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Abstract Finding the best phylogenetic tree under the maximum-parsimony optimality criterion is
computationally di�cult. We quantify the occurrence of such optima for well-behaved sets of data.
When Nearest Neighbor Interchange (NNI) operations are used, multiple local optima can occur even
for “perfect” sequence data, which results in hill-climbing searches that never reach a global optimum.
In contrast, we show that when neighbors are defined via the Subtree Prune and Regraft (SPR) metric,
there is a single local optimum for perfect sequence data, and thus every such search finds a global
optimum quickly. We further characterize conditions for which sequences simulated under the Cavender-
Farris-Neyman and Jukes-Cantor models of evolution yield well-behaved search spaces.

Keywords: maximum-parsimony, compatibility, phylogenetic islands, attraction basins, tree searching.

1 Introduction

Finding the optimal phylogeny, or evolutionary history, for a set of species is a central goal of biology.
The maximum-parsimony optimality criterion for a phylogenetic tree is often used due to its simplicity in
capturing evolutionary change and its ease of computation [15]. Given traits or characters for a set of taxa,
the maximum-parsimony criterion seeks the tree which has the minimal number of changes of character
states across its edges. For a given tree with n taxa and associated character sequences of length k, this
score can be calculated in linear time in n and k [15]. However, to exactly find the optimal tree (that is,
the tree with smallest maximum-parsimony score) is computationally di�cult [17]. The size of the search
space of trees grows super-exponentially in the number of taxa [32], and exact algorithms (e.g. [21,22])
are thus only e↵ective for small sets of taxa. Therefore, heuristic search methods are often used (e.g. [19,
31,39]). The underlying structure of these methods follows the local search paradigm: at each step, a
“neighbor” of the current tree in the search space is chosen to be the new tree, and this is repeated until
a local optimum is reached or time is exhausted. In the simplest case, a “hill-climbing” approach is used,
where the chosen tree at each step is the best-scoring neighbor, though more sophisticated techniques
have been explored, such as simulated annealing [11] and Monte Carlo methods [31] (see [40] for a survey
of popular approaches).

We examine two popular operations to define neighbors of trees and their e↵ectiveness for hill-
climbing search with well-behaved data. Roughly, the Nearest Neighbor Interchange (NNI) operation
“swaps” subtrees around an internal branch of the tree [32], and the Subtree Prune and Regraft (SPR)
breaks o↵ a subtree and regrafts it to a di↵erent branch [20]. These operations are metrics and can be
used to define a search space of trees. For a given metric, one can view the space of all binary n-leaf trees
as a graph with vertices labeled by the trees. Neighbor vertices are connected by an edge when they di↵er
by a single application of the relevant operation, and a neighborhood of a vertex is a set of all the vertices
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Fig. 1 The center tree is an unrooted caterpillar tree, T , on 7 leaves. Each node is a 7-leaf tree, colored by its parsimony
score with respect to a character sequence compatible only with T (darker is more optimal). Nodes are arranged in concentric
circles by their distance from T . Local minima are outlined with a thicker green rule. Left : NNI space has multiple local
minima, even among the worst-scoring trees. Right : SPR space has a single attraction basin and one local minimum, T .

that share an edge with that vertex. Di↵erent metrics yield graphs that di↵er in both neighborhood
size and diameter (the maximum distance between two vertices in the graph), suggesting very di↵erent
results for heuristic search. For example, an unrooted tree with n leaves has 2n�6 neighbors in the search
space with NNI operations and (2n� 6)(2n� 7) neighbors in the search space with SPR operations [1].
The maximal distance between any two trees using NNI operations is ⇥(n lg n) [26], while the maximal
distance under SPR is O(n). Each search space can be divided into attraction basins : all trees whose
search would lead to the same local optimum under the greedy algorithm. While commonly used for
analyzing for steepest ascent algorithms and real-valued functions optimality functions [9,18], it can be
extended to our graph search space by using hill-climbing as the greedy search algorithm.

