
Untangling Tanglegrams:
Comparing Trees by their Drawings ⋆

Balaji Venkatachalam1, Jim Apple1, Katherine St. John2, Dan Gusfield1

1 Department of Computer Science, UC Davis
{balaji, apple, gusfield}@cs.ucdavis.edu

2 Department of Mathematics and Computer Science, Lehman College, and
the Graduate Center, City University of New York. stjohn@lehman.cuny.edu

Abstract. A tanglegram is a pair of trees on the same set of leaves with matching
leaves in the two trees joined by an edge. Tanglegrams are widely used in biology
– to compare evolutionary histories of host and parasite species and to analyze
genes of species in the same geographical area. We consider optimizations prob-
lems in tanglegram drawings. We show a linear time algorithmto decide if a tan-
glegram admits a planar embedding by a reduction to the planar graph drawing
problem. This problem was considered by Fernau, Kauffman and Poths. (FSTTCS
2005). Our reduction method provides a simpler proof and helps tosolve a con-
jecture they posed, showing a fixed-parameter tractable algorithm for minimizing
the number of crossings over alld-ary trees.
For the case where one tree is fixed, we show anO(n log n) algorithm to de-
termine the drawing of the second tree that minimizes the number of crossings.
This improves the bound from earlier methods. We introduce anew optimization
criteria using Spearman’s footrule optimization and give an O(n2) algorithm.
We also show integer programming formulations to quickly obtain tanglegram
drawings that minimize the two optimization metrics discussed. We prove lower
bounds on the maximum gap between the optimal solution and the heuristic of
Dwyer and Schreiber (Austral. Symp. on Info. Vis. 2004) to minimize crossings.

1 Introduction

Determining the evolutionary history, or phylogeny, of a set of species is an important
problem in biology. Often represented as trees, phylogenies are used for determining
ancestral species, designing vaccines, and drug discovery. [26]. The popular criteria
to reconstruct an optimal tree – maximum parsimony and likelihood – are NP-hard
[12, 23], so heuristic methods (i.e. [16, 25]) are used that can yield many possible trees.
Comparing these trees, as well as those generated on multiple genes, or for co-evolving
species, is a necessary task for data analysis [21].

A visual way to compare two trees is via a tanglegram which shows the spatial rela-
tionship among the leaves. Roughly, a tanglegram consists of two trees with additional
edges linking pairs of corresponding leaves (see Sect. 2). Tanglegrams are widely used
in biology, including, to compare evolutionary histories of host and parasite species

⋆ This research was partially supported by NSF grants SEI-BIO0513910, SEI-SBE 0513660,
CCF-0515378, and IIS-0803564.

and to analyze genes of species in the same geographical area[9, 28]. The number
of edge crossings in tanglegrams serves as a good measure to the extent ofhorizontal
gene transfer, which has been inferred by viewing single layouts of tanglegrams [5,
pg. 204-206]. Drawings with fewer crossings or with matching leaves close together
are more useful in biological analysis. We focus on two natural measures of complex-
ity that are used for comparing permutations: the crossing number (or Kendall-τ) and
Spearman’s footrule distance [6]. The former measures the number of times edges be-
tween the leaves cross, and the latter, the sum of the distances between leaf pairs. These
are widely used, including, in ranking search results on theweb and in voting systems
[10, 7]. We focus on the complexity of these ranking problemsand give efficient algo-
rithms for drawing tanglegrams.

Crossing minimization in tanglegrams has parallels to crossing minimization in
graphs [13, 18]. Computing the minimum number of crossings in a graph is NP-
complete [13]. However it can be verified in linear time that agraph has a planar
drawing (with zero crossings) [15, 24]. Analogously, crossing minimization in tangle-
grams is NP-complete, while the special case of planarity can be decided in linear time.
Fernau et al. [11] showed this by a reduction to the upward flowproblem [2]. Indepen-
dently, Lozano et al. [20] showed a simple dynamic programming based solution that
gives a planar drawing inO(n2) time.

