for all edges e ∈ E(T ).

We now define two types of “fast convergence.”

Definition 3. A phylogenetic reconstruction method Φ
is absolute fast-converging (afc) for the GM model if,
for all positive f, g, ε, there is a polynomial p such
that, for all (T,M) in the GM model, on set S of n
sequences of length at least p(n) generated on T , we have
Pr[Φ(S) = T ] > 1− ε.

Note that method M operates without any knowledge
of parameters f or g—or indeed any function of f and
g. Thus, although the polynomial p depends upon both
f and g, the method itself does not.

Definition 4. A phylogenetic reconstruction method Φ
is relative fast-converging (rfc) for the model GMf,g

if, for all positive f, g, ε, there is a polynomial p such
that, for all (T,M) ∈ GMf,g on set S of n se-
quences of length at least p(n) generated on T , we have
Pr[Φ(S, A(f, g)) = T ] > 1−ε, where A(f, g) denotes an
oracle that provides information about f or g.

Not requiring information about f or g is clearly desir-
able, since in practice there is no a priori way to bound
f or g. Hence, absolute fast convergence is a more de-
sirable property than relative fast convergence.

However, almost all known fast-converging methods
are only rfc, not afc. The only known afc methods are:

• The Short-Quartet methods (the dyadic closure
method [8] and the witness-antiwitness method [9]).
These methods operate by attempting to produce,
for each setting of the parameter g, a binary tree
that meets certain constraints. They also can
explore efficiently (e.g., through binary search) the
parameter space of g.

• Certain variations of the Disk-Covering Method
(DCM) [12]. DCM is a two-phase technique used
in conjunction with existing phylogenetic methods.
The first phase produces a collection of trees, where
each tree is obtained by producing a division of
the dataset into overlapping subproblems (“disks”)
of low diameter. Trees on these subproblems are
computed using some existing phylogenetic method



and are then merged into a supertree on the entire
set of taxa. The second phase selects a tree on the
entire set of taxa, based upon a criterion designed
specifically with respect to the base phylogenetic
method. Using DCM with the Buneman Method
(also known as the Q∗ method) or with the Näıve
Quartet Method (NQM) produces afc methods,
because the second phase has provable performance
guarantees.

All afc methods operate by producing a set of trees,
then selecting the best tree from the set. By designing
a suitable selection criterion, one can prove performance
guarantees and thus establish absolute fast convergence.

By comparison, rfc methods need to know (the value
of or a tight bound on) one or both of the parameters
(f and g). Absent such knowledge, rfc methods cannot
reconstruct the true tree with high probability from se-
quences of polynomial length. Indeed, rfc methods also
operate by producing a set of trees, one for each set-
ting of the unknown but necessary parameter, and then
select a tree from the set. Because their selection proce-
dure has no performance guarantees, these methods are
not statistically consistent, much less afc. For example,
the HGT method [4] or its heuristic modification [5],
the CGG method [3], and DCM with neighbor-joining
or with the Agarwala method (see [12]), all use heuris-
tics (with no performance guarantees) to select the best
tree. The existence of a selection criterion with perfor-
mance guarantees is thus a crucial ingredient in produc-
ing afc methods, prompting us to define the following
problem.

True Tree Selection Problem:

• Input: A set S of sequences over the nu-
cleotide alphabet {A,C, T, G} generated by an
unknown GM model tree (T,M) and a collec-
tion T = {T1, T2, . . . , Tp} of phylogenies on S.

• Output: The true tree T if T is in T

In order for an algorithm for True Tree Selection
to be useful in producing afc methods, it must itself
demonstrate a form of absolute fast convergence.

Definition 5. An algorithm Φ for True Tree Se-
lection is absolute fast-converging under the GM
model if, for all f, g, ε > 0, there is a polynomial p such
that, for all model trees (T,M) ∈ GMf,g and for all sets
S a set of sequences generated on (T,M) of length at
least p(|S|), T ∈ T implies Pr[Φ(S, T ) = T ] > 1− ε.

