Untangling Tanglegrams:
Comparing Trees by their Drawings™*

Balaji Venkatachalary Jim Appl€', Katherine St. Joht) Dan Gusfield

! Department of Computer Science, UC Davis
{balaji, apple, gusfiel[d@cs.ucdavis.edu
2 Department of Mathematics and Computer Science, Lehmaeggoland
the Graduate Center, City University of New York. stjiohn@ian.cuny.edu

Abstract. Atanglegram is a pair of trees on the same set of leaves witthimg
leaves in the two trees joined by an edge. Tanglegrams amdywided in biology
— to compare evolutionary histories of host and parasiteispeand to analyze
genes of species in the same geographical area. We conptifeizations prob-
lems in tanglegram drawings. We show a linear time algoritbistecide if a tan-
glegram admits a planar embedding by a reduction to the plgnagh drawing
problem. This problem was considered by Fernau, KauffmdrParths. FSTTCS
2009. Our reduction method provides a simpler proof and helotee a con-
jecture they posed, showing a fixed-parameter tractabteitiign for minimizing
the number of crossings over aHlary trees.

For the case where one tree is fixed, we showOdn logn) algorithm to de-
termine the drawing of the second tree that minimizes thelbmurof crossings.
This improves the bound from earlier methods. We introduseva optimization
criteria using Spearman’s footrule optimization and gineo&n?) algorithm.

We also show integer programming formulations to quicklyagbtanglegram
drawings that minimize the two optimization metrics disma We prove lower
bounds on the maximum gap between the optimal solution amthehristic of
Dwyer and Schreiberustral. Symp. on Info. Vis. 20p#% minimize crossings.

1 Introduction

Determining the evolutionary history, or phylogeny, of &aespecies is an important
problem in biology. Often represented as trees, phylogesie used for determining
ancestral species, designing vaccines, and drug discd2&ly The popular criteria
to reconstruct an optimal tree — maximum parsimony andilikeld — are NP-hard
[12, 23], so heuristic methods (i.e. [16, 25]) are used thatydeld many possible trees.
Comparing these trees, as well as those generated on ragépks, or for co-evolving
species, is a necessary task for data analysis [21].

A visual way to compare two trees is via a tanglegram whiclwsithe spatial rela-
tionship among the leaves. Roughly, a tanglegram condisteodrees with additional
edges linking pairs of corresponding leaves (see Sectaglégrams are widely used
in biology, including, to compare evolutionary historieshmst and parasite species

* This research was partially supported by NSF grants SEIBE08910, SEI-SBE 0513660,
CCF-0515378, and 11S-0803564.

and to analyze genes of species in the same geographical9%ar2d]. The number
of edge crossings in tanglegrams serves as a good measheedgtént ohorizontal
gene transferwhich has been inferred by viewing single layouts of tagiens [5,
pg. 204-206]. Drawings with fewer crossings or with matghieaves close together
are more useful in biological analysis. We focus on two redtoreasures of complex-
ity that are used for comparing permutations: the crossurgber (or Kendallr) and
Spearman’s footrule distance [6]. The former measuresuhnger of times edges be-
tween the leaves cross, and the latter, the sum of the detdratween leaf pairs. These
are widely used, including, in ranking search results onathb and in voting systems
[10, 7]. We focus on the complexity of these ranking problemd give efficient algo-
rithms for drawing tanglegrams.

Crossing minimization in tanglegrams has parallels to sings minimization in
graphs [13, 18]. Computing the minimum number of crossings igraph is NP-
complete [13]. However it can be verified in linear time thagraph has a planar
drawing (with zero crossings) [15, 24]. Analogously, cinganinimization in tangle-
grams is NP-complete, while the special case of planaritybeadecided in linear time.
Fernau et al. [11] showed this by a reduction to the upward fimblem [2]. Indepen-
dently, Lozano et al. [20] showed a simple dynamic prograngnbiased solution that
gives a planar drawing i®(n?) time.