In recent work, Buchin et al. [4] showed approximation results and a fixed parame-
ter tractable algorithm for complete tanglegrams (where every leaf has the same depth).
We do not use this restriction and the results in this paper hold for arbitrary trees.
Nöllenburg et al. show some experimental results [4] and discuss an integer quadratic
program for the crossing problem [22]. Bansal et al. [1] define ageneralized tanglegram
to allow multiple edges between leaves in the two trees.

Our results: The case where only one tree is mutable is called theone-tree crossing
minimization (OTCM)problem and has been studied for balanced trees in [8]. For
arbitrary trees Fernau et al. [11] showed anO(n log2 n) solution, while Bansal et al. [1]
show anO(n log2 n/ log log n) solution. We provide an algorithm that improves the
time bound toO(n log n) (Sect. 3.1).

Previous work on tanglegrams is limited to crossing minimization. We borrow
Spearman’s footrule distance function to use as an optimization criterion here. We
show anO(n2) solution for the one-tree fixed case (Sect. 3.2).

We provide a method that has a simple intuition and allows us to use well stud-
ied solutions of graph drawing problems. Further, it leads to a simple fixed parameter
tractable (FPT) algorithm. We show a linear time algorithm for planarity testing by a
reduction to the planar graph drawing problem (Sect. 4.1). We can also use the fixed
parameter algorithm for minimizing crossing numbers in graphs [18] to improve the
running time of the FPT algorithm of Fernau et al. [11] for crossing minimization in
binary trees and answer their conjecture ford-ary trees ford > 2 (Sect. 4.2). For the
praxis of tanglegram drawing, we show integer programming formulations to obtain
tanglegram drawings that minimize the two optimization metrics discussed (Sect. 5).
We also show a lower bound on the worst case behavior of the heuristic of [8].

2 Preliminaries

We define tanglegrams and their drawings following [9, 11]: LetL(T) denote the leaves
of a treeT . A linear order< on L(T) is calledsuitable if T can be embedded into
the plane such thatL(T) is mapped onto a straight line in the order given by<. A
tanglegram (T1, T2; M) is given by a pair of rooted binary trees(T1, T2) with perfect
matchingM ⊆ L(T1) × L(T2). In this paper we consider trees withn leaves labeled
[n] = {1, . . . , n}, with M matching leaves with identical labels.

A drawing of (T1, T2; M) is given by two suitable linear orders<1 and<2 on
L(T1) andL(T2), respectively. We call a drawingproper if it is realized by planar
embeddings ofT1 andT2 such that:

1. L(T1) andL(T2) lie on two parallel linesL1 andL2

2. All nodes ofTi lie within the half-plane bounded byL3−i not containingLi

3. Every node is farther from the line than its children.

Let cr(T1, T2, M, <1, <2) denote the number of crossings in the drawing of
(T1, T2; M) given by linear orders<1 and<2. Note that by the definition only match-
ing edges may cross and that the number of crossings is independent of the chosen
realization. It is easy to see that a pair of edges cross at most once.

We consider two optimization criteria for drawing a tanglegram. The first is
minimizing the number of crossings in the drawing, that is, for a given tanglegram
(T1, T2; M), we want

min
<1,<2

cr(T1, T2, M, <1, <2) .

Since the crossings can be changed by flipping the children atan internal node, the
problem is to determine the order of the children at each internal node that minimizes
the number of crossings.

The second criterion is based on the distance between the leaves in the orderings.
Given a drawing(T1, T2, M, <1, <2), let πi be the permutation on the leaves induced
by <i, i = 1, 2, πi : L(Ti)→ [n]. Then, Spearman’sfootrule distance [3, 6] is given
by

dfoot(π1, π2) =
∑

i∈[n]

|π1(i)− π2(i)| .

Again, the optimization problem is to obtain the drawing that minimizes the distance.
Let d be a distance measure on tanglegram drawings. We defined(T1, T2, M, <1, ·)

to be the minimal value ofd(T1, T2, M, <1, <2) for all suitable linear orders
<2 on L(T2). Similarly d(T1, T2, M, ·, ·) is defined to be the minimal value of
d(T1, T2, M, <1, <2) for all suitable linear orders,<1 and<2 onL(T1) andL(T2), re-
spectively. We define the following two natural problems forcrossings in tanglegrams:

One-Tree Crossing Minimization (OTCM)
INSTANCE: A tanglegram(T1, T2; M) with suitable linear linear order,<1 onL(T1).
RESULT: A <2 with cr(T1, T2, M, <1, <2) minimal.

