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Abstract

We present new methods for reconstructing reticulate evolution of species due to events such as

horizontal transfer or hybrid speciation; both methods arebased upon extensions of Wayne Maddison’s

approach in his seminal 1997 paper. Our first method is a polynomial time algorithm for constructing

phylogenetic networks from two gene trees contained insidethe network. We allow the network to have

an arbitrary number of reticulations, but we limit the reticulation in the network so that the cycles in

network are node-disjoint (“galled”). Our second method isa polynomial time algorithm for constructing

networks with one reticulation, where we allow for errors inthe estimated gene trees. Using simulations,

we demonstrate improved performance of this method over both NeighborNet and Maddison’s method.

1 Introduction

The motivation for this paper is the problem of reconstructing accurate evolutionary history in the presence

of reticulation events, such as hybrid speciation (where organisms hybridize and create new species), or

horizontal transfer (via hybridization or viral transmission, for example). Both types of reticulation events

∗Currently on sabbatical at the Radcliffe Institute for Advanced Study.
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are sufficiently common to be of serious concern to systematists; hybrid speciation is common in some very

large groups of organisms: plants, fish, amphibians, and many lineages of invertebrates, and horizontal gene

transfer appears to be very common in bacteria [13] with lower levels being evident in many multicellular

groups. Such evolutionary histories cannot be adequately represented using trees; instead, phylogenetic

networks (which are basically directed acyclic graphs, coupled with time constraints) are used.

Several methods are currently used to build phylogenetic networks from gene datasets, although not all

methods were designed for this purpose; of these, NeighborNet by Bryant and Moulton [5] and a method

by Wayne Maddison [14] are the most relevant to this paper. NeighborNet uses a “combined analysis”

approach because it combines sequence datasets by concatenation, and then seeks the phylogenetic network

on the basis of the distance matrix produced by the combined dataset. Maddison, on the other hand, uses

a separate analysis where the network can be reconstructed by first inferring individual gene trees from

separate sequence datasets, and then reconciling the treesinto a network.

In this paper we consider the inference of “gt-networks” (for “galled tree” networks, which is the termi-

nology used in [10]); these are phylogenetic networks in which reticulation events are constrained so as to

be evolutionarily independent of each other (see [10] for a biological justification of the model). This model

was first introduced by Wanget al. [23], and later formalized and further pursued by Gusfieldet al. [10].

We present polynomial time algorithms that provably reconstruct accurate phylogenetic networks, pro-

vided that accurate gene trees can be obtained. We also present polynomial time algorithms for reconstruct-

ing phylogenetic networks from inaccurate gene trees, and we demonstrate the improvement in accuracy of

these methods over two previous methods for phylogenetic network reconstruction in simulation.

The rest of the paper is organized as follows. In Section 2 we briefly describe phylogenetic networks,

including the definition of gt-networks. In Section 3, we briefly describe two of the evolutionary events

that necessitate the use of phylogenetic networks; we also review Maddison’s approach and discuss its

limitations. In Section 4 we present our efficient algorithmfor reconciling accurate gene trees into a gt-

network. In Section 5, we present a linear time algorithm forthe following combinatorial problem: given

two treest1 andt2, does there exist a pair of treesT1 andT2 refiningt1 andt2, respectively, such thatT1 and

T2 are the two induced trees in a gt-network with one reticulation? We show how to use this algorithm for

reconstructing phylogenetic networks in practice in Section 6. In Section 7 we summarize the results of a
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simulation study comparing the performance of this method (which we call SPNET, for “Species Network”)

to NeighborNet. We close in Section 8 with final remarks and directions for future research.

2 Networks and gt-Networks

2.1 Background

2.1.1 Graph-theoretic definitions

Given a (directed) graphG, E(G) denotes the set of (directed) edges ofG andV (G) denotes the set of

nodes ofG. We write(u, v) to denote a directed edge from nodeu to nodev, in which caseu is thetail, v

theheadof the edge, andu is aparentof v. Theindegreeof a nodev is the number of edges whose head is

v, while theoutdegreeof v is the number of edges whose tail isv. A directed path of lengthk from u to v

in G is a sequenceu0u1 · · · uk of nodes withu = u0, v = uk, and∀i, 1 ≤ i ≤ k, (ui−1, ui) ∈ E(G); we

say thatu is the tail ofp andv is the head ofp.

Nodev is reachablefrom u in G, denotedu  v, if there is a directed path inG from u to v; we then

also say thatu is anancestorof v. Given a treeT and a subsetL′ of the leaves, we writeT |L′ to denote the

subtree obtained by restrictingT to leavesL′, i.e., by removing all leaves not inL′ and all incident edges.

If X is a subtree ofT , we denote byT \ X the tree obtained by removing subtreeX from T .

We denote byL(T ) the leaf-set of a treeT . If T is not binary, we call it anunresolvedtree. An

undirected pathp of lengthk betweenu andv in a rooted treeT is a sequenceu0u1 · · · uk of nodes with

u = u0, v = uk, and∀i, 1 ≤ i ≤ k, either(ui−1, ui) or (ui, ui−1) is an edge ofT . If p is an undirected

path in treeT whose two endpoints areu andv, we denote byEND(p) = (U, V ) the two subtreesU and

V attached tou andv, respectively, that do not contain any edges fromp. We usep to denote the path itself,

as well as the edges of the path.

2.1.2 Strict consensus and compatibility trees

Let T be a tree leaf-labeled by a setS of taxa. Each edgee in T induces abipartition π(e) = {A(e)|B(e)}

on the setS, whereA(e) is the set of taxa “below”e, andB(e) is the set containing the rest of the taxa. We

denote byC(T ) the set of all bipartitions induced by treeT .
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We say thate1 and e2 (and their associated bipartitions) arecompatible, denotede1 ≡ e2, if there

exists a treeT that induces bothπ(e1) andπ(e2). A set C of bipartitions is compatible if it is pairwise

compatible; i.e., every two bipartitionsc1, c2 ∈ C are compatible. Two treesT1 andT2 are compatible if the

setC(T1) ∪ C(T2) of bipartitions is compatible. Two trees that are not compatible are calledincongruent

trees.