Empirical studies suggest that the search spaces resulting from these two operations di↵er greatly.
Maddison [27] defined an island as a connected set of trees with scores better than some number L.
For multiple biological data sets, he found that there were multiple islands for all tree-manipulation
operations he studied, including NNI and SPR. Kirkup and Kim [25] also investigated the search space
of trees under NNI and SPR, observing that as the number of taxa increased, so did the number of local
optima found via heuristic search. Money and Whelan [28] examined local optima for another popular
optimality criterion: the maximum-likelihood criterion [16]. They analyzed the well-studied yeast data
set of Rokas et al. [33], which consists of 106 genes for 8 taxa of yeast. While the search spaces for all of
the genes under NNI yielded multiple local optima and multiple attraction basins, under SPR only one
gene had a search space with multiple local optima under the GTR+� model of evolution, and only five
had multiple optima under the simpler Jukes-Cantor model of evolution.

We rigorously show the di↵erence between NNI and SPR search spaces for maximum-parsimony with
“perfect data”—sequences of compatible characters that are displayed by exactly one tree (a “perfect
phylogeny”). For any such set of sequences, the SPR search space has only one attraction basin and one
local optimum; whereas, there exist perfect data for which the NNI search space has multiple attraction
basins and multiple local optima. We further show that if character sequences are generated, with suitable
parameters, under the Jukes-Cantor or Cavender-Farris-Neyman models, then hill climbing search with
SPR neighbors will, with high probability, find the model tree, echoing previous results [2,4]. We include
experimental results on both biological and simulated data.
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2 Methods

We use the precise, but terse, notation of Semple and Steel [35], since we rely heavily on it in the proofs
of the results. See [23,40] for more biologically inspired versions.

Throughout, n is the number of taxa, and T
n

= ({1, . . . , n}, E) will refer to a binary phylogenetic
tree (referred to here as a binary tree for simplicity) on n leaves with ⇢ denoting the root, when present.
Two distinct leaves of a tree are a sibling pair if they are adjacent to a common vertex. Trees with the
minimal number of sibling pairs are called caterpillars. A balanced tree of height h � 0 is a rooted binary
tree with n = 2h leaves, each of which is separated from the root by exactly h edges, and an unrooted

balanced tree can be formed by simply deleting the root. A tree can be augmented by a real-valued
function w : E ! R that assigns weights to the edges. Following Atteson’s notation [2], we extend those
weights to any two leaves of the tree, i and j by assigning the sum of the weights on the unique, minimal
path between them. A distance matrix, DT for tree (T,w), has entries d

i,j

, the weighted path distance
between i and j in (T,w).

A character on a set L is a function, �, from L into a set C of character states. We assume characters
are defined on all leaves, and exclude the more general possibility that a character can be defined on
subset of leaves (and undefined on the remaining leaves). A character � is convex on a tree T = (V,E)
if there exists �̄ : V ! C such that �̄ extends � and for each ↵ 2 C, the subgraph of T induced by
{v 2 V : �̄(v) = ↵} is connected. A collection of characters on L is said to be compatible if there exists
a tree on which all the characters are convex.

The changing set of a function f on V is Ch(f) = {{u, v} 2 E : f(u) 6= f(v)} and the changing number

of f , ch(f) is the cardinality of Ch(f). The parsimony score, `(�, T ), of � on T is the minimum value
of ch(�̄) over all extensions �̄ of � to T . We refer to such extensions as minimal. Let S = �1,�2, . . . ,�k

be a sequence of characters on L. The parsimony score, `(S, T ) of S on T is the sum of the individual
parsimony scores of the characters on the tree:

`(S, T ) =
kX

i=1

`(�
i

, T )