Two-Tree Crossing Minimization (TTCM)
INSTANCE: A tanglegram(T1, T2; M) and parameterk.
QUESTION: Is cr(T1, T2, M, ·, ·) ≤ k?

One- and two-tree footrule distance minimization problemsare defined analogously.

3 One-Tree Optimization Problems

For one-tree minimization problems, we assume, w.l.o.g, that the all tree labels are in
[n], thatM is the identity matching, and that<1 is simply<[n].

3.1 One-Tree Crossing Minimization

We give an algorithm for the one-tree crossing minimizationwith running time
O(n log n). As in [8, 11], we exploit the optimal substructure propertyof the problem
and recursively work on the subtrees. Our results are due to novel use of efficient data
structures to maintain lists of the subtrees’ leaves. To calculate the optimal layout at any
internal node,v, we analyze the child subtrees to calculate which of the two available
layouts is better. This is sufficient since:

Lemma 1. Let<2 be an optimal suitable linear order onL(T2). Then for every subtree,
S, of T2, <2 is an optimal suitable linear order forL(S).

Proof. Assume not. Then there is some<B for S with fewer crossings. Define a new
ordering,<N onL(T2), using<B:

x <N y ⇐⇒

{

x <B y if x, y ∈ L(S)
x <2 y otherwise

By construction,cr(T1, T2, M, <1, <N) < cr(T1, T2, M, <1, ·), contradicting the op-
timality of <2. ⊓⊔

Theorem 2. OTCM can be solved inO(n log n) time.

Proof. Any suitable order onL(T2) can be constructed by choosing, for each non-leaf
node inT2, one of the two possible orders of its children. At each node,we chose an
ordering recursively, starting from nodes closest to the lineL2.

For each internal node, we not only decide the optimal order for its children, we
also construct a2-3 finger tree, an ordered search tree with fast split and append op-
erations [17]. The finger trees at siblings will be used to decide the ordering for their
shared parent.

The base case is for our induction is simply the leaves. Theserequire no layout
decision, and can be made into a singleton finger tree of size1 in constant time [17].

At every internal nodev we construct a finger tree holding the leaf labels of its
descendents, ordered by<1. Sincev is farther fromL2 than either of its children, in-
duction allows us to assume each child already has a finger tree associated with it. The
method for constructing a finger tree and layout choice atv is shown in Algorithm 1.

The algorithm takes as input two finger treesp and q corresponding to the two
child nodes (node(p) andnode(q)). The trees are merged according to the usual merge
procedure on finger trees: for eachqh ∈ q, split what remains ofp usingqh as a pivot.
The left partition is saved, and the right partition is splitagain with the nextqh ∈ q.
Onceq is empty, the partitions ofp are concatenated, interspersing theqh’s where they
were used as pivots. Algorithm 1 returns the merged finger tree asresult.

Algorithm 1 Container merging for the minimal-crossing single-tree problem. The in-
putsp, q, and the outputresult are finger trees sorted according to<1. If the output
count < maxCrossings/2, then the child node corresponding top should precede the
child node corresponding toq to minimize crossings.
1: count← 0
2: result← 〈〉
3: maxCrossings← |p||q|
4: while |q| > 0 do
5: (qh, q)← head/tail(q) // pops the first element ofq
6: (r, p)← split(p, qh) // splitsp, removes elements less thanqh into r
7: result← result++ r // appends elements smaller thanqh.
8: result← result++〈ph〉
9: count← count + |p| // the number of crossings forqh

10: end while
11: result← result++ q
12: return (count < maxCrossings/2, result)

To determine an optimal layout, our algorithm modifies the merge algorithm to
count the number of crossings at each pivot. Ifnode(p) is realized precedingnode(q),
the number of new crossings induced is|{(x, y) : x ∈ p, y ∈ q, y <1 x}| =
∑

y∈q | split2(p, y)|, wheresplit2(p, y) is the right partition ofp usingy as the pivot.
Our algorithm calculates this in the variablecount.