If we contract an edge inT , thus identifying the endpoints of that edge, we obtain another treeT ′ on

the same leaf set;T is then said torefineT ′, andT ′ is said to be acontractionof T . If T ′′ is the result of

contracting a set of edges inT , then tooT ′′ is a contraction ofT , andT is a refinement ofT ′′.

A set of trees is compatible if the trees have a common refinement; its minimal common refinement

(called thecompatibility tree) is unique. For any set of trees, the maximally resolved common contraction

(called thestrict consensus tree) is also unique. Both the compatibility [9, 24] and strict consensus trees [6]

can be found inO(kn) time, where there arek trees on the same set ofn leaves.

Given two treesT1 andT2, the setU(T1, T2) contains all edges ofT1 that are not compatible withT2;

U(T2, T1) is defined similarly. Note then thatT1 andT2 are compatible ifU(T1, T2) = U(T2, T1) = ∅.

If a treeT has a nodev with indegree and outdegree one, we replace the two edges incident tov by a

single edge; this operation onT is calledforced contraction.

2.2 Phylogenetic networks

A phylogenetic networkN = (V,E) with a setL ⊆ V of n leaves, is a directed acyclic graph in which

exactly one node has no incoming edges (the root), and all other nodes have either one incoming edge (tree

nodes) or two incoming edges (reticulation nodes). The nodes inL have no outgoing edges. Tree edges are

those whose head is a tree node, and network edges are those whose head is a reticulation node.

In this paper, we focus onbinary networks, i.e., networks in which the outdegree of a reticulation node

is 1 and the outdegree of a tree node is 2. Further, all trees are binary, i.e., all nodes (except for the leaves)

have outdegree 2.

As discussed in [15], reticulation events impose time constraints on the phylogenetic network, which

we now briefly review. A phylogenetic networkN = (V,E) defines a partial order on the setV of nodes.

Based on this partial order, we assign times to the nodes ofN , associating timet(u) with nodeu. If there
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Figure 1: (a) A gallQ whose coalescent and reticulation nodes arew andx respectively. (b) and (c) show
the two possible ways of “breaking” the gallQ to induce treesT1 andT2, respectively. The marked edges
in T1 andT2 form RPQ(T1) andRPQ(T2), respectively.

is a directed pathp from nodeu to nodev, such thatp contains at least one tree edge, then we must have

t(u) < t(v) (in order to respect the time flow). Ife = (u, v) is a network edge, then we must have

t(u) = t(v) (because a reticulation event is, at the scale of evolution,an instantaneous process).

Given a networkN , we say thatp is apositive-time directed pathfrom u to v, if p is a directed path from

u to v, andp contains at least one tree edge. Given a networkN , two nodesu andv cannot co-exist in time

if there exists a sequenceP = 〈p1, p2, . . . , pk〉 of paths such that (1)pi is a positive-time directed path, for

every1 ≤ i ≤ k, (2) u is the tail ofp1, andv is the head ofpk, and (3) for every1 ≤ i ≤ k − 1, there exists

a reticulation node whose two parents are the head ofpi and the tail ofpi+1.

If two nodesu andv cannot co-exist in time, then they cannot be “involved” in a reticulation event. In

other words,u andv cannot be the two parents of a hybrid (i.e., there does not exist a reticulation nodew

such that(u,w) and(v,w) are edges in the network), nor can there be a horizontal gene transfer between

them (i.e., neither(u, v) nor (v, u) can be an edge in the network). This property is further discussed

in [15, 14, 18].

2.3 gt-Networks

In this paper, we assume a biologically-motivated restricted class of phylogenetic networks, calledgt-

networks, proposed by Wanget al. [23] and Gusfieldet al. [10].

Definition 1 In a phylogenetic networkN , let w be a node that has two directed paths out of it that meet at
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a reticulation nodex. Those two directed paths together define areticulation cycle Q. Nodew is called the

coalescent nodeof Q, andx is thereticulation node of Q.

Definition 2 A reticulation cycle in a phylogenetic network that shares no nodes with any other reticulation

cycle is called agall.

Definition 3 We denote byQw
x a gall whose coalescent node isw and whose reticulation node isx. We

denote byE(Qw
x ) the set of all edges on gallQ; formally, E(Qw

x ) = {e : e is an edge on a directed path

fromw to x}. The setRE(Qw
x ) (for “reticulation edges”) denotes the edges whose head isx, i.e., the edges

incident intox.

When the context is clear, we simply writeQ for a gall, without explicitly naming the coalescent and

reticulation nodes.

Definition 4 A phylogenetic networkN is called agt-network if every reticulation cycle is a gall.

Figure 1(a) shows a gt-networkN with a gall Qw
x . The setE(Qw

x ) contains the edges(w,w1), (w1, u1),

(w,w2), (w2, u2), (u1, x), and(u2, x). The setRE(Qw
x ) contains the two edges(u1, x) and(u2, x). Ob-

viously, gt-networks satisfy the synchronization property. In this paper, we assume that there is at least one

tree node on each of the two paths fromw to x in a gall Qw
x (otherwise, the network would violate the

synchronization property).

Webreaka gallQw
x by removing exactly one of the edges in the setRE(Qw

x ).

Definition 5 A treeT is inducedby a gt-networkN if T can be obtained fromN through one of the possible

ways of breaking all the galls inN , followed by forced contraction operations on all nodes of indegree and

outdegree 1.

Figures 1(b) and 1(c) show the two possible trees induced by the gt-networkN in Figure 1(a). To obtain

the tree in Figure 1(b), the gall was broken by removing edge(u1, x) and applying forced contraction to

nodex; to obtain the tree in Figure 1(c), the gall was broken by removing edge(u2, x) and applying forced

contraction to nodex. In general, given a networkN with p reticulation nodes, we say that a treeT is

inducedby N if T can be obtained by removing exactly one of the two edges incoming into each of thep

reticulation nodes inN .
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Definition 6 LetQw
x be gall in a gt-networkN , with RE(Q) = {e1 = (u1, x), e2 = (u2, x)}. Further, let

w1 be the parent ofu1, andw2 be the parent ofu2. Assume treeT1 is obtained fromN by removing edge

e1, and treeT2 is obtained fromN by removing edgee2. The two directed pathsw  w1 and w  u2

together define a “reticulation path” inT1, and the two directed pathsw w2 andw  u1 together define

a “reticulation path” in T2.

