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Abstract

We present new methods for reconstructing reticulate &eolwf species due to events such as
horizontal transfer or hybrid speciation; both methodsta®ed upon extensions of Wayne Maddison’s
approach in his seminal 1997 paper. Our first method is a patyal time algorithm for constructing
phylogenetic networks from two gene trees contained intsideetwork. We allow the network to have
an arbitrary number of reticulations, but we limit the ratation in the network so that the cycles in
network are node-disjoint (“galled”). Our second methaa [lynomial time algorithm for constructing
networks with one reticulation, where we allow for errorghie estimated gene trees. Using simulations,

we demonstrate improved performance of this method ovér HetghborNet and Maddison’s method.

1 Introduction

The motivation for this paper is the problem of reconstngticcurate evolutionary history in the presence
of reticulation events, such as hybrid speciation (whegamisms hybridize and create new species), or

horizontal transfer (via hybridization or viral transmas for example). Both types of reticulation events
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are sufficiently common to be of serious concern to systetsatiybrid speciation is common in some very
large groups of organisms: plants, fish, amphibians, and/tireeages of invertebrates, and horizontal gene
transfer appears to be very common in bacteria [13] with fderxels being evident in many multicellular
groups. Such evolutionary histories cannot be adequaggsesented using trees; instead, phylogenetic
networks (which are basically directed acyclic graphs ptediwith time constraints) are used.

Several methods are currently used to build phylogenetizaré&s from gene datasets, although not all
methods were designed for this purpose; of these, Neighdidsi} Bryant and Moulton [5] and a method
by Wayne Maddison [14] are the most relevant to this paperigit®rNet uses a “combined analysis”
approach because it combines sequence datasets by caticaieand then seeks the phylogenetic network
on the basis of the distance matrix produced by the combiaéakdt. Maddison, on the other hand, uses
a separate analysis where the network can be reconstrugtécstinferring individual gene trees from
separate sequence datasets, and then reconciling thenteeasetwork.

In this paper we consider the inference of “gt-networks' (fpalled tree” networks, which is the termi-
nology used in [10]); these are phylogenetic networks inclwhigticulation events are constrained so as to
be evolutionarily independent of each other (see [10] fapkobical justification of the model). This model
was first introduced by Wangt al. [23], and later formalized and further pursued by Gusfetldl. [10].

We present polynomial time algorithms that provably retmts accurate phylogenetic networks, pro-
vided that accurate gene trees can be obtained. We alsoppeggnomial time algorithms for reconstruct-
ing phylogenetic networks from inaccurate gene trees, amdemonstrate the improvement in accuracy of
these methods over two previous methods for phylogenetigank reconstruction in simulation.

The rest of the paper is organized as follows. In Section 2 nefly describe phylogenetic networks,
including the definition of gt-networks. In Section 3, wedfly describe two of the evolutionary events
that necessitate the use of phylogenetic networks; we algew Maddison’s approach and discuss its
limitations. In Section 4 we present our efficient algoritfion reconciling accurate gene trees into a gt-
network. In Section 5, we present a linear time algorithmtlf@ following combinatorial problem: given
two treest; andt,, does there exist a pair of tre€s and’5; refiningt; andt,, respectively, such that, and
T, are the two induced trees in a gt-network with one reticoieti We show how to use this algorithm for

reconstructing phylogenetic networks in practice in $gc8. In Section 7 we summarize the results of a



simulation study comparing the performance of this methddch we call $NET, for “Species Network”)

to NeighborNet. We close in Section 8 with final remarks amddions for future research.

2 Networks and gt-Networks

2.1 Background
2.1.1 Graph-theoretic definitions

Given a (directed) grapty, E(G) denotes the set of (directed) edgestotand V (G) denotes the set of
nodes ofG. We write (u, v) to denote a directed edge from nodéo nodev, in which caseu is thetail, v
theheadof the edge, and is aparentof v. Theindegreeof a nodev is the number of edges whose head is
v, while theoutdegreeof v is the number of edges whose taikisA directed path of lengttk from u to v
in G is a sequencagu - - - ux of nodes withu = ug, v = ug, andVi, 1 < i < k, (u;—1,u;) € E(G); we
say thatu is the tail ofp andwv is the head op.

Nodevw is reachablefrom « in GG, denotedu ~~ v, if there is a directed path i& from « to v; we then
also say that: is anancestorof v. Given a tre€l’ and a subsek’ of the leaves, we writd’|;/ to denote the
subtree obtained by restrictirf to leavesL’, i.e., by removing all leaves not if’ and all incident edges.
If X is a subtree of’, we denote byl" \ X the tree obtained by removing subtr&efrom 7.

We denote byL(T') the leaf-set of a tre@". If T is not binary, we call it arunresolvedtree. An
undirected pathp of lengthk betweenu andwv in a rooted tredl” is a sequencegu; - - - ux Of nodes with
u = ug, v = ug, andVi, 1 < i < k, either (u;—1,u;) or (u;, u;—1) is an edge ofl". If p is an undirected
path in treel” whose two endpoints areandv, we denote by’ N D(p) = (U, V') the two subtree§’ and
V' attached ta, andv, respectively, that do not contain any edges frorilVe usep to denote the path itself,

as well as the edges of the path.

2.1.2 Strict consensus and compatibility trees

Let T be a tree leaf-labeled by a s&bf taxa. Each edgein T" induces @ipartition 7(e) = {A(e)|B(e)}
on the setS, whereA(e) is the set of taxa “belowe, and B(e) is the set containing the rest of the taxa. We

denote byC'(T) the set of all bipartitions induced by trée



We say thate; and ey (and their associated bipartitions) avempatible denotede; = e, if there
exists a tre€l’ that induces bothr(e;) andw(e2). A setC of bipartitions is compatible if it is pairwise
compatible; i.e., every two bipartitions, c; € C are compatible. Two treés and7; are compatible if the
setC(T1) U C(T>) of bipartitions is compatible. Two trees that are not coriyietare calledncongruent
trees

If we contract an edge iff’, thus identifying the endpoints of that edge, we obtain lagotreeT” on
the same leaf seff’ is then said taefineT’, andT” is said to be aontractionof 7. If T" is the result of
contracting a set of edges’in then todl™ is a contraction of”", andT is a refinement of”’.