We now must determine if the number of crossings is lower withnode(p) preceding
or following node(q). Since the every pair of nodes not crossing in one layout of of
(node(p), node(q)) is crossing in the other, their sum is the total number of possible
crossing pairs:|p||q|. A layout with no greater than|p||q|2 crossings is therefore optimal.
Algorithm 1 returnsTrue if node(p) should precedenode(q).

Complexity Kaplan and Tarjan [17] describesplit and append (++) operations on 2-3
finger trees. The operation(tL, tR) ← split(t, v) takesO(log(min(|tL|, |tR|))) time,
andt1 ++ t2 takesO(log(min(|t1|, |t2|))) time. Therefore, the head/tail split on line 5
and append on line 8 take onlyO(1) time. The values|p| and|q| can be computed in
O(1) time as shown by Hinze and Patterson [14], where they maintain the trees with
size information.

The call tosplit in line 6 takes time proportional to the logarithm of the smaller of
{|r|, |p\r|}. Takingdi as the size ofr in the loop iteration whenqh is theith element in
q, the total time taken in line 6 is no more than

∑|q|
i=0 α log di where

∑|q|
i=0 di ≤ p. This

applies to lines 7 and 11 as well; these lines append toresult all of p, in q + 1 pieces.

The total complexity is bounded by the shared complexity of lines 6, 7 and 11. Since
the sum of the logarithms is maximized when all thedis are equal [17], the complexity

is thusO
(

∑

i≤|q| log di

)

= O
(

|q| log
(

|p|
|q|

))

. The total time to calculate the optimal

layout at a node withn descendant leaves is given by the recurrence:T (n) = T (l) +
T (r) + O

(

l log
(

r
l

))

, wherel, r are the number of leaves in the left and right subtrees,

Fig. 1.One-tree footrule distance minimization with respect to the identity permutation1, . . . , 7.
Consider the configuration of the subtree rooted atx. In the left figure, the configuration of this
subtree is optimal and contributes 4 to the overall distance. If the same layout were to be used at
position 1, shown in the right figure, it would contribute 8 tothe footrule distance value. However,
the optimal configuration at that position has footrule distance 4 as shown in the right figure.

andl + r = n. Using induction, assume thatT (m) ∈ O(m log m) for all m < n.

T (n) = O(l log l) + O(r log r) + O
(

l log
(r

l

))

= O((l + r) log r) = O(n log n) .⊓⊔

3.2 One-Tree Distance Minimization

The crossings minimization problem has the optimal substructure property, i.e., a con-
figuration that minimizes the number of crossings of a subtree is also a configuration
that minimizes the crossings in any optimal solution. Therefore, once the value of an
optimal configuration of a subtree is computed, we can reuse the configuration irre-
spective of where the subtree appears in the final layout of the solution. However, in the
footrule distance minimization problem, the optimal configuration of a subtree depends
on the position of the subtree. An optimal configuration for one position need not be an
optimal solution for all positions. See Fig. 1 for an example.

Nonetheless, we can find anO(n2) algorithm using dynamic programming. For a
leaf labeledi at positionj, the footrule distance is|i − j|. Consider an internal node
v with childrenu andw with c1 leaves andc2 leaves in the two subtrees, respectively.
The optimal solution for the subtree rooted atv with the leaves starting at positioni,
D(v, i), is obtained by either drawingu on the left with leaves fromi throughi+c1−1
andw on the right with leaves fromi + c1 throughi + c1 + c2 − 1, or in the opposite
order. We choose the ordering that minimizes the value.

D(v, i) = min{D(u, i) + D(w, i + c1), D(w, i) + D(u, i + c2)} .

The optimal solution for the tree isD(root, 1). The correctness of the algorithm is
straightforward. The algorithm can be run inO(n2) time, since there aren− 1 internal
nodes and for each node we do a constant amount of computationin at mostn positions.