3 Short Quartet Support

We now present the Short Quartet Support (SQS)
method and prove that SQS is absolute fast-converging
for True Tree Selection under the GM model. We
begin with some notation and terminology. Let T be a
phylogeny on S. We denote by Q(T ) the set of quartets
on the leaves of T defined by T—i.e., quartet t is in
Q(T ) if and only if the subtree of T induced by the four
taxa of t equals t. T can be reconstructed from Q(T ) in
polynomial time [22].

Definition 6. For a given quartet q on taxa from S,
define diamD(q) as

diamD(q) = max{Di,j | {i, j} ⊂ q}

In other words, diamD(q) is the maximum GM distance
between the taxa of q. For Q, a fixed set of quartets,
given D we can define the set Qw = {q ∈ Q :
diamD(q) ≤ w}.

Definition 7. Let T be a fixed tree leaf-labelled by the
set S, Q a fixed set of quartets on S, and D the GM
distance matrix on S. The support of T with respect to
Q, denoted s(T,Q), is

max{l | (q ∈ Q and diamD(q) ≤ l) =⇒ q ∈ Q(T )}

Although we define the support of T with respect to
arbitrary sets Q and arbitrary ways of defining the
dissimilarity matrices, we will focus our attention on
matrices D and sets Q defined in particular ways:

Definition 8. Let D denote the GM corrected dis-
tances. We define Q to be the set of neighbor-joining
quartets on the fourtuples of leaves in S based upon
D. (Since neighbor-joining on quartets is identical to
the Four-Point Method (see [8]) on quartets, this is the
same as the set of quartet trees computed in [8, 9] and
other papers.)

We are now ready to present a high-level version of
the SQS method. The main theorem of this paper is
that SQS is absolute fast-converging under the General
Markov (GM) model.

Procedure SQS(T , S)

• For each set of four taxa from S, compute the
neighbor-joining quartet q; let Q be the set of
all such quartets.

• Return Ti ∈ T such that s(Ti,Q) is maximum;
if more than one such tree exists, return the
one with the smallest index i.



Theorem 3.1. SQS is absolute fast-converging under
the General Markov model. That is, for all f, g, ε > 0,
there is a polynomial p such that, for all (T,M) ∈ GMf,g

on set S of n sequences generated at random by T with
length at least p(n), we have

Pr[SQS(T , S) = T ] > 1− ε

for all T such that T ∈ T .

We postpone the proof of this theorem to Section 6.

4 Applications of SQS

4.1 Turning rfc Methods into afc Methods: An
alternative way of viewing rfc methods is that they
construct a set T of trees, one for each potential setting
of the parameter, then face the problem of selecting
the true tree from T . This is a relatively easy task if
the value for the parameter is known, but no general
solution has been found to the problem when the
parameter is unknown. SQS is designed to solve this
problem. In particular, SQS can be used with any rfc
method as a second phase, turning that method into an
afc method.

Definition 9. Let Φ be an rfc method. Define Φ∗ to
be the method obtained by using Φ to produce a set T of
trees and using SQS to choose a tree from T .

Theorem 4.1. If Φ is rfc, then Φ∗ is afc. The addi-
tional running time needed by Φ∗ is O(n4|T |).

4.2 DCM∗: Dramatically Reducing the Re-
quired Length: We describe a general-purpose tech-
nique for reducing the sequence length requirement
of statistically consistent phylogenetic methods. This
technique has two phases. The first phase is obtained
from the Disk-Covering Method of Huson et al. [12].
This phase takes as input a phylogenetic method Φ and
a set S of sequences generated under a model of evolu-
tion, and produces a collection T of trees. The second
phase of the technique uses the SQS selection procedure
to select the best tree from the set T .

This two-phase procedure, DCM∗, has very strong
theoretical performance guarantees. In particular, it
can be used to create afc methods. For example, if
the convergence rate of Φ is O(eO(max{λij})), then the
convergence rate of DCM∗-Φ is O(nO(g)), where g =
maxe λ(e), so that DCM∗-Φ is afc.