When restricting to a single edge of a tree, the parsimony score, `(S, T |{u,v}), is the changing number,
ch(S, T ). That is, it is the amount of change between the labellings of u and v. We note that the notation
can be extended to specific extensions of the sequence of characters. If we wish to denote the changing
number with respect to a specific extension to the internal vertices U , we will write `(S,U , T ) for the
parsimony score on the tree `(S,U , T |U ) or `(S,U , {u, v}) for the number of characters in the seqeunce
S for which the extension (specified by U) require a change on the edge {u, v}. The parsimony score,
`(S, T ), can be computed in linear time [13,15]. For unrooted trees, a root can be arbitrarily added for
the computation of the score. The rough idea (often called “Fitch’s algorithm”) is to assign labelings to
the internal nodes in two passes: the “first pass” starts at the leaves, and assigns tentative labels starting
with parents of leaves, and then parents of other labeled nodes, continuing until the root is labeled. The
tentative label at each node is assigned character by character: if the children have overlapping labels for
a given character, then the parent is also assigned the labels common to both children. If the children
have di↵erent labels for a given character, then those union of the labels is assigned. The “second pass”
starts at the root and resolves any unambiguities in the tentative labeling and then to the children
of nodes with resolved labelings until all leaves have been visited. It was shown that this results in a
minimal labeling from which the parsimony score can be computed. We will assign scores to trees based
on their parsimony score with respect to character sequences assigned to the leaves. `(S, T ) refers to the
parsimony score of tree T with respect to the sequence of characters S. We will call sequences that are
compatible with some tree perfect. If a tree is compatible with a set of sequences, then it is optimal, and
often called a perfect phylogeny. We will assume that perfect phylogenies are binary trees.

We focus on two tree rearrangement operations: Nearest-Neighbor Interchange (NNI) and Subtree
Prune and Regraft (SPR) and their associated metrics (see Figure 2). A (discrete) treespace is a graph,
G = (T

n

, E), where T
n

is all n-leaf trees and there is an edge between two trees T1 and T2 (i.e. {T1, T2} 2

E) if and only if they di↵er by a tree rearrangement operation. The neighbors or neighborhood of a tree
T are all trees that di↵er from T by a single tree rearrangement operation. Maddison [27] defines an
island as a connected set of trees in treespace with scores better than some number L. For a set of taxa,
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Fig. 2 Left: The two NNI tree rearrangements possible from the tree with an edge separating the subtrees A and B from
the subtrees C and D. Right: A possible SPR tree rearrangement where the subtree containing subtrees X, Y , and Z is
pruned and regrafted on the edge neighboring subtree, C.

a score can be assigned to each tree measuring how well each tree agrees with a fixed set of character
sequences [15,16].

We will examine character sequences from biological data sets as well as those generated under
standard model of evolution: the 4-state Jukes-Cantor (JC) model [24] and the 2-state Cavender-Farris-
Neyman (CFN) model [7,14,30]. Roughly, in each of these models, at each edge and for each character
there is an equal probability of that character changing to another character state (for more details,
see Semple & Steel or Wheeler [35,40]). Heuristic search for optimal trees often follows a hill climbing

approach, where at each step the neighborhood of the current tree is examined and the best scoring tree
is chosen, and the process repeated (see [10]). This algorithm can be stymied by the presence of local
optima. We define a local optimum as a group of connected trees, all with equal scores, and all having
better scores than the scores of any of the neighbors of the group. Note that this definition is more strict
than Maddison’s islands. This local optimum may, indeed, be a global optimum, but it is possible that
it is not. In that case, if it is encountered during a hill-climbing search, the search algorithm may stop at
the local optimum, and therefore report an incorrect tree or group of trees as the best tree in the space.
We extend the defintion of attraction basin [18] to our discrete search space to be the set of all trees who
lead to the same local optimum under a hill-climbing search.

3 Theoretical Results

We show that SPR-treespace has only a single local optimum, and thus a single attraction basin, for the
maximum-parsimony criterion evaluated with perfect sequence data on binary trees.

Phrased in terms of search, we show that every binary tree has either a neighbor with a better
parsimony score or is the optimal tree (the trivial case), thus yielding a search space where the naive
hill-climbing routine always finds the optimal tree. To show this, we first look at sibling pairs that occur
in the optimal tree. If a sibling pair from the optimal tree is missing from the current tree, we prove that
performing the SPR operation that re-joins the sibling pair results in a tree with a better parsimony
score than that of the current tree. We note that there could be other trees in the SPR neighborhood
with even better parsimony scores, but we need only that there is some tree with a better score in the
neighborhood (not necessarily the best score) to show that the current tree is not a local optimum.