A set of trees is compatible if the trees have a common refinenits minimal common refinement
(called thecompatibility tre@ is unique. For any set of trees, the maximally resolved comupontraction
(called thestrict consensus tr¢és also unique. Both the compatibility [9, 24] and strichseensus trees [6]
can be found irO(kn) time, where there ark trees on the same setwofleaves.

Given two treesl; andT5, the set/ (77, 7») contains all edges df; that are not compatible witfh;;
U(T,,T}) is defined similarly. Note then thd} and7; are compatible it/ (71, 1) = U(T3,T1) = 0.

If a tree’T” has a node» with indegree and outdegree one, we replace the two edgeleimdov by a

single edge; this operation dhis calledforced contraction

2.2 Phylogenetic networks

A phylogenetic networkv = (V| E) with a set. C V of n leaves, is a directed acyclic graph in which
exactly one node has no incoming edges (the root), and @t oitdes have either one incoming edge (tree
nodes) or two incoming edges (reticulation nodes). The sigdé have no outgoing edges. Tree edges are
those whose head is a tree node, and network edges are those idad is a reticulation node.

In this paper, we focus obinary networksi.e., networks in which the outdegree of a reticulationenod
is 1 and the outdegree of a tree node is 2. Further, all treekiaary, i.e., all nodes (except for the leaves)
have outdegree 2.

As discussed in [15], reticulation events impose time gait#ls on the phylogenetic network, which
we now briefly review. A phylogenetic network = (V, E) defines a partial order on the détof nodes.

Based on this partial order, we assign times to the nodég, afssociating time(«) with nodew. If there
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Figure 1: (a) A gallQQ whose coalescent and reticulation nodes:amndz respectively. (b) and (c) show
the two possible ways of “breaking” the g@ll to induce treeqd’ and7;, respectively. The marked edges
in 77 andT;, form RPY(T}) and RP%(T3), respectively.

is a directed pathp from nodeu to nodew, such thaip contains at least one tree edge, then we must have
t(u) < t(v) (in order to respect the time flow). K = (u,v) is a network edge, then we must have
t(u) = t(v) (because a reticulation event is, at the scale of evoluéinnnstantaneous process).

Given a networkV, we say thap is apositive-time directed pathhom u to v, if p is a directed path from
u to v, andp contains at least one tree edge. Given a netwérkwo nodes: andv cannot co-exist in time
if there exists a sequend@ = (p1, po, . . ., p) Of paths such that (1); is a positive-time directed path, for
everyl <i < k, (2) uis the tail ofp;, andwv is the head op;,, and (3) for everyl < i < k — 1, there exists
a reticulation node whose two parents are the heagd and the tail ofp; ;.

If two nodesu andv cannot co-exist in time, then they cannot be “involved” iretiaulation event. In
other wordsu andv cannot be the two parents of a hybrid (i.e., there does net exieticulation node
such that(u, w) and (v, w) are edges in the network), nor can there be a horizontal gansfér between
them (i.e., neitherw,v) nor (v,u) can be an edge in the network). This property is further dised

in [15, 14, 18].

2.3 gt-Networks

In this paper, we assume a biologically-motivated resdctlass of phylogenetic networks, callgt

networks proposed by Wangt al. [23] and Gusfieldet al. [10].

Definition 1 In a phylogenetic networky/, letw be a node that has two directed paths out of it that meet at



a reticulation noder. Those two directed paths together defimeticulation cycle Q. Nodew is called the

coalescent nodef ), andzx is thereticulation node of Q.

Definition 2 A reticulation cycle in a phylogenetic network that sharesindes with any other reticulation

cycle is called agall.

Definition 3 We denote by)Y a gall whose coalescent nodewdsand whose reticulation node is We
denote byE(QY) the set of all edges on galp; formally, E(QY) = {e : e is an edge on a directed path
fromw to x}. The selRE(QY) (for “reticulation edges”) denotes the edges whose head is., the edges

incident intozx.

When the context is clear, we simply writg¢ for a gall, without explicitly haming the coalescent and

reticulation nodes.
Definition 4 A phylogenetic network/ is called agt-network if every reticulation cycle is a gall.

Figure 1(a) shows a gt-network with a gall Q¥. The setE(QY) contains the edge@u, wy), (wi,u1),
(w,w2), (w2, u2), (u1,z), and(ug,x). The setRE(QY) contains the two edg€s:;, =) and(ug,z). Ob-
viously, gt-networks satisfy the synchronization propelt this paper, we assume that there is at least one
tree node on each of the two paths framto x in a gall Q¥ (otherwise, the network would violate the
synchronization property).

We breaka gallQ¥ by removing exactly one of the edges in the B&(QY).

Definition 5 AtreeT isinducedby a gt-networkV if T can be obtained fronV through one of the possible
ways of breaking all the galls iV, followed by forced contraction operations on all nodesnofegree and

outdegree 1.

Figures 1(b) and 1(c) show the two possible trees inducedhdygt-network/N in Figure 1(a). To obtain
the tree in Figure 1(b), the gall was broken by removing edgez) and applying forced contraction to
nodez; to obtain the tree in Figure 1(c), the gall was broken by rénwedge(us, x) and applying forced
contraction to node:. In general, given a networly with p reticulation nodes, we say that a tréeis
inducedby N if T can be obtained by removing exactly one of the two edges imgpmto each of the

reticulation nodes V.



Definition 6 LetQY be gall in a gt-networkV, with RE(Q) = {e1 = (u1,z),e2 = (u2,z)}. Further, let
wy be the parent ofi;, andw, be the parent ofi.. Assume tredy is obtained fromV by removing edge
e1, and treeTs is obtained fromNV by removing edge,. The two directed path® ~» w; andw ~» uq
together define a “reticulation path” iff}, and the two directed paths ~~ ws andw ~ u; together define

a “reticulation path” in T5.