Given a gt-network withm galls, there are2m possible ways of breaking them galls, and thus inducing a

tree. There is a direct correspondence between the edges andnodes of a gt-networkN and a treeT induced

by N , and hence we talk about a node or edge ofT in N , or a node or edge ofN in T (excluding the edges

in RE(Q) and the nodes removed by forced contraction).

Definition 7 We denote byRPQ(T ) the reticulation path in T that results from breaking gallQ. The

marked edges in treeT1 of Figure 1(b) form the reticulation pathRPQ(T1), and the marked edges in tree

T2 of Figure 1(c) form the reticulation pathRPQ(T2) (we also useRPQ(T ) to denote the edges on the

reticulation path inT ).

3 Reticulate Evolution

A phylogeny of a setS of organisms is a graphical representation of the evolutionof S, typically a rooted

binary tree, leaf-labelled byS. However, events such as hybrid speciation and horizontal gene transfer

require non-tree models for accurate representations of evolution.

In what follows we will assume that the individual gene datasets are recombination-free (so that meiotic

recombination, or exchanges between sister chromosomes, does not take place); this simplifies our analysis,

and allows us to assume that all gene evolution is tree-like [8, 19, 25]. We also assume there are no gene

gains or losses in the network.

It is clear that trees are inappropriate graphical models ofspeciesevolution when reticulation occurs,

though still appropriate forgeneevolution: in hybrid speciation, two lineages recombine tocreate a new

species, as symbolized in Figure 2(a), but genes evolve downtrees contained in the network as shown in

Figures 2(b) and 2(c).
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Figure 2: Hybrid speciation: the species network in (a) and its two induced (gene) trees in (b) and (c).
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Figure 3: Lateral gene transfer: the species network in (a) and its two induced (gene) trees in (b) and (c).
The tree in (b) models the evolutionary history of those genes whose alleles in speciesD were horizontally
transferred fromX. The tree in (c) models the evolutionary history of all geneswhich evolved through
lineal descent.

In lateral (i.e., horizontal) gene transfer, genetic material is transferred from one lineage to another with-

out resulting in the production of a new lineage, as symbolized in Figure 3(a). And, as in hybrid speciation,

each site evolves down a tree within the network; that is, some sites are inherited through lateral transfer

from another species, as in Figure 3(b), while all others areinherited from the parent, as in Figure 3(c).

3.1 Maddison’s approach to phylogeny reconstruction

In 1997, Wayne Maddison [14] made an important observation which directly suggests a technique for re-

constructing phylogenetic networks, via a “separate analysis” approach, which we now describe. Maddison

observed that when there is one reticulation in the network,there are two trees within the network, and

every gene evolves down one of these two gene trees. More generally, Maddison suggested that a network

that contains multiple reticulations can be reconstructedfrom its constituent gene trees. However, given

two gene trees, one can reconstruct a network with the smallest number of reticulations which induces both

trees. Maddison’s observations imply the following methodfor constructing phylogenetic networks:

• Step 1: For each gene dataset, infer a gene tree.
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• Step 2: If the two trees are identical, return that tree. Else, find the minimum network that contains

both trees.

While Maddison showed how to perform Step 2 when the minimum network contains a single reticulation,

he left open how to do Step 2 when the network contains more than one reticulation, which is a computational

limitation of Maddison’s approach.

The other limitation is potentially more serious: if the gene trees have errors in them, then the minimal

network that contains the gene trees may be incorrect. Therefore, Maddison’s method needs to be modified

to work with errors in the estimated gene trees.

In this paper we address both problems. In Section 4 we show how to reconstruct a gt-network with any

number of reticulations from accurate gene trees (under an additional assumption about the network). In

Sections 5 and 6 we show how to reconstruct a network with a single reticulation from gene tree estimates

that need not be accurate. In our future work, we will investigate how to combine these approaches.

4 Reconstructing gt-Networks When Gene Tree Estimates are Accurate

There are two main limitations to Maddison’s approach: (1) the construction of a network from two gene

trees is only described explicitly when the network contains exactly one reticulation; (2) obtaining accurate

binary trees in practice may not be possible in most cases. Inthis section we address the first limitation

by showing how to accurately construct a gt-network, with any number of reticulations, from two of its

constituent gene trees. However, given two gene trees, the best we can hope for is to reconstruct the minimal

gt-network that contains both trees. This is but a reflectionof Occam’s razor: in the absence of any additional

biological information, infer the network with the minimumnumber of reticulation events that induces the

gene trees. We address the second limitation in the next section.

We begin by characterizing networks in general, using the model of [15], but with the added constraints

that

C there is at least one regular speciation event between any two reticulation events, and that a species

does not become extinct immediately after a reticulation event.
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Graph-theoretically, these constraints imply that there is at least one tree node (whose two children are

also tree nodes) on the directed path between any two reticulation nodes, and that if one of the two children

of a tree node is a reticulation node, then the other child is atree node (see [15] for a discussion of the

ramifications of missing taxa on reconstructing networks).In this case, we can obtain the following result

about the number of trees induced by, or contained inside, a network withm reticulations.

Theorem 1 A species networkN with m reticulation nodes induces2m distinct trees.

Proof: We prove this by induction onm. It is easy to see that a networkN with zero reticulations is a tree,

and hence induces one tree. Further, a networkN with one reticulation induces two trees that differ in the

location of the subtree rooted at the reticulation node (seeFigures 2 and 3 for example). The only case where

a network with one reticulation induces only one tree happens when the reticulation cycle contains only two

nodes: the coalescent and reticulation nodes. However, in this case networkN violates the constraintC

stated above.