We call the first phase of the DCM method the
MaxClique method, since the dataset decomposition
technique is based upon computing maximal cliques in
a graph that we now define:

Definition 10. Let D be a dissimilarity matrix on the
set S, and let w ∈ R+ be given. The threshold graph

TG(D,w) has vertex set S and edges between those taxa
i, j such that Dij ≤ w. Formally: TG(D,w) = (S, Ew),
where Ew = {(i, j) | Dij ≤ w}.

In [12], it was proved that if D is additive, then the
threshold graph TG(D,w) is triangulated.

Definition 11. A graph G is triangulated if every
cycle in G of length at least four contains a chord (i.e.
a pair of non-sequential adjacent vertices).

Although our matrices will not in general be additive,
they will often be sufficiently close to additive (since
they are based upon statistically consistent estimators
of GM distances). The significance of this is that finding
maximal cliques (i.e. maximal subsets of vertices, every
pair of which are adjacent) in triangulated graph is
solvable in polynomial time, although hard for the
general case.

We describe the MaxClique procedure below.

Procedure MaxClique

• Input: The GM distance matrix D, a set S of
sequences generated on an unknown GM tree
(T,M), and a phylogenetic base method Φ.

• Output: A set T of trees on S obeying
Pr[T ∈ T ] > 1 − ε if the sequence length
exceeds p(|S|) (where p is a polynomial).

• Algorithm:
For each w ∈ Dij :

– Let Ew = {(i, j) | Dij ≤ w}. Con-
struct the threshold graph, TG(D,w) =
(S, Ew).

– If TG(D,w) is not connected, then let Tw

be the star tree (i.e., the tree with one
internal node attached to each of the n
leaves) and exit.

– Triangulate TG(D,w), minimizing
max{Dij | (i, j) added to (S, Ew)},
thus producing the triangulated graph
TG∗(D,w).

– Compute the maximal cliques
C1, C2, . . . , Cl of TG∗(D,w) (note
l ≤ n). For each i, 1 ≤ i ≤ l, let
ti = Φ(Ci).

– Merge the subtrees ti using the Strict
Consensus Merger [12]. Let Tw be the
resulting tree and exit.

Return T = {Tw | w ∈ {Dij}}.



Theorem 4.2. Assume (T,M) ∈ GMf,g, S a set of
sequences generated on T , D the GM distance matrix
for S, and ε > 0. If Φ is a phylogenetic method with
a convergence rate on tree T of O(eO(max{λij})), then
MaxClique-Φ is rfc.

A stronger version of this theorem, which shows an im-
provement in the convergence rate for all phylogenetic
methods whose sequence length requirements depend
upon the maximum evolutionary distance maxλij in
the tree, is provided in Section 6. Lemma 6.2 on the
conditions under which the Strict Consensus Merger is
guaranteed to yield the true tree appears in Section 6
as well, since it depends on terminology and theory de-
veloped in that section.

For any phylogenetic reconstruction method Φ, we
denote by DCM∗-Φ the method obtained by applying
this two-phase process:

• Phase 1: Given phylogenetic method Φ, set S of
sequences generated on an unknown GM tree, and
the GM distance matrix D, compute the set T of
trees on S using MaxClique-Φ.

• Phase 2: Compute Q, the set of neighbor-
joining quartets on S, based upon D, then return
SQS(T ,Q).

Theorem 4.3. Let (T,M) ∈ GMf,g, S a set of se-
quences generated on T , D the GM distance matrix for
S, and let ε > 0 be given. If Φ is a phylogenetic method
with convergence rate on tree T bounded from above by
O(eO(max{λij})), then DCM∗-Φ is afc.

Proof. Follows from Theorem 4.2 and Theorem 3.1.