Given a gt-network withm galls, there ar@™ possible ways of breaking the galls, and thus inducing a
tree. There is a direct correspondence between the edgemdad of a gt-networkvy and a tre¢/” induced
by N, and hence we talk about a node or edgé&’afi NV, or a node or edge d¥ in T (excluding the edges

in RE(Q) and the nodes removed by forced contraction).

Definition 7 We denote by P?(T') the reticulation path in T that results from breaking gall). The
marked edges in tre®, of Figure 1(b) form the reticulation patik P%(T}), and the marked edges in tree
T, of Figure 1(c) form the reticulation pat® P?(T3) (we also useRP¥(T) to denote the edges on the

reticulation path inT").

3 Reticulate Evolution

A phylogeny of a sef of organisms is a graphical representation of the evolutiosi, typically a rooted
binary tree, leaf-labelled by. However, events such as hybrid speciation and horizorgaé dgransfer
require non-tree models for accurate representationsoddigon.

In what follows we will assume that the individual gene datasre recombination-free (so that meiotic
recombination, or exchanges between sister chromosomes bt take place); this simplifies our analysis,
and allows us to assume that all gene evolution is tree-8Bkd 9, 25]. We also assume there are no gene
gains or losses in the network.

It is clear that trees are inappropriate graphical modelspetiesevolution when reticulation occurs,
though still appropriate fogeneevolution: in hybrid speciation, two lineages recombineteate a new
species, as symbolized in Figure 2(a), but genes evolve diegs contained in the network as shown in

Figures 2(b) and 2(c).
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Figure 2: Hybrid speciation: the species network in (a) antiwo induced (gene) trees in (b) and (c).
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Figure 3: Lateral gene transfer: the species network inr{d)is two induced (gene) trees in (b) and (c).
The tree in (b) models the evolutionary history of those gemeose alleles in specid3 were horizontally
transferred fromX. The tree in (c) models the evolutionary history of all gemdsch evolved through
lineal descent.

In lateral (i.e., horizontal) gene transfer, genetic matés transferred from one lineage to another with-
out resulting in the production of a new lineage, as symbedlim Figure 3(a). And, as in hybrid speciation,
each site evolves down a tree within the network; that is,eseites are inherited through lateral transfer

from another species, as in Figure 3(b), while all otherdrdrerited from the parent, as in Figure 3(c).

3.1 Maddison’s approach to phylogeny reconstruction

In 1997, Wayne Maddison [14] made an important observatibichvdirectly suggests a technique for re-
constructing phylogenetic networks, via a “separate aiglyapproach, which we now describe. Maddison
observed that when there is one reticulation in the netwibidge are two trees within the network, and
every gene evolves down one of these two gene trees. Morealign®addison suggested that a network
that contains multiple reticulations can be reconstrudteth its constituent gene trees. However, given
two gene trees, one can reconstruct a network with the sshallenber of reticulations which induces both

trees. Maddison’s observations imply the following metifmdconstructing phylogenetic networks:
e Step 1: For each gene dataset, infer a gene tree.
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e Step 2: If the two trees are identical, return that tree. Hlsd the minimum network that contains

both trees.

While Maddison showed how to perform Step 2 when the minimetwark contains a single reticulation,
he left open how to do Step 2 when the network contains moredha reticulation, which is a computational
limitation of Maddison’s approach.

The other limitation is potentially more serious: if the garees have errors in them, then the minimal
network that contains the gene trees may be incorrect. TdrerdMladdison’s method needs to be modified
to work with errors in the estimated gene trees.

In this paper we address both problems. In Section 4 we shantdnoeconstruct a gt-network with any
number of reticulations from accurate gene trees (underdditienal assumption about the network). In
Sections 5 and 6 we show how to reconstruct a network withglesieticulation from gene tree estimates

that need not be accurate. In our future work, we will ingzgt how to combine these approaches.

4 Reconstructing gt-Networks When Gene Tree Estimates are &urate

There are two main limitations to Maddison’s approach: (i) ¢onstruction of a network from two gene
trees is only described explicitly when the network cordaractly one reticulation; (2) obtaining accurate
binary trees in practice may not be possible in most caseshidrsection we address the first limitation
by showing how to accurately construct a gt-network, witly anmber of reticulations, from two of its
constituent gene trees. However, given two gene treesgiter® can hope for is to reconstruct the minimal
gt-network that contains both trees. This is but a refleaifd@ccam’s razor: in the absence of any additional
biological information, infer the network with the minimunumber of reticulation events that induces the
gene trees. We address the second limitation in the nexbvsect

We begin by characterizing networks in general, using thdehof [15], but with the added constraints

that

C there is at least one regular speciation event between angeticulation events, and that a species

does not become extinct immediately after a reticulaticenév



Graph-theoretically, these constraints imply that theratileast one tree node (whose two children are
also tree nodes) on the directed path between any two ratiimalnodes, and that if one of the two children
of a tree node is a reticulation node, then the other childtree node (see [15] for a discussion of the
ramifications of missing taxa on reconstructing networks)this case, we can obtain the following result

about the number of trees induced by, or contained insidetvaank withm reticulations.
Theorem 1 A species networky with m reticulation nodes induce®™ distinct trees.

Proof. We prove this by induction om. It is easy to see that a netwoMk with zero reticulations is a tree,
and hence induces one tree. Further, a netwonkith one reticulation induces two trees that differ in the
location of the subtree rooted at the reticulation node [Fsgares 2 and 3 for example). The only case where
a network with one reticulation induces only one tree happemen the reticulation cycle contains only two
nodes: the coalescent and reticulation nodes. Howevehjsrchse networkV violates the constraint
stated above.