In recent work, Buchin et al. [4] showed approximation resahd a fixed parame-
ter tractable algorithm for complete tanglegrams (wheeseleaf has the same depth).
We do not use this restriction and the results in this papéd far arbitrary trees.
Nollenburg et al. show some experimental results [4] aisdudis an integer quadratic
program for the crossing problem [22]. Bansal et al. [1] d=figeneralized tanglegram
to allow multiple edges between leaves in the two trees.

Our results: The case where only one tree is mutable is calledotietree crossing
minimization (OTCM)problem and has been studied for balanced trees in [8]. For
arbitrary trees Fernau et al. [11] showed®@fn log® 1) solution, while Bansal et al. [1]
show anO(n log® n/loglogn) solution. We provide an algorithm that improves the
time bound taO(nlogn) (Sect. 3.1).

Previous work on tanglegrams is limited to crossing minatian. We borrow
Spearman’s footrule distance function to use as an opttiizariterion here. We
show anO(n?) solution for the one-tree fixed case (Sect. 3.2).

We provide a method that has a simple intuition and allowsousse well stud-
ied solutions of graph drawing problems. Further, it leada simple fixed parameter
tractable (FPT) algorithm. We show a linear time algorittanglanarity testing by a
reduction to the planar graph drawing problem (Sect. 4.3 .céh also use the fixed
parameter algorithm for minimizing crossing numbers inphi[18] to improve the
running time of the FPT algorithm of Fernau et al. [11] for £3mg minimization in
binary trees and answer their conjecture deary trees ford > 2 (Sect. 4.2). For the
praxis of tanglegram drawing, we show integer programmaorgnfilations to obtain
tanglegram drawings that minimize the two optimization niastdiscussed (Sect. 5).
We also show a lower bound on the worst case behavior of thastiewf [8].

2 Preliminaries

We define tanglegrams and their drawings following [9, 18t L(T") denote the leaves
of a treeT . A linear order< on L(T) is calledsuitable if T can be embedded into
the plane such that(7") is mapped onto a straight line in the order given<yA
tanglegram (71, T»; M) is given by a pair of rooted binary tre€#;, T») with perfect
matchingM C L(Ty) x L(T»). In this paper we consider trees withleaves labeled
[n] = {1,...,n}, with M matching leaves with identical labels.

A drawing of (71, T»; M) is given by two suitable linear ordeks; and <, on
L(Ty) and L(T3), respectively. We call a drawingroper if it is realized by planar
embeddings of ; andT5 such that:

1. L(T1) andL(T>) lie on two parallel lined.; and L,
2. All nodes ofT; lie within the half-plane bounded bl;_; not containingl;
3. Every node is farther from the line than its children.

Let cr(Ty1,T2, M, <1,<2) denote the number of crossings in the drawing of
(Th,T>; M) given by linear orders<; and<,. Note that by the definition only match-
ing edges may cross and that the number of crossings is indeptof the chosen
realization. It is easy to see that a pair of edges cross ataoncs.

We consider two optimization criteria for drawing a tangbeg. The first is
minimizing the number of crossings in the drawing, that @, & given tanglegram
(Th, To; M), we want

min er(Ty, T, M, <1,<2) .
<1,<2

Since the crossings can be changed by flipping the childrem @hternal node, the
problem is to determine the order of the children at eachmalenode that minimizes
the number of crossings.

The second criterion is based on the distance between thesl@éathe orderings.
Given a drawing T}, Tz, M, <1, <2), letw; be the permutation on the leaves induced
by <;,i=1,2,m : L(T;) — [n]. Then, Spearmanf®otrule distance [3, 6] is given
by

dfoor(m1,m2) = Y w1 (i) — ma(i)] -
i1€[n]
Again, the optimization problem is to obtain the drawingttimnimizes the distance.