4.3 WIGWAM: New rfc and afc methods: This
general two-phase structure for afc methods can be
used to design new afc methods. We present such
a method, which we call the WeIGhted Witness-
Antiwitness Method (WIGWAM). WIGWAM runs in
polynomial time, is afc, and by design produces a bi-
nary tree on every input; hence, it improves upon some
afc methods that tend to return unresolved trees. WIG-
WAM considers all quartets, but weighs them accord-
ing to their statistical support (as indicated by diamD);
consequently, it should have better performance than
quartet methods that do not distinguish between quar-
tets [20].

WIGWAM is a modification of an earlier afc method
called the Witness-Antiwitness Method (WAM) [9]. We
therefore present the WAM method first, and then
show how WIGWAM differs from WAM. The proof that
WIGWAM is afc is slightly more complicated than the
proof for WAM but is quite similar. Due to space

limitations, we will only suggest how the proof goes;
see [9] for the proof that WAM is afc.

WAM has two phases. In the first phase, it uses
an algorithm called WATC (Witness-Antiwitness Tree
Construction) to compute a set T of trees, one for each
setting of the parameter w (quartet width). In the
second phase, it selects a tree from T as the true tree.
The technique used to construct T is provably rfc and
that used to select the tree from T , while different from
SQS, is provably afc, so that WAM is afc.

WIGWAM differs from WAM in the implementa-
tion of the first phase and then uses SQS to select the
best tree from T . We will focus therefore on describing
WATC and show how our version (WIGWATC) oper-
ates.

Recall that S is the set of sequences generated on an
unknown GM model tree, D is the GM distance matrix,
and Q is the set of NJ quartet trees computed using the
GM matrix. Finally, recall that for q ∈ Q, diamD(q) is
the maximum GM distance between the leaves of q. We
take the following definition from [9]:

Definition 12. Let e be an internal edge of T and
assume that the removal of e (and its endpoints) from
T decomposes T into four subtrees, two of which are T1

and T2. A quartet {ab|cd} ∈ Q is a witness for the
siblinghood of T1 and T2 if we have a ∈ T1, b ∈ T2

and c, d ∈ T − (T1 ∪ T2). A quartet {ef |gh} ∈ Q is
an antiwitness for the siblinghood of T1 and T2 if we
have e ∈ T1, g ∈ T2 and f, h ∈ T − (T1 ∪ T2). A
w-witness (w-antiwitness) is a witness (anti-witness) q
obeying diamD(q) ≤ w.

WATC takes as input the GM dissimilarity matrix D
and a parameter w and proceeds like neighbor-joining,
in that it constructs the tree from the “outside-in.”
Initially every leaf is its own rooted subtree. WATC
then repeatedly pairs two rooted subtrees until there
are only three subtrees left, at which point the three
rooted subtrees are joined into a star. The resulting
unrooted tree is the output of WATC. WATC chooses
two subtrees to pair from a list of candidates—any
candidate can be chosen; two rooted subtrees t and t′

are candidates for pairing if and only if there is a w-
witness and no w-antiwitness to their siblinghood. If
no candidate pair can be found at some stage, WATC
returns the star-tree and exits; otherwise WATC will
return an unrooted binary tree. This simple technique
is provably rfc [9].

Our modified technique, WIGWATC, uses two sep-
arate diameter bounds, one (W ) for witnesses and one
(A) for antiwitnesses. Two subtrees are then candidates
for pairing only when there is at least a W -witness and
no A-antiwitness. Unlike WATC, which picks an arbi-



trary candidate, WIGWATC chooses the “best” candi-
date pair—that which has the least evidence against its
pairing. Formally, WIGWAM ranks antiwitnesses ac-
cording to their diameter, with the antiwitness of least
diameter (the “shortest” antiwitness) having the most
importance; WIGWAM then selects the candidate pair
(i.e. pair of subtrees which are candidates) to maximize
the diameter of its shortest antiwitness.

We describe WIGWATC and WIGWAM below.

Procedure WIGWATC:

• Input: Two diameter bounds W and A, and
the input given to WIGWAM, i.e. a set S of
taxa, a set Q of quartet trees (that includes a
quartet on every four taxa in the set S), and
a dissimilarity matrix D on S.

• Start with each taxon defining a subtree.