4 A Reduction Method for Two-tree Crossing Problems

When both leaf orderings in a tanglegram are allowed to change, the complexity of
crossing minimization increases greatly. While the case where one tree is fixed (OTCM)

is solvable in polynomial time, the TTCM problem, where the ordering of both trees is
mutable, is NP-hard [11]. However, the special case of checking if a tanglegram has a
drawing with zero crossings (planarity testing) can be solved in linear time [11].

4.1 Two-tree Tanglegram Planarity

We first define a natural extension of tanglegrams for planarity testing.

Definition 3. Anaugmentedtanglegram is a tanglegram with the roots of the two trees
joined by an edge. This edge is called theaugmented edge.

Lemma 4. A tanglegram has a proper drawing with zero crossings iff theaugmented
tanglegram has a planar drawing.

Proof. The “if” direction of the lemma is straightforward. For the other direction, con-
sider a planar drawing of the augmented tanglegram. If the drawing of the augmented
tanglegram is proper, removing the augmenting edge gives usa proper planar drawing.
If the drawing of the augmented tanglegram is not proper, we need to show a way to
rearrange the edges of this drawing to produce a proper drawing.

To do so, first contract the internal edges of the two trees except for the two edges
out of each root. During the contracting process, shown in Fig. 2, no new planar regions
are produced. Regions that are bounded between the internaledges of one tree, the
edges connecting the leaves, and the internal edges of the other tree vanish when the
internal edges are contracted (see Fig. 2). We call the resulting graph thereduced graph
and label the root and its two childrenr1, u1, v1, respectively, in one tree andr2, u2, v2

in the other.

Fig. 2. (a) & (b): Contraction process: After contracting the dashed internal edges, planar region
2 vanishes. The new edge can be thought of as containing the region 2 within it, and is called a
super-edge. (c) & (d): AvoidingK3,3 minor: There are at most 3 edges between pairs(u1, v1)
and(u2, v2). (d) is not proper. The edges can be rearranged to form (c).

There are four possible edges between{u1, v1} and{u2, v2}. We call these edges
between the two treessuper-edges. Each of these super-edges represents the union
(merger) of some of the regions. We claim that at most three ofthese edges exist. If

all four edges existed, then together with the augmented edge (r1, r2) they would form
K3,3 (see Fig. 2) contradicting the planarity of the original drawing.

Without loss of generality, let the three super-edges be(u1, u2), (v1, v2) and
(u2, v1). Any drawing on the reduced graph with these edges can be redrawn to a
proper drawing of the reduced graph (as the example in Fig. 2). Rearranging the super
edges is equivalent to rearranging of the edges and the regions of the original graph.
Now expanding the edges in the reverse order of contraction gives us a proper drawing
for the tanglegram. ⊓⊔

The idea of the proof can be extended to get an algorithm that generates a proper
drawing by setting a convention for left and right children and remembering the left
and right order on the children during edge contraction. Theorder of some edges might
be reversed in rearranging the super-edges. Finally, the order information is used recur-
sively during the edge expansion to obtain a proper drawing.

Theorem 5. Deciding if a tanglegram admits a planar drawing can be done in linear
time.

Proof. Apply the linear planar graph drawing algorithm [15, 24] to the augmented tan-
glegram. Follow the previous lemma to obtain a proper drawing. ⊓⊔

4.2 Fixed Parameter Tractability of TTCM

The two-tree problem (TTCM), when restricted to binary trees, is fixed parameter
tractable with parameterk, the number of crossings, as shown by Fernau et al. [11].
Their proof relies on the trees being binary and achieves theresult through a compli-
cated analysis of quadruples of leaves. They conjecture difficulty for d-ary trees for
d > 2. We use our reduction method to utilize the elegant work of Kawarabayashi and
Reed [18]. We give a simple proof that resolves the conjecture of [11] that TTCM is
fixed parameter tractable over the class of all finite trees:

Theorem 6. TTCM is fixed parameter tractable over the class of all finite trees with
parameter,k, the number of crossings. The algorithm takes time quadratic in n.