Letd be a distance measure on tanglegram drawings. We d#&fineTs, M, <1, -)
to be the minimal value ofd(T1,T>, M,<1,<3) for all suitable linear orders
<9 on L(T3). Similarly d(Ty,T>,M,-,-) is defined to be the minimal value of
d(Ty,Te, M, <4, <2) for all suitable linear orders;; and<s on L(7T}) andL(T%), re-
spectively. We define the following two natural problemsdmyssings in tanglegrams:

One-Tree Crossing Minimization (OTCM)

INSTANCE: A tanglegram(T}, T>; M) with suitable linear linear ordet;; on L(7T7).
RESULT: A < with cr(Ty, T, M, <1, <2) minimal.
Two-Tree Crossing Minimization (TTCM)
INSTANCE: A tanglegram(Ty, T»; M) and parametek.
QUESTION: Iser(Ty, To, M, -,) < k?
One- and two-tree footrule distance minimization problanesdefined analogously.

3 One-Tree Optimization Problems

For one-tree minimization problems, we assume, w.l.oaf, tthe all tree labels are in
[n], thatM is the identity matching, and that, is simply <(,,;.

3.1 One-Tree Crossing Minimization

We give an algorithm for the one-tree crossing minimizatigith running time
O(nlogn). Asin [8, 11], we exploit the optimal substructure propestyhe problem
and recursively work on the subtrees. Our results are duevel mise of efficient data
structures to maintain lists of the subtrees’ leaves. Toutale the optimal layout at any
internal nodey, we analyze the child subtrees to calculate which of the wvedlable
layouts is better. This is sufficient since:

Lemma 1. Let<, be an optimal suitable linear order ai(7»). Then for every subtree,
S, of Ty, <5 is an optimal suitable linear order fak (S).

Proof. Assume not. Then there is somg; for S with fewer crossings. Define a new
ordering,<y on L(T5), using< p:

x<pyifz,ye L(S)
T<NY {a: <o y otherwise
By constructioner(Ty, Ta, M, <1, <n) < cr(T1,T2, M, <1, -), contradicting the op-
timality of <s. O

Theorem 2. OTCM can be solved i®(n log n) time.

Proof. Any suitable order orl.(T5) can be constructed by choosing, for each non-leaf
node inT,, one of the two possible orders of its children. At each negechose an
ordering recursively, starting from nodes closest to the fis.

For each internal node, we not only decide the optimal ordeit$ children, we
also construct 2-3 finger tree an ordered search tree with fast split and append op-
erations [17]. The finger trees at siblings will be used toidkethe ordering for their
shared parent.

The base case is for our induction is simply the leaves. Theggire no layout
decision, and can be made into a singleton finger tree ofisizeonstant time [17].

At every internal node we construct a finger tree holding the leaf labels of its
descendents, ordered by . Sincew is farther fromLs than either of its children, in-
duction allows us to assume each child already has a fingeat®ociated with it. The
method for constructing a finger tree and layout choiceiatshown in Algorithm 1.

The algorithm takes as input two finger tree®nd ¢ corresponding to the two
child nodesfode(p) andnode(q)). The trees are merged according to the usual merge
procedure on finger trees: for eagh € ¢, split what remains of usingq,, as a pivot.
The left partition is saved, and the right partition is splifain with the nexy, € q.
Onceq is empty, the partitions gf are concatenated, interspersing his where they
were used as pivots. Algorithm 1 returns the merged fingeraseesult.

Algorithm 1 Container merging for the minimal-crossing single-tregpem. The in-
putsp, ¢, and the outputesult are finger trees sorted according<g. If the output
count < maxCrossings/2, then the child node correspondingitshould precede the
child node corresponding tpto minimize crossings.

1: count — 0

2: result «— ()

3: maxCrossings < |p||q|

4: while |¢| > 0do

5. (gn,q) < head/tail(q) // pops the first element af

6: (r,p) < split(p, qn) // splitsp, removes elements less thaninto r
7 result < result + r I/ appends elements smaller than
8. result «— result H(pn)

9: count < count + |p| // the number of crossings fag,
10: end while

11: result < result Hq

12: return (count < maxCrossings/2,result)

To determine an optimal layout, our algorithm modifies thegaealgorithm to
count the number of crossings at each pivohddle(p) is realized precedingode(q),
the number of new crossings induced|{§z,y) : = € p,y € ¢y <1 z}| =
>_yeq |sPlita(p,y)|, wheresplits (p, y) is the right partition ofp usingy as the pivot.
Our algorithm calculates this in the varialst@:nt.