• While at least four subtrees remain do:

– Form the graph G on the set of subtrees
(one vertex per subtree), where two ver-
tices are joined by an edge if the corre-
sponding pair of subtrees has at least one
W -witness and no A-antiwitness; define
the cost of each edge to be the reciprocal
of the diameter of the shortest antiwit-
ness for that edge, 0 otherwise.

– If no edge is created, return failure.
– Choose the edge of least cost, merge its

two endpoints and the two corresponding
subtrees, and update edge costs as neces-
sary (the merging may eliminate antiwit-
nesses for other edges).

• Merge the remaining trees in the obvious way
and return the resulting binary tree.

The difficult part of WIGWAM is to identify suit-
able values for W and A such that the tree returned for
these values is the true the true tree. In its simplest
form, WIGWAM searches (nearly) linearly through all
O(n2) possible values of quartet diameters for each of
the parameters. Roughly speaking, it starts with a
value w for W that ensures that the threshold graph
TG(D,w) is connected, then steps through values ei-
ther one at a time (when the support of the tree re-
turned is not as good as the current diameter) or by
skipping over an entire range of values (when the sup-
port is larger than the current diameter). The key to
the procedure is the updating of the threshold for an-
tiwitnesses in terms of the level of support for the last

tree generated. Once a certain level of support l has
been reached, no antiwitness of diameter less than or
equal to l is tolerated—the new tree under construction
is forced to agree with all quartets of diameter less than
or equal to l. This constraint may prevent the build-
ing of a tree, but note that the next iteration, with an
unchanged value for support, but a larger threshold for
witnesses, may find new candidates that were unavail-
able at the current iteration and thus may succeed in a
building a tree that obeys the constraints. Since a tree
that obeys all short quartets is the true tree, WIGWAM
eventually produces a true tree if given all of its short
quartets. WIGWAM is typical of rfc methods in that
it returns a collection of trees, up to one per value of
the parameter (here the threshold on the diameter of
quartets), but our support-based mechanism incorpo-
rates the SQS principle directly into the procedure, so
that WIGWAM is afc.

Procedure WIGWAM

• Input: A set S of taxa, a set Q of quartet
trees (that includes a quartet on every four
taxa in the set S), and a dissimilarity matrix
D on S.

• Compute the smallest diameter d such that
the initial threshold graph TG (with one node
for each taxon) for (D, d) is connected. Set
W = d and A = 0.

• Repeat until W equals the largest value in D:

– Call WIGWATC with parameters W and
A.

– If WIGWATC returns failure, increase W
to the next larger value in Dij .

– Otherwise compute the support
s(T,QW ) of the returned tree T with
respect to the set QW of quartets and set
A = s(T,QW ). If the support is larger
than W , set W = s(T,QW ); otherwise
increase W to the next larger value in
Dij .

Correctness follows from the fact that if s(T,QW ) =
s0 ≥ W , then a tree with support at least s0 can be built
by WIGWATC for each threshold value from W to s0.

5 Conclusions

We have introduced the concept of relative vs. absolute
fast convergence and its associated problem True Tree
Selection. We have given a simple, polynomial-time
technique, SQS, for solving this problem, a technique



that turns rfc methods into afc methods and that can
be used, particularly in conjunction with the DCM
method, for designing new afc methods. As an example,
we have introduced a new afc method, WIGWAM,
which uses SQS to select its tree.

There is significant experimental evidence that the
technique used to select the best tree from the set T
has a dramatic impact on the topological accuracy of
the tree returned in phase II. For example, the stud-
ies by Csűrös and Kao on their rfc method HGT [5]
and by Huson et al. on their rfc method DCM-NJ [12]
both showed that, under some conditions, the set T
could contain the true tree or a very close approximation
thereof, but that T also contained trees with topological
error rates higher than 50%. Thus, designing methods
with provable performance guarantees is extremely im-
portant, both from a theoretical and a practical point
of view.