Assume that any network withm reticulations induces2m trees and consider a networkN with m + 1

reticulations. Letx be a reticulation node inN below which there are no other reticulation nodes. Letu1

andu2 be the two parents ofx. The nodeu1 is a tree node, and has another childv (a sibling ofx), andu2 is

a tree node, and has another childw (different fromv and a sibling ofx). If we delete the edge(u1, x), then

the resulting network,N ′ hasm reticulations, and by the induction hypothesis,N ′ induces2m distinct trees,

where the subtree rooted atx is attached to nodeu2 in all these trees. If we delete the edge(u2, x), then the

resulting network,N ′′ hasm reticulations, and by the induction hypothesis,N ′′ induces2m distinct trees,

where the subtree rooted atx is attached to nodeu1 in all these trees. Hence, we have two sets of trees,

each containing2m distinct trees, and clearly the two sets are different, due to the location of the subtree

rooted atx. Again, the two sets of trees would be equivalent only in the case where the reticulation cycle

of reticulation nodesx has (in addition tox) only one node, which is the coalescent node; however, in this

case the network would violate the constraintC stated above. Therefore, we have2m+1 distinct trees. �
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4.1 Efficient reconstruction of gt-networks from gene trees

Given a pair of trees induced by a gt-network, we reconstructa minimal (in terms of the number of reticula-

tion nodes) gt-network that induces these two trees. In whatfollows, we show how to efficiently reconstruct

such a minimal network from a pair of trees. Hereafter, we usen to denote the number of leaves in the trees

as well as in the networks.

4.1.1 Networks with a single reticulation event

In this section, we show how to construct a phylogenetic network with a single reticulation event (i.e.,

a single-gall gt-network) from two incongruent induced trees. Afterwards, we show how to extend the

techniques to reconstruct gt-networks with multiple galls(reconstructing general networks with multiple

reticulation events is still an open problem).

Theorem 2 LetT1 andT2 be two incongruent trees induced by a networkN with a single reticulation event.

The networkN can be reconstructed fromT1 andT2 in O(n) time.

To prove this theorem, we need a series of auxiliary results.

Lemma 1 Let T1 andT2 be two incongruent trees induced by a networkN with a single gallQw
x . Then,

RPQ(T1) ⊆ U(T1, T2), andRPQ(T2) ⊆ U(T2, T1).

Proof: Let RPQ be formed of the two pathsp1 andp2 whose tail isw. Further, assumep1 is the path

attached to edgee1 andp2 is the path attached toe2, whereRE(Q) = {e1, e2}. LetX be the subtree rooted

at nodex, T1 be obtained by removing edgee1 from Q, andT2 be obtained by removing edgee2 from Q.

Then, inT1, the leaves ofX are under the edges ofp2 but not under the edges ofp1, whereas inT2, the

leaves ofX are under the edges ofp1 but not under the edges ofp2. Hence, the edges onRPQ(T1) are

incompatible with the edges ofRPQ(T2), and vice versa. Therefore, we haveRPQ(T1) ⊆ U(T1, T2) and

RPQ(T2) ⊆ U(T2, T1). �

Definition 8 LetT be a tree induced by a gt-networkN . We denote by bfNG(T ) the set of all edgese that

are not on any gall inN . Formally,NG(T ) = {e ∈ E(T ) : for all galls Q in N , e /∈ RPQ(T )}.
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Lemma 2 LetT1 andT2 be two incongruent trees induced by a single-gall gt-network N . Then,NG(T1)∩

U(T1, T2) = ∅, andNG(T2) ∩ U(T2, T1) = ∅.

Proof: Assumee = (u, v) is an edge inNG(T1) ∩ U(T1, T2). Let A be the subtree ofT1 rooted atv.

Sincee ∈ U(T1, T2), then, for some edgee′ = (u′, v′) in T2, L(A) ∩ L(B) 6= ∅, whereB is the subtree

of T2 rooted atv′. Let X = L(A) \ (L(A) ∩ L(B)). Then, in treeT1, X is under edgee, and in treeT2,

X is not under edgee′. Hence, edgese ande′ are members ofE(Q) for some gallQ; a contradiction that

e ∈ NG(T1). Therefore,NG(T1) ∩ U(T1, T2) = ∅; similarly, we prove thatNG(T2) ∩ U(T2, T1) = ∅. �

Proof: (of Theorem 2) From Lemmas 1 and 2 it follows that, ifT1 andT2 are two incongruent trees induced

by a single-gall gt-networkN , thenU(T1, T2) forms a simple pathp1 in T1 andU(T2, T1) forms a simple

pathp2 in T2. If this condition holds, we further test whether there exists a subtreeT ′ whose root inT1 is

attached to an endpoint ofp1, and whose root inT2 is attached to an endpoint ofp2. If so, T1 andT2 are

induced by a gt-networkN with a single gallQw
x , and there exists an edge inN from x to the root ofT ′ (N

is formed fromT1, by adding an edge to the root ofT ′ from the other endpoint ofp1). If suchT ′ does not

exist, then the two trees are not induced by a single-gall gt-network. We now show how this can be achieved

in O(n) time.

Preprocess the trees so that:

1. For every two leavessi andsj in either tree, the least common ancestor (LCA) of these two leaves

can be found in constant time. This can be achieved inO(n) time using the techniques from [12, 4].

2. For any internal node,v, the numberβ(v) of leaves belowv can be found in constant time. Further, if

Sv is the set of leaves underv, thenLCA(Sv) can be found in constant time.

This can be achieved inO(n) time using the techniques from [6]. After this preprocessing, computing

U(T1, T2) andU(T2, T1) takesO(n) time (O(1) time for each edge, and there areO(n) edges). This can be

done by observing that an edgee = (u, v) is in U(T1, T2) if and only if β(v) 6= β(LCA(Sv)). It takesO(n)

time to check ifU(T1, T2) forms a simple path. Further, since there are at most four subtrees connected to

the endpoints of each simple path inT1 andT1, it takesO(n) time to test the existence of subtreeT ′; it is one

of the (at most) four subtrees attached to the endpoints of the simple path. Hence, the single-gall gt-network
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can be reconstructed inO(n) time. �

4.1.2 gt-Networks with multiple reticulation events

We now describe the more general case of multiple reticulation events, yet still for gt-networks. The intuition

behind our algorithm is as follows. Given two treesT1 andT2, induced by a gt-networkN , we first “mark”

the edges of each tree that are incompatible with the other tree. If breaking differentlym galls in N and

similarly the remaining galls results in two treesT1 andT2, thenU(T1, T2) andU(T2, T1) form m node-

disjoint paths in each of the two treesT1 andT2, respectively.