We now must determine if the number of crossings is lower witte(p) preceding
or following node(q). Since the every pair of nodes not crossing in one layout of of
(node(p), node(q)) is crossing in the other, their sum is the total number of jbess
crossing pairsfp||q|. A layout with no greater thaﬁ’% crossings is therefore optimal.
Algorithm 1 returnsTrue if node(p) should precedaode(q).

Complexity Kaplan and Tarjan [17] describglit and append+) operations on 2-3
finger trees. The operatidit,, tr) < split(¢,v) takesO(log(min(|tL|, [tr]))) time,
andt; +-to takesO(log(min(|¢1], [t2]))) time. Therefore, the head/tail split on line 5
and append on line 8 take onfy(1) time. The valuegp| and|q| can be computed in
O(1) time as shown by Hinze and Patterson [14], where they maiti trees with
size information.

The call tosplit in line 6 takes time proportional to the logarithm of the derabf
{Ir|, |p\r|}. Takingd; as the size of in the loop iteration when, is theith elementin
g, the total time taken in line 6 is no more thﬁﬁiﬂo alogd; Wherezy‘:‘0 d; < p. This
applies to lines 7 and 11 as well; these lines append4alt all of p, in ¢ + 1 pieces.

The total complexity is bounded by the shared complexitynad 6, 7 and 11. Since
the sum of the logarithms is maximized when all the are equal [17], the complexity

is thusO (Ziélql log di) =0 (|q| log (M)) . The total time to calculate the optimal

lal
layout at a node witln descendant leaves is given by the recurrefite:) = T'(1) +

T(r)+O (llog (%)) , wherel, r are the number of leaves in the left and right subtrees,

7 7 5 7
« 6 6 3 6
15 2 5
4 4 4 4
5 3 7 3
3 2 NN6 2
2 1 11

Fig. 1. One-tree footrule distance minimization with respect ®ittentity permutation, ..., 7.
Consider the configuration of the subtree rooted.dh the left figure, the configuration of this
subtree is optimal and contributes 4 to the overall distati¢ke same layout were to be used at
position 1, shown in the right figure, it would contribute &he footrule distance value. However,
the optimal configuration at that position has footruleatise 4 as shown in the right figure.

and! + r = n. Using induction, assume thai{m) € O(mlogm) for all m < n.

T(n) = O(llogl) + O(rlogr) + O (l log (%)) =O0((l+r)logr) =0O(nlogn) .O

3.2 One-Tree Distance Minimization

The crossings minimization problem has the optimal subsire property, i.e., a con-
figuration that minimizes the number of crossings of a s@bigealso a configuration
that minimizes the crossings in any optimal solution. Tfanes once the value of an
optimal configuration of a subtree is computed, we can relseonfiguration irre-
spective of where the subtree appears in the final layoutddatution. However, in the
footrule distance minimization problem, the optimal confation of a subtree depends
on the position of the subtree. An optimal configuration foe osition need not be an
optimal solution for all positions. See Fig. 1 for an example

Nonetheless, we can find & (n?) algorithm using dynamic programming. For a
leaf labeledi at positionj, the footrule distance i8 — j|. Consider an internal node
v with childrenu andw with ¢; leaves and, leaves in the two subtrees, respectively.
The optimal solution for the subtree rootedvatvith the leaves starting at positian
D(v,1i), is obtained by either drawingon the left with leaves fromthroughi 4+ c¢; — 1
andw on the right with leaves from+ ¢; throughi + ¢; + ¢; — 1, or in the opposite
order. We choose the ordering that minimizes the value.

D(v,i) = min{D(u,i) + D(w,i + ¢1), D(w,i) + D(u, i+ c2)} .

The optimal solution for the tree iB(root, 1). The correctness of the algorithm is
straightforward. The algorithm can be rundi{n?) time, since there are — 1 internal
nodes and for each node we do a constant amount of computaibmost positions.