Assume that any network with, reticulations induce&™ trees and consider a netwoMk with m + 1
reticulations. Letr be a reticulation node itV below which there are no other reticulation nodes. ket
andus be the two parents af. The nodeu; is a tree node, and has another chil@ sibling ofz), andus is
atree node, and has another childdifferent fromv and a sibling of). If we delete the edgeu;, =), then
the resulting networklN' hasm reticulations, and by the induction hypothedi&,induces2™ distinct trees,
where the subtree rooted:ais attached to node; in all these trees. If we delete the edge, =), then the
resulting network,N” hasm reticulations, and by the induction hypothes)! induces2™ distinct trees,
where the subtree rooted atis attached to node; in all these trees. Hence, we have two sets of trees,
each containin@™ distinct trees, and clearly the two sets are different, duthé location of the subtree
rooted atr. Again, the two sets of trees would be equivalent only in thgecwhere the reticulation cycle
of reticulation nodes: has (in addition tar) only one node, which is the coalescent node; however, & thi

case the network would violate the constrdinstated above. Therefore, we haét! distinct trees. O
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4.1 Efficient reconstruction of gt-networks from gene trees

Given a pair of trees induced by a gt-network, we reconstuntnimal (in terms of the number of reticula-
tion nodes) gt-network that induces these two trees. In ¥aflatvs, we show how to efficiently reconstruct
such a minimal network from a pair of trees. Hereafter, werusedenote the number of leaves in the trees

as well as in the networks.

4.1.1 Networks with a single reticulation event

In this section, we show how to construct a phylogenetic odtwvith a single reticulation event (i.e.,
a single-gall gt-network) from two incongruent inducedete Afterwards, we show how to extend the
techniques to reconstruct gt-networks with multiple géleconstructing general networks with multiple

reticulation events is still an open problem).

Theorem 2 LetT; andT5 be two incongruent trees induced by a netwdrkvith a single reticulation event.

The networkV can be reconstructed froffy andT5 in O(n) time.

To prove this theorem, we need a series of auxiliary results.

Lemmal Let7; and T, be two incongruent trees induced by a netwdfkwith a single gallQ¥. Then,

RPQ(Tl) - U(Tl,TQ), andRPQ(Tg) - U(TQ,Tl).

Proof: Let RP< be formed of the two paths; andp, whose tail isw. Further, assume; is the path
attached to edge; andps is the path attached t@, whereRE(Q) = {e1,e2}. Let X be the subtree rooted
at nodez, T1 be obtained by removing edge from @, and7» be obtained by removing edge from Q.
Then, inTj, the leaves ofX are under the edges pf but not under the edges pf, whereas ifls, the
leaves ofX are under the edges pf but not under the edges p§. Hence, the edges aRP?(T}) are
incompatible with the edges dtP%(T3), and vice versa. Therefore, we haké? (T1) C U (T}, T,) and
RPO(Ty) C U(Ty,Th). O

Definition 8 Let7 be a tree induced by a gt-netwoik. We denote by bW G(T") the set of all edges that
are not on any gall inV. Formally, NG(T) = {e € E(T) : forallgalls Q in N, e ¢ RP?(T)}.

11



Lemma 2 Let7) andT; be two incongruent trees induced by a single-gall gt-nekwér Then, NG(T7) N
U(T17T2) = @1 andNG(TQ) N U(Tg,Tl) = @

Proof: Assumee = (u,v) is an edge inNG(T1) N U(11,T>). Let A be the subtree df’ rooted atv.
Sincee € U(Ty,T>), then, for some edg€ = (u/,v’) in Tz, L(A) N L(B) # 0, whereB is the subtree
of T rooted atv’. Let X = L(A) \ (L(A) N L(B)). Then, in tre€Ty, X is under edge, and in tre€ls,
X is not under edge’. Hence, edges ande’ are members of?(Q) for some gallQ; a contradiction that

e € NG(Ty). Therefore NG(T1) N U (T, Ts) = 0; similarly, we prove thalVNG(T>) N U (T2, T1) = 0. O

Proof: (of Theorem 2) From Lemmas 1 and 2 it follows thaflifandT’; are two incongruent trees induced
by a single-gall gt-networkV, thenU (73, T,) forms a simple path, in 73 andU (73, T} ) forms a simple
pathp, in Ty. If this condition holds, we further test whether there ex& subtred” whose root in7} is
attached to an endpoint pf, and whose root ifl; is attached to an endpoint pf. If so, T} andT, are
induced by a gt-networl’ with a single gallQ, and there exists an edge Mfrom z to the root of7” (N

is formed fromT7, by adding an edge to the root 6f from the other endpoint gf;). If such7”’ does not
exist, then the two trees are not induced by a single-gaikgiivork. We now show how this can be achieved
in O(n) time.

Preprocess the trees so that:

1. For every two leaves; ands; in either tree, the least common ancestor (LCA) of these aawds

can be found in constant time. This can be achieved(in) time using the techniques from [12, 4].

2. For any internal node), the numbef3(v) of leaves below can be found in constant time. Further, if

S, is the set of leaves undey thenLC'A(S,,) can be found in constant time.

This can be achieved i®(n) time using the techniques from [6]. After this preprocegsioomputing
U(T1,T>) andU (T», T1) takesO(n) time (O(1) time for each edge, and there &é¢n) edges). This can be
done by observing that an edge= (u,v) isinU (11, T5) if and only if 5(v) # B(LCA(Sy)). It takesO(n)
time to check ifU (T}, T,) forms a simple path. Further, since there are at most fouresgconnected to
the endpoints of each simple pathlinandT?, it takesO(n) time to test the existence of subtrg it is one

of the (at most) four subtrees attached to the endpointsedithple path. Hence, the single-gall gt-network

12



can be reconstructed @(n) time. O

4.1.2 gt-Networks with multiple reticulation events

We now describe the more general case of multiple retianativents, yet still for gt-networks. The intuition
behind our algorithm is as follows. Given two tréEBsandT5, induced by a gt-networky, we first “mark”
the edges of each tree that are incompatible with the otker tf breaking differentlyn galls in N and
similarly the remaining galls results in two tre@€s and 75, thenU (71, T%) andU (1»,T1) form m node-
disjoint paths in each of the two tre@% and15, respectively.