Theorem 1 Let S be a sequence of binary characters on leaf set L that is compatible with exactly one

unrooted binary tree, T , on leaf set L. Suppose a, b 2 L are a sibling pair in T . If T 0
is any other binary

tree in which a and b are not a sibling pair, then either of the two SPR moves that join the sibling pair

a, b will result in a new tree with better parsimony score than that of T 0
.

Proof: Let S = {�1,�2, . . . ,�k

} be a sequence of characters on L that is compatible with exactly one
binary tree, T . Suppose a, b 2 L are a sibling pair in T with parent node p. Let T 0 be another binary
tree in which a and b are not a sibling pair. We claim that moving a from T 0, via an SPR move, to be
next to b decreases the parsimony score. In T 0, label the parent of a as q. Since q is an internal vertex
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Fig. 3 a) A possible topology for T 0; b) The most di�cult topology for T 0 considered in the proof of Theorem 1; c) The
tree T 0

⇢ with optimal labels on internal nodes.

and T 0 is a binary tree, q has two other neighbors besides a, which we call q1 and q2. By assumption, q
is not the parent node of b, so without loss of generality, suppose that b is a leaf of the subtree rooted at
q1 (as in Figure 3a). In order to find the parsimony score, we root T 0, place the root ⇢ between q and a
and call this rooted tree T 0

⇢

.
We classify the set S of sequence of characters into the following subsets:

– S

a

= {� 2 S | �(a) 6= �(b),� is constant on L \ a}.
– S

b

= {� 2 S | �(a) 6= �(b),� is constant on L \ b}.
– S

a[b

= {� 2 S | �(a) = �(b), 8l 2 L \ {a [ b},�(a) 6= �(l),� is constant on L \ {a [ b}}.
– S

⇤ = S \ (S
a

[ S

b

[ S

a[b

).

By hypothesis, S are compatible with T . (We note that every character either agrees on a and b or
is “non-informative” in that it provides no information for determining the relationships between the
leaves since it has the same value on all leaves or on all but one leaf.) Since a and b are a sibling pair of
T , the last set is constant on a and b. Let �

a

= |S

a

|, �
b

= |S

b

|, �
a[b

= |S

a[b

|, and � = �
a

+ �
b

+ �
a[b

.
Without loss of generality, we may assume that a and b have the following labellings:

a = 1�a[b1�a0�b�
�+1(a) · · ·�k

(a)

b = 1�a[b0�a1�b�
�+1(b) · · ·�k

(b)

where �
i

(a) = �
i

(b) for i = � + 1, . . . , k. Most importantly, as a result of this labeling, any other leaf
` 2 L must have the labelling ` = 0��

�+1(`) · · ·�k

(`) by hypothesis.
Assume that S is a minimum extension for T 0 computed via Fitch’s algorithm. By construction,

either q2 is a leaf and its labelling must begin 0�, or it is the root of some subtree of T 0. However, since
the labelling of the leaves of this subtree must all begin 0�, any minimum extension S will have the
labelling of q2 beginning 0� in order to minimize changes.

Next, we show that there is a minimal extension S in which q has labelling 0�. We will consider the
most di�cult case (see Figure 3b), in which b is a direct descendant of q1, and show that this is the case.
Suppose the subtree rooted at q1 is merely a sibling pair, where b is one leaf, and the other leaf is `.
In this case, the labelling of q1 must start with a sequence from {0, 1}�a[b0�a

{0, 1}�b , where the choice
{0, 1} will be fixed by a second pass.

Since q2 begins 0� and q1 begins with a sequence from {0, 1}�a[b0�a
{0, 1}�b , to minimize change

q must begin 0�a[b+�a+�b . As a begins 1�a[b1�a0�b , the root, ⇢, must begin with a sequence from
{0, 1}�a[b

{0, 1}�a0�b , and there is a minimal extension, S, in which ⇢ begins 0�a[b+�a+�b . Thus we have
the following labellings:

⇢ = 0�a[b0�a0�b�
�+1(⇢) · · ·�r

(⇢)

a = 1�a[b1�a0�b�
�+1(a) · · ·�r

(a).

where � = �
p

+ �
a

+ �
b

.
Therefore, l(S,A, {⇢, a}) � �

p

+ �
a

. Removing a must decrease the overall parsimony score by at
least l(S,A, {⇢, a}), even if we retain the same labellings for the internal vertices; the minimum extension
on this new tree must either be the same as that of the old tree, or decrease the parsimony score even
more.
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(We note that the simpler case where q and the parent of b are not the only nodes on the path
between a and b follows by a similar argument; the parent of b will have the labelling {0, 1}�p0�a

{0, 1}�b ,
but with other nodes between the parent of b and q1, q1 must have a labelling of 0� even after just the
first pass.)