4 A Reduction Method for Two-tree Crossing Problems

When both leaf orderings in a tanglegram are allowed to chatige complexity of
crossing minimization increases greatly. While the casere/bne tree is fixed (OTCM)

is solvable in polynomial time, the TTCM problem, where tdaying of both trees is
mutable, is NP-hard [11]. However, the special case of dngdka tanglegram has a
drawing with zero crossings (planarity testing) can beaoiw linear time [11].

4.1 Two-tree Tanglegram Planarity
We first define a natural extension of tanglegrams for plangesting.

Definition 3. Anaugmentedanglegram is a tanglegram with the roots of the two trees
joined by an edge. This edge is called thegmented edge

Lemma 4. A tanglegram has a proper drawing with zero crossings iffdngmented
tanglegram has a planar drawing.

Proof. The “if” direction of the lemma is straightforward. For theher direction, con-
sider a planar drawing of the augmented tanglegram. If thevithg of the augmented
tanglegram is proper, removing the augmenting edge givespusper planar drawing.
If the drawing of the augmented tanglegram is not proper, aedrto show a way to
rearrange the edges of this drawing to produce a proper dgawi

To do so, first contract the internal edges of the two treesgddor the two edges
out of each root. During the contracting process, showngnZino new planar regions
are produced. Regions that are bounded between the intetlgak of one tree, the
edges connecting the leaves, and the internal edges oftike tote vanish when the
internal edges are contracted (see Fig. 2). We call thetheggraph theeduced graph
and label the root and its two children, u1, v1, respectively, in one tree ang, us, vo
in the other.

(b)

Fig. 2. (a) & (b): Contraction process: After contracting the dakimternal edges, planar region
2 vanishes. The new edge can be thought of as containing tlenrgvithin it, and is called a
super-edge. (c) & (d): Avoidind<s,3 minor: There are at most 3 edges between paifsv:)
and(uz,v2). (d) is not proper. The edges can be rearranged to form (c).

There are four possible edges betwéen, v; } and{us,v2}. We call these edges
between the two treesuper-edgesEach of these super-edges represents the union
(merger) of some of the regions. We claim that at most threthede edges exist. If

all four edges existed, then together with the augmented @dgr.) they would form
K3 3 (see Fig. 2) contradicting the planarity of the originalwiireg.

Without loss of generality, let the three super-edges(f#g uz), (v1,v2) and
(uz,v1). Any drawing on the reduced graph with these edges can bawedio a
proper drawing of the reduced graph (as the example in FigR&jrranging the super
edges is equivalent to rearranging of the edges and then®giothe original graph.
Now expanding the edges in the reverse order of contracti@s gis a proper drawing
for the tanglegram. a

The idea of the proof can be extended to get an algorithm taemgites a proper
drawing by setting a convention for left and right childremdaemembering the left
and right order on the children during edge contraction.dider of some edges might
be reversed in rearranging the super-edges. Finally, ther arformation is used recur-
sively during the edge expansion to obtain a proper drawing.

Theorem 5. Deciding if a tanglegram admits a planar drawing can be daménear
time.

Proof. Apply the linear planar graph drawing algorithm [15, 24]te lugmented tan-
glegram. Follow the previous lemma to obtain a proper drgwin a

4.2 Fixed Parameter Tractability of TTCM

The two-tree problem (TTCM), when restricted to binary $reis fixed parameter
tractable with parametdr, the number of crossings, as shown by Fernau et al. [11].
Their proof relies on the trees being binary and achievesakelt through a compli-
cated analysis of quadruples of leaves. They conjectufiewty for d-ary trees for

d > 2. We use our reduction method to utilize the elegant work of&@bayashi and
Reed [18]. We give a simple proof that resolves the conjeatdif11] that TTCM is
fixed parameter tractable over the class of all finite trees:

Theorem 6. TTCM is fixed parameter tractable over the class of all finiez$ with
parameterk, the number of crossings. The algorithm takes time quadiati.

As in the planar drawing problem, we create an augmenteditgragn and use the
FPT algorithm of crossing minimization in graphs from [1i8ke in the planarity case
we want to disallow crossings with internal edges. To aahtéis, we add: duplicate
edges around each internal edge and the augmented edge.itftesnal edges cross,
there will ben? crossings, which is more than the number of crossings in ¢oghs
proper drawing. Similarly, anything but the proper drawirighe edges connecting the
leaves will increase the number of crossings. This ensuasep drawing. The proof
of Theorem 6 is in [27].