As in the planar drawing problem, we create an augmented tanglegram and use the
FPT algorithm of crossing minimization in graphs from [18].Like in the planarity case
we want to disallow crossings with internal edges. To achieve this, we addn duplicate
edges around each internal edge and the augmented edge. If two internal edges cross,
there will ben2 crossings, which is more than the number of crossings in the sought
proper drawing. Similarly, anything but the proper drawingof the edges connecting the
leaves will increase the number of crossings. This ensures proper drawing. The proof
of Theorem 6 is in [27].

5 Integer Programming solutions

Integer Linear Programming (ILP) is one of the standard approaches to obtain fast solu-
tions for hard problems as they provide provably optimal solutions. Though the runtime

is not polynomially bounded, they are fast in many practicalsettings, and are often
better than provably efficient methods. We describe ILP formulations for the two-tree
optimization problems considered in this paper.

5.1 Crossing minimization

The formulation for crossing minimization is based on the following intuition: if the
leaf i is to the left of leafj in both of the trees, then the edges connecting thei’s and the
j’s do not cross. The edges cross if there is an inversion in theorder.

To realize this, we introduce binary variablesxi,j for all leaf pairs(i, j) such that
i < j. xi,j is set to 1 iffi appears beforej in the linear order. For every internal nodek
we introduce a variableyk. Let c1 andc2 be the two children ofk. yk = 1 if c1, c2 are to
the left and right, respectively, andyk = 0 otherwise. For leavesi in the subtree below
c1 andj in the subtree belowc2, if i < j thenxi,j = 1 ⇐⇒ yk = 1, soxi,j = yk. If
j < i thenyk = 1 − xi,j . Analogously, for the second tree we define these constraints
over variablesx′

i,j andy′
k.

If i is to the left (or right) ofj in the drawing of both trees in the tanglegram, then
there is no crossing.i andj cross only when the order is reversed. That is,i, j cross iff
xi,j 6= x′

i,j . We letzi,j = xi,j⊕x′
i,j . We can rewrite the XOR as linear inequalities. The

objective function for minimizing the number of crossings is thereforemin
∑

i<j zi,j .

5.2 Distance minimization

We describe two different formulations for the distance minimization problem. The first
formulation is based on the dynamic programming idea used inthe one-tree distance
minimization problem. The second uses the simple fact that the the order of its children
in an internal node determines the relation between the leaves in the two subtrees.

Dynamic programming versionFor a vertexk we set a binary variableyk,p = 1 when
the subtree beneath it is placed starting at positionp. For instance,yroot,1 = 1 always.
If k is an internal node, leti andj be the its children withl andr leaves in the subtrees
below them.

yk,p = 1 implies that nodei is placed at positionp or p + r. This implication is
written by the inequalityyi,p + yi,p+r ≥ yk,p. Similarly yj,p + yj,p+l ≥ yk,p. Both i
andj cannot be the left (or right) child ofk simultaneously, soyj,p + yi,p ≤ 1.

Every leaf must occur exactly once. For every leafl, therefore,
∑

r∈[n] yl,r = 1.
Every position must have exactly one leaf, so∀r ∈ [n],

∑

l∈leavesyl,r = 1. We use
variablesy′ and similar inequalities for the second tree.

Binary variableszl,r,r′ = 1 only when the leafl is present at positionsr, r′ in the
two trees respectively.zl,r,r′ contributes|r − r′| to the distance value. Therefore, the
objective function ismin

∑

leaf l

∑

r∈[n]

∑

r′∈[n] |r − r′|zl,r,r′ .

Distance versionConsider an internal nodei with m leaves in its subtree and let its two
children bec1, c2. Let j, k be leaves in subtreesc1, c2 respectively. Letxj denote the
position of leafj in the linear order,[n]. Introduce a binary variableyi for each internal

Table 1.Running time of ILP solutions: average time, in secs, is averaged over 30 runs.