While necessary, this condition is not sufficient; an extra step is needed, in which, for each maximal

pathp1 of marked edges inT1, there must exist a unique maximal pathp2 of marked edges inT2, where the

endpoints of the two paths correspond to one reticulation event.

Lemma 3 Let T1 and T2 be two trees induced by a gt-networkN . Further, assume that gallQ in N

was broken in exactly the same way to obtain bothT1 and T2. Then,RPQ(T1) ∩ U(T1, T2) = ∅, and

RPQ(T2) ∩ U(T2, T1) = ∅.

Proof: Since the gallQ is broken in exactly the same way to obtain the two treesT1 andT2, it follows that

the edges onRPQ(T1) induce the same bipartitions as those induced by the edges ofRPQ(T2). Hence, the

edges ofRPQ(T1) andRPQ(T2) are mutually compatible. Further, the edges ofRPQ(T1) are compatible

with E(T2)\RPQ(T2); otherwise, the networkN would not be a gt-network (there would be two “overlap-

ping” galls). Similarly, the edges ofRPQ(T2) are compatible withE(T1)\RPQ(T1). Therefore, it follows

thatRPQ(T1) ∩ U(T1, T2) = ∅ andRPQ(T2) ∩ U(T2, T1) = ∅. �

Theorem 3 Let N be a gt-network withq galls {Q1, Q2, . . . , Qq}, andT1 andT2 be two trees induced by

N . Further, assume that exactlym of theq galls were broken in the two possible ways to obtain the two trees

T1 andT2, and the otherq − m galls were each broken similarly. Then,U(T1, T2) formsm node-disjoint

undirected paths inT1, andU(T2, T1) formsm node-disjoint undirected paths inT2.
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The proof follows immediately from Lemma 1, Lemma 3, and Lemma 2, and is omitted.

Let T1 andT2 be two trees induces by a gt-networkN , such thatU(T1, T2) forms a set of node-disjoint

undirected paths inT1, andU(T2, T1) forms a set of node-disjoint undirected paths inT2. Let p1 be one

such path inU(T1, T2), andp2 be one such path inU(T2, T1). Further, assumeEND(p1) = (U1, V1) and

END(p2) = (U2, V2).

Definition 9 We say thatp1 yieldsp2 in one rSPR move(via subtreeX), denotedp1 |=X p2, if there exists

a nonempty subtreeX such that

1. X is a subtree of eitherU1 or V1,

2. X is a subtree of eitherU2 or V2, and

3. p1 ∩ U(T ′
1, T

′
2) = ∅ andp2 ∩ U(T ′

2, T
′
1) = ∅, whereT ′

1 = T1 \ X andT ′
2 = T2 \ X.

Theorem 4 Let T1 andT2 be two trees induced by a gt-networkN . Further, assume thatU(T1, T2) forms

a setP1 of m node-disjoint undirected pathsp1
1, p

1
2, . . . , p

1
m in T1, andU(T2, T1) forms a setP2 of m node-

disjoint undirected pathsp2
1, p

2
2, . . . , p

2
m in T2. Then, the smallest number of galls inN is m if there is an

injective functionf : P1 → P2 andm subtreesX1,X2, . . . ,Xm such thatf(p1
i ) = p2

j iff p1
i |=Xi p2

j , where

1 ≤ i, j ≤ m.

Proof: Let P1 andP2 be the two sets of paths in the lemma, and letf be the injective function. Letp1
i ∈ P1

andp2
j ∈ P2 be two paths such thatf(p1

i ) = f(p2
j). AssumeXi is the subtree such thatp1

i |=Xi p2
j . Then,

Xi is the subtree whose pruning fromT1 and regrafting it to another edge (to obtain treeT2) yielded paths

p1
i andp2

j in the two trees, respectively. Since there arem such pairs of paths, there arem such subtreesXi

whose pruning and regrafting inT1 would yield a treeT such thatU(T1, T2) = ∅, which impliesT = T1.

Hence, the smallest number of galls inN is m. �

The result we obtained in Theorem 4 is related to results obtained by Gusfield and Hickerson [11]

and Bafna and Bansal [2] concerning the minimum number of recombination events needed to explain the

evolutionary history of a set of sequences
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Theorem 5 LetT1 andT2 be two binary trees onn leaves. We can decide whether there exists a gt-network

inducingT1 andT2, and then construct a minimal such gt-network, inO(mn) time, wherem is the smallest

number of reticulations in any gt-network containing the two trees.

Proof: Using the techniques described in the proof of Theorem 2, we can computeU(T1, T2), U(T2, T1),

check whether they form simple paths, and test for the conditions of Theorems 3 and 4 all inO(n) time. We

can findf(p1
i ), if it exists, inO(1) time, by using the “highest” node of pathp1

i and finding its counterpart

in T2; to find that subtreeXi such thatp1
i |=X p2

j , we need to compute the four pairwise intersections of

a set inEND(p1
i ) and a set inEND(p2

j ), each of which takesO(n) time, using bit vector representation

of sets. Hence, we can decide whetherT1 andT2 are induced by a gt-network, with minimal numberm of

reticulation events (galls), inO(mn) time.

By Theorem 5, we can find them subtrees{X1, . . . ,Xm}, such thatp1
i |=Xi p2

i , for 1 ≤ i ≤ m, where

p1
i is a path inU(T1, T2), p2

i is a path inU(T2, T1), andf(p1
i ) = p2

i (f is the injective function in the

definition of|=X). All this can be done inO(mn) time. We form the gt-networkN from T1 as follows. For

each pathp1
i in U(T1, T2) and its corresponding subtreeXi, Xi will be attached to one end ofp1

i . We add

another edge from the other end ofp1
i to the root ofXi, thus creating a networkN with m galls. Since the

paths are node-disjoint,N will be a gt-network. �

5 Reconstructing gt-Networks When Gene Tree Estimates are Inaccurate

The main limiting factor in Maddison’s approach is that methods, even if statistically consistent, can fail to

recover the true tree. Even on quite long sequences, some topological error is often present. This topological

error can be tolerated in a phylogenetic analysis, but it makes the inference of phylogenetic networks from

constituent gene trees difficult. To overcome these limits,we propose a method that allows for error in the

estimates of the individual gene trees; consequently, our method performs much better in practice (as our

simulation studies show).