We note that the set T does not need to contain a
tree for each setting of its unknown parameter. In [9],
Erdős et al. presented a technique called sparse-high for
use with their fast-converging WAM, a technique which
only requires computing a small number of trees. Hence
rfc methods need not be computationally intensive.

Our results prompt new questions: are there other
afc methods for True Tree Selection? In particular,
is maximum likelihood (MLE) such a method (see, e.g.,
[18] for overview)? Are there generic techniques for
speeding up SQS? (Existing methods such the sparse
high search mentioned above are very much tailored to
the base phylogenetic method.)

6 Proofs

We prove Theorem 3.1, and provide a stronger version
of Theorem 4.2.
Theorem 3.1. The SQS Procedure is absolute fast-
converging under the GM model.

Our proof proceeds by first establishing a condition
under which we have s(T,Q) > s(T ′,Q) for all T ′ 6= T .
We then show that this condition holds with probability
1−ε from sequences of length bounded by a polynomial
in n, for fixed f, g, ε > 0. Since the SQS procedure does
not consider the values of f or g, this will prove that it
is afc.

Let (T,M) ∈ GMf,g be a given GM tree. Recall
that {λij} denotes the matrix of true evolutionary
distances leaves the taxa in S. Let S be a set of
taxa generated by T at the leaves of T , and let Dij

be the GM corrected distance between i and j. As
mentioned earlier, for all i, j, Dij converges to λij as
the sequence length k increases. Recall that Q denotes
the set of neighbor-joining quartets computed on all
fourtuples of leaves from S and that diamλ(q) denotes

max{λij | {i, j} ⊂ q}.
We define various quantities with respect to the

two matrices, {λij} and {Dij}. For each internal edge
e ∈ E(T ), the deletion of e from T breaks T into four
subtrees, T1, T2, T3, T4. Set

wλ(e) = min{diamλ(a1, a2, a3, a4)},

where the minimum is taken over all fourtuples
(a1, a2, a3, a4) with ai a leaf in Ti, i = 1, 2, 3, 4.
The short quartets around e are formed from taxa
a1, a2, a3, a4 with ai ∈ Ti, so as to minimize
diamλ(a1, a2, a3, a4). Set wλ(T ) = maxe wλ(e).

Definition 13. The set of short quartet trees of the
tree T , denoted Q∗

short(T ), is the set of true trees (i.e.,
subtrees of the true tree T ) on those fourtuples of S
obeying diamλ(q) ≤ wλ(T ).

Our interest in short quartets is based upon the
following theorem that was established in [6]:

Lemma 6.1. Let (T,w) be a fixed edge-weighted tree
leaf-labelled by S and let T ′ be another tree leaf-labelled
by S. If we have Q∗

short(T ) ⊆ Q(T ′), then T equals T ′.

In the definition of the DCM∗ method, we stated that
subtrees on maximal cliques are computed and then
merged using a technique called the Strict Consensus
Merger. This technique is roughly as follows (see [12] for
details): merge the trees computed in a pairwise fashion,
until all the subtrees are merged into a single tree on
the full set of taxa. During each merger, contract,
if necessary, a minimum number of edges in order to
make the pair of trees agree on the subtrees induced
by their common leaf sets, before merging the trees.
(The order in which subtrees are merged matters, and
follows the perfect elimination ordering given for the
triangulation of the threshold graph; see [12] for details).
We now characterize the conditions under which the
strict consensus merger is guaranteed to be correct.

Lemma 6.2. Let (T,w) be an edge-weighted tree on leaf
set S and let G be a triangulated graph on vertex set S
such that each short quartet of T induces a four-clique
in G. Assume that, for each maximal clique C of G,
we have the true tree tC induced in T by C. Then the
Strict Consensus Merger of the trees tC produces T .

Proof. The proof of Theorem 4 in [12] proves this as-
sertion when the trees on maximal cliques are obtained
by using the Buneman Tree method; however, the proof
of that theorem does not depend upon the use of the
Buneman Tree method, but only upon the trees being
correct. Consequently, this lemma can be proved using
the same proof.