While necessary, this condition is not sufficient; an extepss needed, in which, for each maximal
pathp; of marked edges iff, there must exist a unique maximal pathof marked edges ifi,, where the

endpoints of the two paths correspond to one reticulati@miev

Lemma 3 Let 77 and T, be two trees induced by a gt-netwoMk. Further, assume that galf) in N
was broken in exactly the same way to obtain bBthand 7. Then,RP?(Ty) N U(T1,T) = 0, and
RPO(Ty) NU(Ty, T1) = 0.

Proof: Since the gall) is broken in exactly the same way to obtain the two tfBeandTs, it follows that
the edges o P?(T}) induce the same bipartitions as those induced by the edge®@e{ 7). Hence, the
edges ofRP?(Ty) and RP?(T») are mutually compatible. Further, the edgesa?? (7)) are compatible
with E(Ty) \ RP?(T); otherwise, the network/ would not be a gt-network (there would be two “overlap-
ping” galls). Similarly, the edges @t P¥(T;) are compatible witiZ(Ty) \ RP?(T). Therefore, it follows
that RP?(Ty) NU(Ty,Ts) =  andRP?(T) N U(Ts, Ty) = 0. O

Theorem 3 Let N be a gt-network witly galls {Q1, Q2, ..., Q4}, andT; and T be two trees induced by
N. Further, assume that exactly of theq galls were broken in the two possible ways to obtain the teesr
Ty and Ty, and the other; — m galls were each broken similarly. Theli(T},7,) formsm node-disjoint

undirected paths iffy, andU (1%, T1 ) formsm node-disjoint undirected paths .

13



The proof follows immediately from Lemma 1, Lemma 3, and LesrZnand is omitted.

Let 77 andT’ be two trees induces by a gt-netwakk such that/ (77, 7%) forms a set of node-disjoint
undirected paths iff}, andU (T3, T7) forms a set of node-disjoint undirected paths/in Letp; be one
such path inJ (71, T5), andp, be one such path (75, 7}). Further, assum&N D(p,) = (U1, V1) and
END(p2) = (U2, V2).

Definition 9 We say thap, yields p, in one rSPR move(via subtreeX), denotedp; =% ps, if there exists

a nonempty subtre& such that
1. X is a subtree of eithet/; or V7,
2. X is a subtree of eithet/; or V5, and
3. ;i NU(TY,T) = 0andp, NU(Ty,T7) =0, whereT] =T \ X andTy = T» \ X.

Theorem 4 LetT; and T, be two trees induced by a gt-netwakk Further, assume thdt (77, 73) forms
a setP; of m node-disjoint undirected pathsg, pi, ..., pl in 71, andU(T», T) forms a set?, of m node-
disjoint undirected pathg?, p3, ..., p2, in Ty. Then, the smallest number of gallsMis m if there is an
injective functionf : P, — P, andm subtreesXy, Xy, ..., X,,, such thatf (p;) = p7 iff p} =X p3, where

1<, <m.

Proof: Let P, and P, be the two sets of paths in the lemma, andflée the injective function. Lei} € P,
andp? € P, be two paths such that(p;) = f(p3). AssumeX; is the subtree such tha} =X p2. Then,
X, is the subtree whose pruning frafh and regrafting it to another edge (to obtain tie¢ yielded paths
i andpf in the two trees, respectively. Since therearsuch pairs of paths, there aresuch subtreeX;
whose pruning and regrafting ify would yield a tre€l” such that/ (71, 7:) = 0, which impliesT = T;.

Hence, the smallest number of gallsihis m. O
The result we obtained in Theorem 4 is related to resultsimdadaby Gusfield and Hickerson [11]

and Bafna and Bansal [2] concerning the minimum number afmdxnation events needed to explain the

evolutionary history of a set of sequences
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Theorem 5 Let7; andT5 be two binary trees on leaves. We can decide whether there exists a gt-network
inducingT} andT», and then construct a minimal such gt-network{ifvnn) time, wheren is the smallest

number of reticulations in any gt-network containing the tirees.

Proof: Using the techniques described in the proof of Theorem 2,amecomputd/ (71, 75), U(1»,T1),
check whether they form simple paths, and test for the cimmditof Theorems 3 and 4 all {i(n) time. We
can findf (p}), if it exists, inO(1) time, by using the “highest” node of pag and finding its counterpart
in T; to find that subtreeX; such thap! =% pjz-, we need to compute the four pairwise intersections of
asetinEND(p}) and a set inEN D(p?), each of which take®(n) time, using bit vector representation
of sets. Hence, we can decide whetfigrandT; are induced by a gt-network, with minimal numberof
reticulation events (galls), i@ (mn) time.

By Theorem 5, we can find the subtreeq X1, ..., X,,}, such thap} =%i p?, for 1 < i < m, where
p} is a path inU(T1,Ty), p? is a path inU(Ty,Ty), and f(p}) = p? (f is the injective function in the
definition of =X). All this can be done i (mn) time. We form the gt-networkV from 7} as follows. For
each pattp} in U(Ty,T) and its corresponding subtrég, X; will be attached to one end of. We add
another edge from the other endgfto the root ofX;, thus creating a network with m galls. Since the

paths are node-disjointy will be a gt-network. d

5 Reconstructing gt-Networks When Gene Tree Estimates arenaccurate

The main limiting factor in Maddison’s approach is that noetk, even if statistically consistent, can fail to
recover the true tree. Even on quite long sequences, sormegigal error is often present. This topological
error can be tolerated in a phylogenetic analysis, but itesdke inference of phylogenetic networks from
constituent gene trees difficult. To overcome these limitspropose a method that allows for error in the
estimates of the individual gene trees; consequently, athod performs much better in practice (as our
simulation studies show).