Before we describe the method, we provide some insight into its design. When methods such as maxi-

mum parsimony or maximum likelihood are used to infer trees,typically many trees are returned, rather than
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a single best tree. For example, in maximum parsimony searches, especially with larger datasets, there are

often many equally good trees (all having the same best score), and all can be returned (along with subopti-

mal trees, if desired). In maximum likelihood, although thebest-scoring tree may be unique, the difference

in quality between that tree and the next best tree(s) can be statistically insignificant, and so again, a number

of trees can be returned [21]. A common output of a phylogenetic analysis is the strict consensus of these

trees (that is, the most resolved common contraction of all the best trees found).

The interesting, and highly relevant, point here is the following observation, supported by both empirical

studies on real datasets and simulations:the strict consensus tree will often be a contraction of the true tree.

Thus, even when every tree in the set of best trees is a little bit wrong, the strict consensus tree (which

contains only those edges common to all the best trees) is likely to be a contraction of the true tree. This

observation suggests the following approach to inferring phylogenetic networks.

• Proposed Approach

• Step 1: For each gene dataset, use a method (such as maximum parsimony or maximum likelihood)

of choice, to construct a set of “best” trees, thus producingsetsT1 andT2.

• Step 2: Compute the strict consensus treeti for Ti, for i = 1, 2.

• Step 3: Find treesT1 andT2 refiningt1 andt2 such thatTi refinesti for eachi = 1, 2, andT1 andT2

are induced trees within a gt-network withp reticulations, for some minimump.

When p = 0, the two consensus trees are compatible, and we would returnthe compatibility tree; see

Section 2.1. We now show how to handle the third step in this method whenp = 1 (solving this for general

p is currently an open problem). In this case, Step 3 involves solving the following problem.

• Combining consensus trees into a network(the ConsTree-Network Problem)

– Input: Two trees,t1 andt2, on the same set of leaves (not assumed to be binary)

– Output: A networkN inducing treesT1 andT2, such thatN contains one reticulation, andTi

refinesti, for i = 1, 2, if it exists; elsefail.

We now provide a linear-time algorithm for this problem. There are two cases to consider: when the

two consensus trees are compatible, and when the two trees are incompatible.
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5.1 Compatible consensus trees

In most cases, if the consensus trees share a common refinement, we might believe the evolution to be

tree-like (in which case we should combine the datasets, andanalyze a tree directly). However, suppose

we have reason to believe that a dataset has undergone reticulation, so that a tree is not an appropriate

representation of the true tree. In this case, we can still seek reticulate evolutionary scenarios compatible

with our observations. We begin with a simple lemma.

Observation 1 LetT be a binary tree that refines an unresolved treet, and letp be a path in treeT . Then,

when restricted to the edges oft, p forms a path int as well.

Lemma 4 Let t be an unresolved tree. Then, there exist two distinct binarytreesT1 andT2 that refinet and

such thatT1 andT2 are induced by a network with a single reticulation.

Proof: Let x be a node with outdegree 3, and letv1, v2, andv3 be the three children of nodex. We obtainT1

from t by removing the edges(x, v1) and(x, v2), adding a new nodeu with an edge(x, u), and then making

v1 andv2 children ofu. The treeT2 can be obtained fromt by removing the edges(x, v2) and (x, v3),

adding a new nodeu with an edge(x, u), and then makingv2 andv3 children ofu. The rest of the nodes

of T1 andT2 are resolved identically in both trees. It is obvious thatT2 can be obtained fromT1 by pruning

v2 from its parent and attaching it to edge(x, v3) in T1, and henceT1 andT2 are induced by a network with

one reticulation. �

Lemma 4 can be generalized to the case wheret1 andt2 are two unresolved, yet compatible trees, as

follows.

Lemma 5 Let t1 and t2 be two compatible unresolved trees. Then, there exist two binary treesT1 andT2

that refinet1 and t2 respectively, andT1 andT2 are induced by a network with a single reticulation if and

only if t1 and t2 have a common refinementt that is not fully resolved. Furthermore, we can determine if

these two trees exist, and construct them, inO(n) time.

Proof: The proof of the “if” part follows from Lemma 4. We prove the “only if” part. Let T1 andT2 be two

binary trees that refine two unresolved (compatible) treest1 andt2, such thatT1 andT2 are induced by a
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network with a single reticulation. Sincet1 andt2 are compatible, then they share a common refinementt.

The two binary treesT1 andT2 also refinet. SinceT1 andT2 are different binary trees and refine the same

treet, it follows thatt is not fully resolved. �

5.2 Incompatible consensus trees

We now address the last remaining case, where the consensus trees are incompatible. We begin with a simple

lemma.

Lemma 6 Let T1 andT2 be two binary trees that refine two unresolved treest1 and t2. Then,U(t1, t2) ⊆

U(T1, T2).

Proof: Let e ∈ U(t1, t2). Then,e ∈ E(t1), and consequentlye ∈ E(T1). Further,e is incompatible with

t2, and hence is incompatible withT2. It follows thate ∈ U(T1, T2). Therefore,U(t1, t2) ⊆ U(T1, T2). �

Lemma 7 Let t1 andt2 be two unresolved incompatible trees. If there exist two binary treesT1 andT2 that

refine t1 and t2, respectively, and such thatT1 and T2 are induced by a network with a minimum of one

reticulation, thenU(t1, t2) andU(t2, t1) are both simple paths int1 andt2, respectively.