Crossing Problems Distance problems
Input size Crossing Input Size Distance Dynamic Programming

Time variance Time variance Time variance

10 0.02 0.01 6 0.12 0.04 0.41 0.25
20 0.32 0.17 10 16.87 19.21 36.34 18.69
30 2.03 0.54 11 75.93 110.80 99.04 56.06
40 7.79 1.7 12 182.10 245.75 324.36 211.48
50 20.87 3.64 15 781.881171.958663.02 6208.82

nodei to model the choice ofc1 or c2 being the left child.yi = 1 whenc1 is the left
child (andj is to the left ofk). The opposite is implied byyi = 0.

yi = 1 ⇐⇒ −(m− 1) ≤ xj − xk ≤ −1 (1)

yi = 0 ⇐⇒ 1 ≤ xj − xk ≤ m− 1 (2)

These implications are written as the following inequalities:xj−xk+1 ≤ m(1−y)
andxj − xk + my ≥ 1.

Next we need to ensure that all leaves1 ≤ xj ≤ n and allxj ’s are unique. The
uniqueness constraints can be written in a number of ways. Wemodel them as a match-
ing problem. It has been observed in the ILP literature that the vertices of the match-
ing polytope are all lattice points and therefore the ILP software need not apply fur-
ther reduction techniques [19]. As usual, we define similar inequalities on variablesx′

i

andy′
i for similar constraints on the second tree. Finally, the optimization criterion is

min
∑

i |xi − x′
i|.

5.3 Timing

To generate a random tree we take a random subset of[n]. This is the set of leaves on
the left subtree of the root. The rest of the elements are leaves of the right subtree. We
recurse on these subsets to generate the random tree. We taketwo such trees to form a
random tanglegram.

We executed the ILP formulations of the problem using CPLEX-10 on a Pentium
IV 3 GHz dual-core desktop machine with 2GB of RAM. The data shown in Table 1 are
obtained by averaging the running time over thirty runs eachfor problems of various
data sizes. The crossing minimization problem is very fast.The distance version is
slower in comparison. It is relatively fast for small datasets. The distance version is
about three times faster than the dynamic programming version. We see in our examples
that most of the executions run in about less than half of the reported mean time. There
are about 10% of the cases that take much longer, leading to increased variance. In most
of these cases CPLEX obtains the optimal solution quickly orfinds a solution very close
to optimal solution very soon, but takes much longer to make minor improvements or
to ensure there is no better solution.

6 Dwyer and Schreiber’s seesaw heuristic

Though [4] shows that, assuming the Unique Games Conjecture, there is no constant-
factor approximation algorithm for TTCM, Dwyer and Schreiber [8] present a heuristic
for n tree crossing minimization that iteratively solves OTCM for each tree. The idea
is to fix <2, then solve OTCM onT1, then fix<1 and solve OTCM onT2. They found
that this yielded a good solution after ten or fewer iterations. We call this “seesawing”.

Theorem 7. For anyN , there is ann > N , and a tanglegram drawing of sizen for
which the optimal drawing produced by seesawing hasΩ(n2) more crossings than an
optimal drawing.

We call a drawing that can’t be improved by seesawingseesaw-optimal. We prove
the theorem (in [27]) by finding one tanglegram that has a seesaw-optimal drawing that
is inferior to its optimal drawing. By iteratively replacing the leaves with copies of the
drawing, we create a chain of seesaw-optimal drawings with aquadratically increasing
number of crossings, while the optimal crossing number stays small. From this we
describe planar tanglegrams of arbitrarily large size and seesaw-optimal drawings with
Ω(n2) crossings.

7 Conclusion and Open Problems

We have shown several significantly faster algorithms for tanglegram drawing, includ-
ing for planar, k-crossing, and one-tree optimization problems. We have also intro-
duced the footrule distance metric for tanglegrams and shown an efficient one-tree
drawing algorithm. We conjecture that the two-tree distance minimization problem is
NP-complete. Future work includes improving drawing heuristics for tanglegrams with
the distance metric. Our ILP solution for the crossing metric is efficient, but the ILP
solution for the distance problem is slower and may perhaps be improved. It also re-
mains to explore the seesaw method for the distance heuristic, though we have shown it
can be larger than the optimal solution byΩ(n2) in the crossing case. For the one-tree
problem, though distance between permutations can be computed in linear time (while
counting crossings takesΩ(n log n)), distance seems the harder measure to optimize.

References

[1] M. S. Bansal, W.-C. Chang, O. Eulenstein, and D. Fernández-Baca. Generalized binary
tanglegrams: Algorithms and applications. InBiCoB, 2009.