Before we describe the method, we provide some insight iatddsign. When methods such as maxi-

mum parsimony or maximum likelihood are used to infer trégscally many trees are returned, rather than
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a single best tree. For example, in maximum parsimony sesy@specially with larger datasets, there are
often many equally good trees (all having the same best scoréd all can be returned (along with subopti-
mal trees, if desired). In maximum likelihood, although best-scoring tree may be unique, the difference
in quality between that tree and the next best tree(s) catabistially insignificant, and so again, a number
of trees can be returned [21]. A common output of a phylodersetalysis is the strict consensus of these
trees (that is, the most resolved common contraction ohalbest trees found).

The interesting, and highly relevant, point here is theofgihg observation, supported by both empirical
studies on real datasets and simulatidhs: strict consensus tree will often be a contraction of the tree
Thus, even when every tree in the set of best trees is a littlerong, the strict consensus tree (which
contains only those edges common to all the best trees)ely ltk be a contraction of the true tree. This
observation suggests the following approach to inferringgmenetic networks.

e Proposed Approach
e Step 1: For each gene dataset, use a method (such as maximum parommaximum likelihood)
of choice, to construct a set of “best” trees, thus produsetgZ; and7;.
e Step 2: Compute the strict consensus tteéor 7;, fori = 1, 2.
e Step 3:Find treesl; and7; refiningt; andty such thatl; refinest; for eachi = 1,2, andT; and7s

are induced trees within a gt-network wijtlreticulations, for some minimum

Whenp = 0, the two consensus trees are compatible, and we would rétercompatibility tree; see
Section 2.1. We now show how to handle the third step in thithatkwhenp = 1 (solving this for general

p is currently an open problem). In this case, Step 3 involedgrgy the following problem.

e Combining consensus trees into a networkthe ConsTree-Network Problem)

— Input: Two treest, andts, on the same set of leaves (not assumed to be binary)

— Output: A network N inducing treesl; and75, such thatN contains one reticulation, arig

refinest;, for i = 1, 2, if it exists; elsefail.

We now provide a linear-time algorithm for this problem. Téare two cases to consider: when the

two consensus trees are compatible, and when the two tre@scampatible.
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5.1 Compatible consensus trees

In most cases, if the consensus trees share a common refinemeemight believe the evolution to be

tree-like (in which case we should combine the datasets,aaatyze a tree directly). However, suppose
we have reason to believe that a dataset has undergoneatbicu so that a tree is not an appropriate
representation of the true tree. In this case, we can sk seticulate evolutionary scenarios compatible

with our observations. We begin with a simple lemma.

Observation 1 LetT be a binary tree that refines an unresolved tteand letp be a path in treel’. Then,

when restricted to the edgesi#b forms a path int as well.

Lemma 4 Lett be an unresolved tree. Then, there exist two distinct bitralgsT; and 715 that refinet and

such thatl}; and 75 are induced by a network with a single reticulation.

Proof: Letx be a node with outdegree 3, anddetv,, andvs be the three children of node We obtaini;
from ¢ by removing the edges;, v1) and(z, v2), adding a new node with an edggz, »), and then making
v; and vy children ofu. The treeTs can be obtained from by removing the edgege, v2) and (x, v3),
adding a new node with an edge(z, v), and then making, andwvs children ofu. The rest of the nodes
of T andT5 are resolved identically in both trees. It is obvious thatan be obtained frorif; by pruning
vy from its parent and attaching it to edge vs) in 71, and hencd; and7; are induced by a network with

one reticulation. O

Lemma 4 can be generalized to the case whemndt, are two unresolved, yet compatible trees, as

follows.

Lemmab5 Let¢; andt, be two compatible unresolved trees. Then, there exist tnarpitrees’; and 75
that refinet; andt, respectively, and’ and1; are induced by a network with a single reticulation if and
only if £, andt; have a common refinementhat is not fully resolved. Furthermore, we can determine if

these two trees exist, and construct then){m) time.

Proof: The proof of the “if” part follows from Lemma 4. We prove therly if” part. Let T3 and1; be two

binary trees that refine two unresolved (compatible) ttgeandts, such thatl; and7; are induced by a
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network with a single reticulation. Sin¢g andt, are compatible, then they share a common refinement
The two binary tree§’ andT5 also refinet. SinceT; and75; are different binary trees and refine the same

treet, it follows thatt is not fully resolved. O

5.2 Incompatible consensus trees

We now address the last remaining case, where the conseassigte incompatible. We begin with a simple

lemma.

Lemma 6 LetT} andT: be two binary trees that refine two unresolved treeandt,. Then,U (t1,t2) C

U(Th,T3).

Proof: Lete € U(t1,t2). Then,e € E(t1), and consequently € FE(717). Further,e is incompatible with

t2, and hence is incompatible wiffy. It follows thate € U (T}, T3). Therefore[U (t1,t2) C U(T1,T>). O

Lemma 7 Lett; andt, be two unresolved incompatible trees. If there exist twanyitrees; andT; that
refinet; andt,, respectively, and such thdl and 75 are induced by a network with a minimum of one

reticulation, thenU (¢1, t2) and U (t9, t1) are both simple paths ity andt., respectively.

Proof: AssumeU (t1,t2) is not a simple path in. Then, by Theorem 3, it follows thaf(7},T3) is not a
simple path irl, and hencd’; andT; cannot be induced by a network with a minimum of one retioohat
a contradiction. Thereforé/(t1,t2) forms a simple path in;. Similarly, we establish thadt (¢o, ¢;) forms

a simple path ini,. O

Lemma 8 Lett; andt, be two incompatible unresolved trees, such gt , ¢,) forms a pattp, in ¢;, and
U(tq,t1) forms a pathps in to. Further, letEND(p) = (A1, B1) and END(py) = (Ag, Bo). Let X;,
1 < i < 4, be the following four setsX; = (A; — A2) N (By — By), X2 = (A1 — B2) N (As — By),
X3 = (By— A2)N (B — A1), and Xy = (By — By) N (Ay — Ap). Then, there exist two binary tred@$
andT; that refinet; andt,, respectively, andy and T, are induced by a network with a minimum of one

reticulation, if and only if there exists anl < ¢ < 4, such that
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(C1) t1]s\ x, andtz|g\ x, are compatible,
(C2) t1]x, andtq|x, are compatible, and

(C3) t1]s\ x, contains all the edges iti (t1,t2), andtz|s\ x, contains all the edges iV (t2,t1).