5 Integer Programming solutions

Integer Linear Programming (ILP) is one of the standard @ggines to obtain fast solu-
tions for hard problems as they provide provably optimaligohs. Though the runtime

is not polynomially bounded, they are fast in many practszttings, and are often
better than provably efficient methods. We describe ILP fdations for the two-tree
optimization problems considered in this paper.

5.1 Crossing minimization

The formulation for crossing minimization is based on thkofeing intuition: if the
leafi is to the left of leafj in both of the trees, then the edges connecting’thend the
j's do not cross. The edges cross if there is an inversion ioitther.

To realize this, we introduce binary variables; for all leaf pairs(z, j) such that
i < j.z;;is setto 1 iffi appears beforgin the linear order. For every internal nokle
we introduce a variablg,. Letc; andes be the two children of. iy, = 1if ¢1,co areto
the left and right, respectively, and = 0 otherwise. For leavesin the subtree below
c1 andj in the subtree belows, if i < jthenz; ; =1 <= y; = 1,502, ; = yg. If
j < itheny, =1 — x; ;. Analogously, for the second tree we define these constraint
over variables:; ; andy;.

If 7 is to the left (or right) ofj in the drawing of both trees in the tanglegram, then
there is no crossing.andj cross only when the order is reversed. That,ig,cross iff
x;j # v ;. Weletz; ; = x; ;@] ;. We can rewrite the XOR as linear inequalities. The
objective function for minimizing the number of crossingshereforenin ZKJ. Zi -

5.2 Distance minimization

We describe two different formulations for the distanceimimation problem. The first
formulation is based on the dynamic programming idea useberone-tree distance
minimization problem. The second uses the simple fact tieatie order of its children
in an internal node determines the relation between thete@nvhe two subtrees.

Dynamic programming versioffror a vertext we set a binary variablg; , = 1 when
the subtree beneath it is placed starting at posjidfor instancey,,.;,1 = 1 always.
If k£ is an internal node, letandj be the its children witl andr leaves in the subtrees
below them.

yrp = 1 implies that node is placed at positiop or p + r. This implication is
written by the inequality; , + ¥ p+r > Y,p- Similarly y; », + ¥ p+1 > Yrp. Bothi
and; cannot be the left (or right) child df simultaneously, sg; , + y; , < 1.

Every leaf must occur exactly once. For every Ieaherefore,zre[n] Y- = L.
Every position must have exactly one leaf,'60 € [n], >, jeavesvi,r = 1. We use
variablesg)’ and similar inequalities for the second tree.

Binary variables;; ..~ = 1 only when the leaf is present at positions ' in the
two trees respectively, ,. .~ contributesr — 7’| to the distance value. Therefore, the
objective function isnin » Sieq; e 2orepn 17— 1200

Distance versionConsider an internal nodeavith m leaves in its subtree and let its two
children bec;, co. Let j, k be leaves in subtrees, ¢, respectively. Letr; denote the
position of leafj in the linear ordern]. Introduce a binary variablg for each internal

Table 1. Running time of ILP solutions: average time, in secs, isayed over 30 runs.

Crossing Problems Distance problems
Input size| Crossing ||Input Size| Distance |Dynamic Programming
Time]variance] Time]variance Time] variance
10 0.02 0.01 6 0.12 0.04 0.41 0.25
20 0.32 0.17 10 16.89 19.21 36.34 18.69
30 2.03 0.54 11 75.93 110.8Q0 99.04 56.06
40 7.79 1.7 12 182.1Q 245.75 324.34 211.44
50 |20.89 3.6 15 |781.881171.998663.0 6208.87

nodei to model the choice of; or ¢y being the left childy; = 1 whene; is the left
child (andj is to the left ofk). The opposite is implied by; = 0.

y=1<+<= —(m—-1)<z; —xp < -1 Q)
Y=0 <= 1<z; -2, <m-1 (2)

These implications are written as the following inequeditic; —z, +1 < m(1—y)
andz; — xp +my > 1.