Recall that for a fixed set Q of quartets, Qw is the set
of quartets q ∈ Q obeying diamD(q) ≤ w.

Definition 14. The width of T with respect to D is
wD(T ) = max{diamD(q) | q ∈ Q∗

short(T )}.

(In words, wD(T ) is the maximum GM corrected dis-
tance between any two leaves i, j that appear in a short
quartet of T .) Note that membership in a short quar-
tet depends upon the true distance λ, but that wD(q) is
based upon the GM corrected distance matrix D. Let
(T,M) be a GM tree, with D the GM corrected distance
matrix, and let λ denote the true distance matrix. We
define

L(q)
∞ (D,λ) = max{|Dij − λij | : min{Dij , λij} ≤ q}

We continue with a lemma established in [8].

Lemma 6.3. If we have L
(w)
∞ (D,λ) < f/2, then

neighbor-joining will return the correct tree for every
quartet q with diamD(q) ≤ w.

Now the following lemma follows easily.

Lemma 6.4. If L
(w)
∞ (D,λ) < f/2, then s(T,Q) ≥ w.

Proof. If L
(w)
∞ (D,λ) < f/2, then Qw ⊆ Q(T ), and

s(T,Q) ≥ w.

We can now prove:

Corollary 6.1. If L
(wD(T ))
∞ (D,λ) < f/2, then we

have s(T ′,Q) ≥ wD(T ) if and only if T ′ equals T .

Proof. Follows from Lemma 6.4 and Lemma 6.1.

We are now ready to state the condition under which
the SQS procedure is guaranteed to be correct.

Theorem 6.1. Set (T,M) ∈ GMf,g, S the set of se-
quences generated on T , and D the GM distance matrix
defined on S. Let Q denote the set of neighbor-joining
quartets on S based on D. If we have L

(wD(T ))
∞ (D,λ) <

f/2, then also we have s(T,Q) > s(T ′,Q) for all
T 6= T ′.

Proof. Follows from Corollary 6.1.

We now analyze the sequence length that suffices for the
above condition to hold with high probability.

Lemma 6.5. Let (T,M) ∈ GMf,g and let ε > 0 be an
arbitrary constant. Let D be the GM corrected distance
matrix defined on a set of sequences generated on T .
Then there is a constant c > 0 such that, if the sequence
length k exceeds c · nO(g), then we have

Pr[L(wD(T ))
∞ (D,λ) < f/2] > 1− ε

Proof. Proof omitted due to space constraints, but
follows from results in [12].

This concludes the proof that SQS is fast-converging
under the GM model (proof of Theorem 3.1).

We now provide the stronger version of Theorem
4.2. from which Theorem 4.2 follows as a special case.

Theorem 6.2. Let (T,M) ∈ GMf,g, S a set of se-
quences generated on T , and D the GM distance matrix
for S. Let ε > 0 be given and assume that Φ is a phylo-
genetic method with convergence rate on tree T bounded
from above by F (max{λij}) for some function F . Then
DCM∗-Φ converges from sequences of length bounded by
F (O(wλ(T )). Consequently, if F (x) is O(eO(x)), then
DCM∗-M is afc.

Proof. (Sketch:) The tree TwD
computed by the Max-

Clique method is based upon the base method applied to
subproblems of maximum GM distance wD. When the
sequences are of polynomial length, these subproblems
have maximum true distance bounded by O(wλ). Thus,
the convergence rate bound for the method M guaran-
tees that M is accurate on each subproblem with high
probability if the sequence length is at least F (O(wλ)),
the maximum evolutionary distance in each subprob-
lem.

The threshold graph contains TG(D,wD(T )), so
that every short quartet induces a four-clique in the
triangulation of this graph. Thus, since each subtree
is correctly reconstructed, Lemma 6.2 implies that the
strict consensus merger produces the true tree, proving
the first assertion.

Finally, if F (x) is O(eO(x)), then DCM∗-M con-
verges from sequences of length at most O(eO(wλ(T ))).
In [9], wλ(T ) was established to be bounded by
O(g log n), from which the result follows.
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