Proof: Assume thatX;, for somel < i < 4, satisfies both conditions C1 and C2. Then, res@Ng X;
andt| s\x, identically, resolve, | x, andts| x, identically, and finally attach the resolved subtregs, and
t2|x, in their corresponding subtrees. The result is obviously mary trees/; and75 that differ only in
the location of the subtree leaf-labeled By, i.e., 71 andT; are induced by a network with one reticulation.
Let 77 andT> be two binary trees that resolve the two incompatible urvesiarees; andi,, such thatly
andT5; are induced by a network with one reticulation. By Lemma6C U (T}, 7T%) andps C U(T5,T1).
By Theorem 4% can be obtained fror; by pruning a subtre# from one side of the patti (77, 75) and
regrafting it on the other side of the path. It follows thaf\ 1,y andtz|g\ 1) are compatible, and also
thatt,| .,y andts| () are compatible (since they refine the same tfgdt is straightforward to verify that

L(t") is equal toX;, for somel < i < 4. O

We now state the major theorem of this section.

Theorem 6 We can solve the ConsTree-Network Probler®@{n) time. That is, given two unresolved trees
t; andts, in O(n) time we can find two binary tred§ and75; that refinet; andts, respectively, such that
Ty andT5 are induced by a network with one reticulation, when suchiagfarees exist. Further, once we
haveT; and7s, we can compute a phylogenetic network with exactly oneulation event inducing these

trees inO(n) additional time.

Proof: Using the same techniques as in the proof of Theorem 2, wea@apwteU (¢, t2) andU (t2,t1)

in O(n) time. Then, we check whether conditions C1 and C2 of Lemmald fifoso, then we can obtain
two binary treesl; and7s that resolvel; andt,, such thatl; and7; are induced by a network with one
reticulation. Having preprocessed the trees, testing dineliions of these two lemmas can be achieved in
O(n) time. Using bit vectors to represent the sets of taxa, we oaprpcess the trees @(n) time such that

we store at each node the set of taxa under it; hence, it takestime to compute the setk;, 1 < i < 4.
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We constructNV from 7 and 75 using inO(n) time using Theorem 5. Hence, the algorithm takks:)

time. O

6 SpNet: Our Technique for Inferring gt-Networks

SPNET, for Species Network, is a method we have designed for infgmetworks (or trees, depending on
the data) under realistic conditions. We bas®l8T on the approach we outlined in the previous section, but
we specifically use maximum likelihood for tree reconstiargtand we compute the strict consensus of the
best two trees for each dataset. In order to facilitate a eoisgn to other methods, such as NeighborNet,
we do not allow NET to return “fail”, and so we apply Neighbor Joining (NJ) to @mlputs on which we
would otherwise return “fail.”

e SpNet

e Step 1: We find the best two trees on each dataset under maximurhiikedj

e Step 2: For each dataset, we compute the strict consensus of thedes thus producing the trees

t1 andt,, and

e Step 3:1If ¢; andt, are compatible, we combine datasets and analyze the codnfbiee concatenated)
dataset using NJ, thus returning a tree. Else, we apply goridim for ConsTree-Network tq and
to. If we can, we return a networl/ with one reticulation (if treeq’ andT; exist refiningt; and
to, respectively, contained within the netwomK); if no such network exists, we apply NJ to the

concatenated dataset, and return a tree. (Alternativelyzomld simply return “fail”.)

7 Experimental Evaluation

In this section, we evaluate (using simulations) the parforce of three methods (SpNet, NeighborNet [5],

and neighbor joining [20]) and report on our findings.
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7.1 Experimental settings
7.1.1 Methods

Neighbor Joining (NJ) [20] Neighbor Joining is one of the most popular distanceeldamethods. NJ
takes a distance matrix as input and outputs a tree. For &werjaxa, it determines a score, based on the
distance matrix. At each step, the algorithm joins the pdin #he minimum score, making a subtree whose
root replaces the two chosen taxa in the matrix. The distaaoe recalculated to this new node, and the
“joining” is repeated until only three nodes remain. Thesejained to form an unrooted binary tree. NJ

takesO(n?) time, and we used PAURo run the method.

NeighborNet (NNet) [5] NeighborNet is arO(n?) method for constructing phylogenetic networks. Like
NJ, it iteratively selects pairs of taxa to group togethert ib does not join them immediately. Rather,
at a later stage, it agglomerates pairs of pairs which shaeenode in common. NeighborNet generates
a circular split systen3] rather than a hierarchy or a tree, which can subsequédmtlyepresented by a
planarsplit graph[7]. In these graphs, bipartitions eplits of the taxa are represented by classes of parallel
lines, and conflicting signals or incompatibilities appearboxes. The authors of NeighborNet suggest
this method can be used to detect complex evolutionary pseselike recombination, lateral transfer and

hybridization [5]. We used the linux 1.2 version of the NdighNet software package.

SpNet We implemented our method, SpNet, which is outlined in ®eds.

7.1.2 Tools and Measures

We used the tools of [17] to generate random networks, asaseib simulate the evolution of DNA se-
guences down those networks. To quantify the error rate tfiads, and compare their topological accu-
racy, we used split-based false positive and false negedies. The reason behind choosing split-based
comparison (rather than tree-based or tripartition-baisethat the output of NeighborNet is a set of splits,
rather than a phylogenetic network. Further, split-basmtpmarison of phylogenetic networks induces a

metric, whereas that is not the case for general networKs [16
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Topological accuracy Let N be a phylogenetic network whose set of induced trees is ddriat7 (V).

We define the set of splits df, denoted byC'(V), to be
C(N) = Urern)C(T).

Given a model networkV; and an inferred networkV,, we define thefalse positive rat§FP) andfalse

negative ratgFN) as follows:

FP(Ny, Ny) = W FN(Ny, Np) = |C(J|vé>(;€)<|zv2)\

Note that both quantities are normalized by the number dfssplthe model phylogeny.