Next we need to ensure that all leavies< z; < n and allz;’s are unique. The
uniqueness constraints can be written in a number of waysnddel them as a match-
ing problem. It has been observed in the ILP literature thatvertices of the match-
ing polytope are all lattice points and therefore the ILPtwafe need not apply fur-
ther reduction techniques [19]. As usual, we define similagualities on variables,
andy; for similar constraints on the second tree. Finally, therojziation criterion is
min), |z; — x|

5.3 Timing

To generate a random tree we take a random subdet.cfhis is the set of leaves on
the left subtree of the root. The rest of the elements arekeaf/the right subtree. We
recurse on these subsets to generate the random tree. Wevtagech trees to form a
random tanglegram.

We executed the ILP formulations of the problem using CPLEXsn a Pentium
IV 3 GHz dual-core desktop machine with 2GB of RAM. The datavehin Table 1 are
obtained by averaging the running time over thirty runs €actproblems of various
data sizes. The crossing minimization problem is very fake distance version is
slower in comparison. It is relatively fast for small datasé he distance version is
about three times faster than the dynamic programmingamrgie see in our examples
that most of the executions run in about less than half ofépented mean time. There
are about 10% of the cases that take much longer, leadingreesed variance. In most
of these cases CPLEX obtains the optimal solution quickfinois a solution very close
to optimal solution very soon, but takes much longer to makenimprovements or
to ensure there is no better solution.

6 Dwyer and Schreiber’s seesaw heuristic

Though [4] shows that, assuming the Unique Games Conje¢here is no constant-
factor approximation algorithm for TTCM, Dwyer and Schi&il8] present a heuristic
for n tree crossing minimization that iteratively solves OTCM éach tree. The idea
is to fix <5, then solve OTCM o1y, then fix<; and solve OTCM off». They found

that this yielded a good solution after ten or fewer itenadioNe call this “seesawing”.

Theorem 7. For any N, there is ann > N, and a tanglegram drawing of size for
which the optimal drawing produced by seesawing F’4s2) more crossings than an
optimal drawing.

We call a drawing that can’t be improved by seesavgagsaw-optimal/e prove
the theorem (in [27]) by finding one tanglegram that has aaseeptimal drawing that
is inferior to its optimal drawing. By iteratively replagrthe leaves with copies of the
drawing, we create a chain of seesaw-optimal drawings wifhaairatically increasing
number of crossings, while the optimal crossing numbersstayall. From this we
describe planar tanglegrams of arbitrarily large size amedaw-optimal drawings with
2(n?) crossings.

7 Conclusion and Open Problems

We have shown several significantly faster algorithms fogkagram drawing, includ-
ing for planar, k-crossing, and one-tree optimization feots. We have also intro-
duced the footrule distance metric for tanglegrams and sham efficient one-tree
drawing algorithm. We conjecture that the two-tree distaminimization problem is
NP-complete. Future work includes improving drawing hstics for tanglegrams with
the distance metric. Our ILP solution for the crossing neesiefficient, but the ILP
solution for the distance problem is slower and may perhapisriproved. It also re-
mains to explore the seesaw method for the distance heuttstiugh we have shown it
can be larger than the optimal solution fyn?) in the crossing case. For the one-tree
problem, though distance between permutations can be dechpulinear time (while
counting crossings take3(n logn)), distance seems the harder measure to optimize.

References

[1] M. S. Bansal, W.-C. Chang, O. Eulenstein, and D. FerearBaca. Generalized binary
tanglegrams: Algorithms and applications.BiCoB, 2009.

[2] P. Bertolazzi, G. D. Battista, C. Mannino, and R. TamassOptimal upward planarity
testing of single-source digraphSIAM J. Comput.27(1):132—-169, 1998.

[3] T.C.Biedl, F.-J. Brandenburg, and X. Deng. Crossings germutations. litsraph Draw-
ing, pages 1-12, 2005.