Proof: AssumeU(t1, t2) is not a simple path int1. Then, by Theorem 3, it follows thatU(T1, T2) is not a

simple path inT1, and henceT1 andT2 cannot be induced by a network with a minimum of one reticulation;

a contradiction. Therefore,U(t1, t2) forms a simple path int1. Similarly, we establish thatU(t2, t1) forms

a simple path int2. �

Lemma 8 Lett1 andt2 be two incompatible unresolved trees, such thatU(t1, t2) forms a pathp1 in t1, and

U(t2, t1) forms a pathp2 in t2. Further, letEND(p1) = (A1, B1) andEND(p2) = (A2, B2). Let Xi,

1 ≤ i ≤ 4, be the following four sets:X1 = (A1 − A2) ∩ (B2 − B1), X2 = (A1 − B2) ∩ (A2 − B1),

X3 = (B1 − A2) ∩ (B2 − A1), andX4 = (B1 − B2) ∩ (A2 − A1). Then, there exist two binary treesT1

andT2 that refinet1 and t2, respectively, andT1 andT2 are induced by a network with a minimum of one

reticulation, if and only if there exists ani, 1 ≤ i ≤ 4, such that
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(C1) t1|S\Xi
andt2|S\Xi

are compatible,

(C2) t1|Xi
andt2|Xi

are compatible, and

(C3) t1|S\Xi
contains all the edges inU(t1, t2), andt2|S\Xi

contains all the edges inU(t2, t1).

Proof: Assume thatXi, for some1 ≤ i ≤ 4, satisfies both conditions C1 and C2. Then, resolvet1|S\Xi

andt2|S\Xi
identically, resolvet1|Xi

andt2|Xi
identically, and finally attach the resolved subtreest1|Xi

and

t2|Xi
in their corresponding subtrees. The result is obviously two binary treesT1 andT2 that differ only in

the location of the subtree leaf-labeled byXi; i.e.,T1 andT2 are induced by a network with one reticulation.

Let T1 andT2 be two binary trees that resolve the two incompatible unresolved treest1 andt2, such thatT1

andT2 are induced by a network with one reticulation. By Lemma 6,p1 ⊆ U(T1, T2) andp2 ⊆ U(T2, T1).

By Theorem 4,T2 can be obtained fromT1 by pruning a subtreet′ from one side of the pathU(T1, T2) and

regrafting it on the other side of the path. It follows thatt1|S\L(t′) andt2|S\L(t′) are compatible, and also

thatt1|L(t′) andt2|L(t′) are compatible (since they refine the same treet′). It is straightforward to verify that

L(t′) is equal toXi, for some1 ≤ i ≤ 4. �

We now state the major theorem of this section.

Theorem 6 We can solve the ConsTree-Network Problem inO(n) time. That is, given two unresolved trees

t1 andt2, in O(n) time we can find two binary treesT1 andT2 that refinet1 and t2, respectively, such that

T1 andT2 are induced by a network with one reticulation, when such a pair of trees exist. Further, once we

haveT1 andT2, we can compute a phylogenetic network with exactly one reticulation event inducing these

trees inO(n) additional time.

Proof: Using the same techniques as in the proof of Theorem 2, we can computeU(t1, t2) andU(t2, t1)

in O(n) time. Then, we check whether conditions C1 and C2 of Lemma 8 hold; if so, then we can obtain

two binary treesT1 andT2 that resolvet1 andt2, such thatT1 andT2 are induced by a network with one

reticulation. Having preprocessed the trees, testing the conditions of these two lemmas can be achieved in

O(n) time. Using bit vectors to represent the sets of taxa, we can preprocess the trees inO(n) time such that

we store at each node the set of taxa under it; hence, it takesO(n) time to compute the setsXi, 1 ≤ i ≤ 4.
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We constructN from T1 andT2 using inO(n) time using Theorem 5. Hence, the algorithm takesO(n)

time. �

6 SpNet: Our Technique for Inferring gt-Networks

SPNET, for Species Network, is a method we have designed for inferring networks (or trees, depending on

the data) under realistic conditions. We base SPNET on the approach we outlined in the previous section, but

we specifically use maximum likelihood for tree reconstruction, and we compute the strict consensus of the

best two trees for each dataset. In order to facilitate a comparison to other methods, such as NeighborNet,

we do not allow SPNET to return “fail”, and so we apply Neighbor Joining (NJ) to allinputs on which we

would otherwise return “fail.”

• SpNet

• Step 1: We find the best two trees on each dataset under maximum likelihood,

• Step 2: For each dataset, we compute the strict consensus of the two trees, thus producing the trees

t1 andt2, and

• Step 3: If t1 andt2 are compatible, we combine datasets and analyze the combined (i.e., concatenated)

dataset using NJ, thus returning a tree. Else, we apply our algorithm for ConsTree-Network tot1 and

t2. If we can, we return a networkN with one reticulation (if treesT1 andT2 exist refiningt1 and

t2, respectively, contained within the networkN ); if no such network exists, we apply NJ to the

concatenated dataset, and return a tree. (Alternatively, we could simply return “fail”.)

7 Experimental Evaluation

In this section, we evaluate (using simulations) the performance of three methods (SpNet, NeighborNet [5],

and neighbor joining [20]) and report on our findings.
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7.1 Experimental settings

7.1.1 Methods

Neighbor Joining (NJ) [20] Neighbor Joining is one of the most popular distance-based methods. NJ

takes a distance matrix as input and outputs a tree. For everytwo taxa, it determines a score, based on the

distance matrix. At each step, the algorithm joins the pair with the minimum score, making a subtree whose

root replaces the two chosen taxa in the matrix. The distances are recalculated to this new node, and the

“joining” is repeated until only three nodes remain. These are joined to form an unrooted binary tree. NJ

takesO(n3) time, and we used PAUP∗ to run the method.

NeighborNet (NNet) [5] NeighborNet is anO(n3) method for constructing phylogenetic networks. Like

NJ, it iteratively selects pairs of taxa to group together, but it does not join them immediately. Rather,

at a later stage, it agglomerates pairs of pairs which share one node in common. NeighborNet generates

a circular split system[3] rather than a hierarchy or a tree, which can subsequentlybe represented by a

planarsplit graph[7]. In these graphs, bipartitions ofsplitsof the taxa are represented by classes of parallel

lines, and conflicting signals or incompatibilities appearas boxes. The authors of NeighborNet suggest

this method can be used to detect complex evolutionary processes like recombination, lateral transfer and

hybridization [5]. We used the linux 1.2 version of the NeighborNet software package.

SpNet We implemented our method, SpNet, which is outlined in Section 6.