7.1.3 Simulation parameters

Diameters. We generated random networks with diameé&téwhere the diameter is the maximum expected
number of changes of a random site on any leaf-to-leaf patle) then scaled the edge lengths by scaling

factors of 0.05, 0.1, and 0.25, producing networks with ditars of 0.1, 0.2, and 0.5, respectively.

Deviation factor. To deviate the networks from ultrametricity, we used a demiefactor 2: for each edge,
we used a random variatein the rangg— In 2, In 2] and multiplied the edge length lay. This produces a

fairly modest deviation from the molecular clock.

Numbers of hybrids. NNet handles any number of reticulation events, wherease§pi this stage,
handles only the cases of 0 and 1 reticulations. Due to thigdtion, we generated only networks with O,

1, and 2 hybrids.

Numbers of taxa. We generated networks with 10 and 20 leaves, one networkafdr eombination of

diameter, number of taxa, and number of hybrids.

Rooting the networks. Our method, SpNet, assumes rooted trees and networks. am obbted net-

works and trees, we used an outgroup in each network.
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Sequences. We then evolved sequences on these networks using the GFRégamma distributed rates,

with invariable sites) model of evolution. We used the patansettings of [26], which are:
e Shape parameter far. 0.8168
e Proportion of invariable sites: 0.1
e Base frequencies: A:0.1776, C:0.3336, G:0.2595, and 7932
e Rate matrix: A~C:3.297 A-G:12.55 A-T:1.167 C-G:2.060 C-T:13.01 G-T:1.00

We generated random sequences of length 500, 1000, 200apa6d

Numbers of datasets. For each combination of sequence length and network sstting generated 25

sets of sequences.

Software. We used PAUP[22] for NJ and ML, and the NeighborNet software package (itmax 1.2
version); we implemented our method, SpNet, using C++ ardLtiDA library of data structures and

algorithms [1].

Obtaining the ML trees in PAUP*. To obtain the best 100 ML trees, we first ran a quick parsimony
search to get 100 initial trees, and then a search (using TTBRch swapping) was used to get to the best
possible trees with respect to ML. We specified the correatehparameters for the ML search. The search

was limited to five minutes for each dataset. The followinthies PAUP block we used.

set nonitor=yes nmaxtrees=100 i ncrease=no criterion=parsinony;
hsearch start=stepw se addseq=random nreps=100 swap=t br hol d=1
nchuck=1 chuckscore=1,

filter best=yes;

set criterion=likelihood maxtrees=100 i ncrease=no;

| set nst=6 rmatrix=(3.297 12.55 1.167 2. 060 13.01)
basefreg=(0.1776 0. 3336 0.2595) rates=gamma shape=0. 8168

Pi nvar=0.1 rescal e=100;
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Figure 4: FN and FP error rates of NeighborNet (NNet) arN ST on 20-taxon networks, with 0.1 scaling
factor, with tree model phylogeny (left), and 1-hybrid netiw (middle). The rightmost graph shows the
results without the FP rate of NNet.

hsearch start=current swap=t br nchuck=100 nbest=100 chuckscore=no

tinmelimt=300;

7.2 Experimental results

We have done extensive studies evaluating the performanttes ahree methods. We focus here on the
results of our experiments on 20-taxon trees and networlts avie reticulation event. False negative and
false positive rates below 10% are good, with rates below B#g good, in evaluating tree reconstruction
methods.

All three methods have excellent false negative rates (fess5%) on trees and very good false negative
rates (less than 10%) on networks with one reticulation,ngdieen long enough sequences.

However, the methods can be clearly distinguished in teritibeir false positive rates; see Figure 4.
NeighborNet has very poor false positive rates on both tnedsetworks with one reticulation, even at very
long sequences (4000 nucleotides), whiltN&T has a very low false positive rate.

Since $NET uses NJ to analyze datasets whenever it cannot infer a detvithra single reticulation, a
comparison betweenrPBIET and NJ is worth making. On trees they have essentially idanpierformance,
as expected. On networks with a single reticulation, howetieir performance is distinguishablepI$eT
has an almost 0% false positive rate, which means that ityoesia network with essentially no false edges,
while NJ has (in these experiments) a false positive rateistepproximately 5%. The two methods have

very close false negative rates. Thus, on networks with etieutation, $NET produces networks which
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are, with some reliabilitycontractionsof the true network, while NJ’s performance does not havestimse

reliability.

8 Conclusions and Acknowledgments

Our experiments show that NeighborNet, the current mosheonty used method for network reconstruc-
tion using a “combined analysis” approach, has poor peroia with respect to its false positive rate; we
hypothesize that this phenomenon is likely to be true of dagtbanalysis approaches in general. Our new
method, $NET, works better than NeighborNet and NJ in terms of reconshgghylogenetic networks
with a single reticulation.

The main open problem is to develop methods which can aeynaconstruct networks, in general,
with more than one reticulation. In our future research, vem po combine and extend the techniques we
developed in this paper in order to develop robust methadasfimating phylogenetic networks with many
reticulations. An obvious direction is to solve the follogiproblem:given two (or more) non-binary trees
on the same set of taxa, find the minimum network that contafimements of each of the tred$e quality
of our method on networks with one reticulation suggestsdtsmlution to this problem will be very useful
for phylogenetic network reconstruction, and should hasttel accuracy (with respect to false positives)
than existing approaches. However, the problem remainskiiawn computational complexity, even for
gt-networks.

This work is supported by National Science Foundation ugdants DEB 01-20709 (Linder & Warnow),
EIA 01-21651 (Warnow), EIA 01-21680 (Linder & Warnow), ané B1-31453 (Linder & Warnow), by the
David and Lucile Packard Foundation (Warnow), by the lastitfor Cellular and Molecular Biology at
UT-Austin (Warnow), by the Program in Evolutionary Dynamat Harvard University (Warnow), and by
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