[2] P. Bertolazzi, G. D. Battista, C. Mannino, and R. Tamassia. Optimal upward planarity
testing of single-source digraphs.SIAM J. Comput., 27(1):132–169, 1998.

[3] T. C. Biedl, F.-J. Brandenburg, and X. Deng. Crossings and permutations. InGraph Draw-
ing, pages 1–12, 2005.

[4] K. Buchin, M. Buchin, J. Byrka, M. Nöllenburg, Y. Okamoto, R. I. Silveira, and
A. Wolff. Drawing (complete) binary tanglegrams: Hardness, approximation, fixed-
parameter tractability. InGraph Drawing. Springer-Verlag, 2008.

[5] A. Burt and R. Trivers.Genes in Conflict. Belknap Harvard Press, 2006.

[6] P. Diaconis and R. L. Graham. Spearman’s footrule as a measure of disarray.Journal of
the Royal Statistical Society. Series B (Methodological), 39(2):262–268, 1977.

[7] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web.
In WWW, pages 613–622, 2001.

[8] T. Dwyer and F. Schreiber. Optimal leaf ordering for two and a half dimensional phyloge-
netic tree visualisation. InAustralasian Symp. on Info. Vis., pages 109–115, 2004.

[9] R. D. M. P. (Ed.). Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University
Of Chicago Press, 2002.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In SODA, pages 28–36,
2003.

[11] H. Fernau, M. Kaufmann, and M. Poths. Comparing trees via crossing minimization. In
FSTTCS, pages 457–469, 2005.

[12] L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete.Adv.
in Appl. Math., 3(1):43–49, 1982.

[13] M. Garey and D. S. Johnson. Crossing number is np-complete. SIAM Journal on Algebraic
and Discrete Methods, 4:312–316, 1983.

[14] R. Hinze and R. Paterson. Finger trees: A simple general-purpose data structure.Journal
of Functional Programming, 16(2):197–217, 2006.

[15] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568, 1974.
[16] J. P. Huelsenbeck and F. Ronquist. Mrbayes: Bayesian inference of phylogeny, 2001.
[17] H. Kaplan and R. E. Tarjan. Purely functional representations of catenable sorted lists. In

STOC ’96, pages 202–211. ACM, 1996.
[18] K. Kawarabayashi and B. Reed. Computing crossing number in linear time. InSTOC,

pages 382–390, 2007.
[19] J. Lee. All-different polytopes.Journal of Combin. Optim., 6(3):335–352, 2002.
[20] A. Lozano, R. Y. Pinter, O. Rokhlenko, G. Valiente, and M. Ziv-Ukelson. Seeded tree

alignment and planar tanglegram layout. InWABI, pages 98–110, 2007.
[21] D. M.Hillis, T. Heath, and K. S. John. Analysis and visualization of tree space.Systematic

Biology, 3:471–482, 2005.
[22] M. Nöllenburg, D. Holten, M. Völker, and A. Wolff. Drawing binary tanglegrams: An

experimental evaluation. InALENEX, pages 106–119. SIAM, 2009.
[23] S. Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is

hard. IEEE/ACM Trans. Comp. Biol. and Bioinf., 3(1):92–94, 2006.
[24] W. K. Shih and W.-L. Hsu. A new planarity test.Theor. Comput. Sci., 223(1-2):179–191,

1999.
[25] D. Swofford.PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Ver-

sion 4. Sinauer Associates, Sunderland, Massachusetts, 2002.
[26] D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis. Phylogenetic inference. In

Molecular Systematics, Second Edition, pages 407–514. Sinauer, 1996.
[27] B. Venkatachalam, J. Apple, K. S. John, and D. Gusfield. Untangling tanglegrams: Com-

paring trees by their drawings. Technical Report CSE-2009-1, UC Davis, CS, 2009.
[28] W. N. Wan Zainon and P. Calder. Visualising phylogenetic trees. In W. Piekarski, editor,

Seventh Australasian User Interface Conference (AUIC2006), volume 50 ofCRPIT, pages
145–152, Hobart, Australia, 2006. ACS.