7.1.2 Tools and Measures

We used the tools of [17] to generate random networks, as wellas to simulate the evolution of DNA se-

quences down those networks. To quantify the error rate of methods, and compare their topological accu-

racy, we used split-based false positive and false negativerates. The reason behind choosing split-based

comparison (rather than tree-based or tripartition-based) is that the output of NeighborNet is a set of splits,

rather than a phylogenetic network. Further, split-based comparison of phylogenetic networks induces a

metric, whereas that is not the case for general networks [16].
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Topological accuracy Let N be a phylogenetic network whose set of induced trees is denoted byT (N).

We define the set of splits ofN , denoted byC(N), to be

C(N) = ∪T∈T (N)C(T ).

Given a model networkN1 and an inferred networkN2, we define thefalse positive rate(FP) andfalse

negative rate(FN) as follows:

FP (N1, N2) = |C(N2)−C(N1)|
|C(N1)|

FN(N1,N2) = |C(N1)−C(N2)|
|C(N1)|

Note that both quantities are normalized by the number of splits in the model phylogeny.

7.1.3 Simulation parameters

Diameters. We generated random networks with diameter2 (where the diameter is the maximum expected

number of changes of a random site on any leaf-to-leaf path).We then scaled the edge lengths by scaling

factors of 0.05, 0.1, and 0.25, producing networks with diameters of 0.1, 0.2, and 0.5, respectively.

Deviation factor. To deviate the networks from ultrametricity, we used a deviation factor 2: for each edge,

we used a random variatex in the range[− ln 2, ln 2] and multiplied the edge length byex. This produces a

fairly modest deviation from the molecular clock.

Numbers of hybrids. NNet handles any number of reticulation events, whereas SpNet, at this stage,

handles only the cases of 0 and 1 reticulations. Due to this limitation, we generated only networks with 0,

1, and 2 hybrids.

Numbers of taxa. We generated networks with 10 and 20 leaves, one network for each combination of

diameter, number of taxa, and number of hybrids.

Rooting the networks. Our method, SpNet, assumes rooted trees and networks. To obtain rooted net-

works and trees, we used an outgroup in each network.
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Sequences. We then evolved sequences on these networks using the GTR+Γ + I (gamma distributed rates,

with invariable sites) model of evolution. We used the parameter settings of [26], which are:

• Shape parameter forΓ: 0.8168

• Proportion of invariable sites: 0.1

• Base frequencies: A:0.1776, C:0.3336, G:0.2595, and T:0.2293

• Rate matrix: A→C:3.297 A→G:12.55 A→T:1.167 C→G:2.060 C→T:13.01 G→T:1.00

We generated random sequences of length 500, 1000, 2000, and4000.

Numbers of datasets. For each combination of sequence length and network settings, we generated 25

sets of sequences.

Software. We used PAUP∗ [22] for NJ and ML, and the NeighborNet software package (thelinux 1.2

version); we implemented our method, SpNet, using C++ and the LEDA library of data structures and

algorithms [1].

Obtaining the ML trees in PAUP∗. To obtain the best 100 ML trees, we first ran a quick parsimony

search to get 100 initial trees, and then a search (using TBR branch swapping) was used to get to the best

possible trees with respect to ML. We specified the correct model parameters for the ML search. The search

was limited to five minutes for each dataset. The following isthe PAUP block we used.

set monitor=yes maxtrees=100 increase=no criterion=parsimony;

hsearch start=stepwise addseq=random nreps=100 swap=tbr hold=1

nchuck=1 chuckscore=1;

filter best=yes;

set criterion=likelihood maxtrees=100 increase=no;

lset nst=6 rmatrix=(3.297 12.55 1.167 2.060 13.01)

basefreq=(0.1776 0.3336 0.2595) rates=gamma shape=0.8168

Pinvar=0.1 rescale=100;
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Figure 4: FN and FP error rates of NeighborNet (NNet) and SPNET on 20-taxon networks, with 0.1 scaling
factor, with tree model phylogeny (left), and 1-hybrid network (middle). The rightmost graph shows the
results without the FP rate of NNet.

hsearch start=current swap=tbr nchuck=100 nbest=100 chuckscore=no

timelimit=300;

7.2 Experimental results

We have done extensive studies evaluating the performance of the three methods. We focus here on the

results of our experiments on 20-taxon trees and networks with one reticulation event. False negative and

false positive rates below 10% are good, with rates below 5% very good, in evaluating tree reconstruction

methods.

All three methods have excellent false negative rates (lessthan 5%) on trees and very good false negative

rates (less than 10%) on networks with one reticulation, when given long enough sequences.

However, the methods can be clearly distinguished in terms of their false positive rates; see Figure 4.

NeighborNet has very poor false positive rates on both treesand networks with one reticulation, even at very

long sequences (4000 nucleotides), while SPNET has a very low false positive rate.

Since SPNET uses NJ to analyze datasets whenever it cannot infer a network with a single reticulation, a

comparison between SPNET and NJ is worth making. On trees they have essentially identical performance,

as expected. On networks with a single reticulation, however, their performance is distinguishable: SPNET

has an almost 0% false positive rate, which means that it produces a network with essentially no false edges,

while NJ has (in these experiments) a false positive rate that is approximately 5%. The two methods have

very close false negative rates. Thus, on networks with one reticulation, SPNET produces networks which
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are, with some reliability,contractionsof the true network, while NJ’s performance does not have thesame

reliability.

8 Conclusions and Acknowledgments

Our experiments show that NeighborNet, the current most commonly used method for network reconstruc-

tion using a “combined analysis” approach, has poor performance with respect to its false positive rate; we

hypothesize that this phenomenon is likely to be true of combined analysis approaches in general. Our new

method, SPNET, works better than NeighborNet and NJ in terms of reconstructing phylogenetic networks

with a single reticulation.

The main open problem is to develop methods which can accurately reconstruct networks, in general,

with more than one reticulation. In our future research, we plan to combine and extend the techniques we

developed in this paper in order to develop robust methods for estimating phylogenetic networks with many

reticulations. An obvious direction is to solve the following problem:given two (or more) non-binary trees

on the same set of taxa, find the minimum network that containsrefinements of each of the trees.The quality

of our method on networks with one reticulation suggests that a solution to this problem will be very useful

for phylogenetic network reconstruction, and should have better accuracy (with respect to false positives)

than existing approaches. However, the problem remains of unknown computational complexity, even for

gt-networks.
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