[4] K. Buchin, M. Buchin, J. Byrka, M. Nollenburg, Y. Okanmt R. I. Silveira, and
A. Wolff. Drawing (complete) binary tanglegrams: Hardneapproximation, fixed-
parameter tractability. IGraph Drawing Springer-Verlag, 2008.

[5] A.Burtand R. Trivers.Genes in ConflictBelknap Harvard Press, 2006.

(6]
[7]
(8]
9]
(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]

(19]
(20]

(21]
(22]
(23]
(24]
(25]
(26]
(27]

(28]

P. Diaconis and R. L. Graham. Spearman’s footrule as ssmeeof disarray.Journal of
the Royal Statistical Society. Series B (Methodologj&8)2):262—-268, 1977.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank agagtémn methods for the web.
In WWW pages 613-622, 2001.

T. Dwyer and F. Schreiber. Optimal leaf ordering for twadaa half dimensional phyloge-
netic tree visualisation. IAustralasian Symp. on Info. Vimages 109-115, 2004.

R. D. M. P. (Ed.). Tangled Trees: Phylogeny, Cospeciation, and Coevolutldniversity
Of Chicago Press, 2002.

R. Fagin, R. Kumar, and D. Sivakumar. Comparing top tslisin SODA pages 28-36,
2003.

H. Fernau, M. Kaufmann, and M. Poths. Comparing treascydssing minimization. In
FSTTCSpages 457-469, 2005.

L. R. Foulds and R. L. Graham. The Steiner problem in pgghy is NP-completeAdv.
in Appl. Math, 3(1):43-49, 1982.

M. Garey and D. S. Johnson. Crossing number is np-cam@AM Journal on Algebraic
and Discrete Method<}:312-316, 1983.

R. Hinze and R. Paterson. Finger trees: A simple germrgdose data structurdournal
of Functional Programmingl6(2):197-217, 2006.

J. E. Hopcroft and R. E. Tarjan. Efficient planarity tegt J. ACM 21(4):549-568, 1974.
J. P. Huelsenbeck and F. Ronquist. Mrbayes: Bayesfaneince of phylogeny, 2001.

H. Kaplan and R. E. Tarjan. Purely functional repreatinhs of catenable sorted lists. In
STOC '96 pages 202-211. ACM, 1996.

K. Kawarabayashi and B. Reed. Computing crossing nuritbénear time. InSTOG
pages 382-390, 2007.

J. Lee. All-different polytopesJournal of Combin. Optim6(3):335—-352, 2002.

A. Lozano, R. Y. Pinter, O. Rokhlenko, G. Valiente, and Eiv-Ukelson. Seeded tree
alignment and planar tanglegram layout VIlK\BI, pages 98-110, 2007.

D. M.Hillis, T. Heath, and K. S. John. Analysis and viSmation of tree spaceSystematic
Biology, 3:471-482, 2005.

M. Nollenburg, D. Holten, M. Volker, and A. Wolff. Draing binary tanglegrams: An
experimental evaluation. IALENEX pages 106—119. SIAM, 2009.

S. Roch. A short proof that phylogenetic tree recorgtom by maximum likelihood is
hard. [EEE/ACM Trans. Comp. Biol. and BioinB(1):92-94, 2006.

W. K. Shih and W.-L. Hsu. A new planarity testheor. Comput. S¢i223(1-2):179-191,
1999.

D. Swofford. PAUP*. Phylogenetic Analysis Using Parsimony (*and Othethbds). Ver-
sion 4 Sinauer Associates, Sunderland, Massachusetts, 2002.

D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. HilliPhylogenetic inference. In
Molecular Systematics, Second Editipages 407-514. Sinauer, 1996.

B. Venkatachalam, J. Apple, K. S. John, and D. Gusfieldtadgling tanglegrams: Com-
paring trees by their drawings. Technical Report CSE-2D09€ Davis, CS, 2009.

W. N. Wan Zainon and P. Calder. Visualising phylogenétees. In W. Piekarski, editor,
Seventh Australasian User Interface Conference (AUICR0@Bume 50 ofCRPIT, pages
145-152, Hobart, Australia, 2006. ACS.