Finally, we show that reattaching a to the same branch as b increases the parsimony score by exactly
�
a

. If r is the parent node of b, then attach a to the parent edge of b, and label the new parent node of
a and b as p0.

If we root T 0 and complete a first pass, we find that the parent node, p, of a, b in T has the represen-
tation from 1�a[b

{0, 1}�a
{0, 1}�b�

�+1(p) · · ·�r

(p), as a and b only di↵er at the second and third subse-
quences of characters. However, since every other leaf in T 0 has a labelling beginning with 0�a[b+�a+�b ,
after the first pass the direct ancestor of p will have a labelling beginning with {0, 1}�a[b0�a0�b . For an
optimal labelling, p will have labelling 1�a[b0�a0�b�

�+1(p) · · ·�r

(p).
Thus, the SPR move that moves a to the position of b reduces the overall parsimony score by at least

�
a[b

. A similar argument shows that the SPR move that moves b to the position of a strictly reduces
the overall parsimony score. ⇤

Theorem 1 shows that joining leaves to form sibling pairs of the optimal tree reduces the parsimony
score. By similar argument, joining subtrees to form larger subtrees of the optimal tree also reduces the
parsimony score:

Corollary 1 Let S be a sequence of binary characters on leaf set L that is compatible with exactly one

unrooted binary tree, T , on leaf set L. Suppose T
L

, T
R

, (T
L

, T
R

) are subtrees of T . If T 0
is any other

tree which contains T
L

and T
R

as subtrees but does not contain the subtree (T
L

, T
R

), then either of the

two SPR moves that join the subtree (T
L

, T
R

) will lower the parsimony score of T 0
.

From this, it follows that there is single local optimum for SPR operations for perfect data:

Theorem 2 Let S be a binary sequence of characters on leaf set L that is compatible with exactly one

binary tree, T . Then, for all binary trees, T 0
, on L, if T 0

6= T , there exists a binary tree T 00
that is an

SPR neighbor of T 0
and l(S, T 00) < l(S, T 0).

Proof: Assume T 0
6= T . Then there exist subtrees T

L

and T
R

such that T
L

, T
R

, and (T
L

, T
R

) are
subtrees of T ; T

L

and T
R

are subtrees of T 0; and (T
L

, T
R

) is not a subtree of T 0. Let T 00 be the result
of pruning the subtree T

R

from T 0 and regrafting it on the edge for the subtree T
L

. By construction,
T 00 contains the subtrees T

L

, T
R

, and (T
L

, T
R

) and is one SPR operation away from T 0. By Corollary 1,
l(S, T 00) < l(S, T 0). ⇤

As a corollary, we note that this implies that in the SPR search space there is only one local optimum
(and thus a unique global optimum) and the hill-climbing algorithm always finds it for perfect data:

Corollary 2 Let S be a sequence of binary characters on leaf set L that is compatible with exactly one

binary tree, T . Then for all binary trees, T 0
, on L, a hill-climbing search that starts at T 0

will always

end at T .

The same result does not hold when neighbors are defined via NNI operations. Figure 1 provides a
counterexample in the case of a 7-taxon tree. In addition, we show that, in general, there exists a sequence
of characters that is compatible with exactly one tree on n leaves for which multiple local optima exist
in the search space with neighbors defined by the NNI operation. To show this, we construct a sequence
that is compatible with exactly one tree (and thus has a global optimum) but whose search space has
multiple attraction basins. For each edge of a balanced tree, we include a character that changes only
on that edge. This creates a sequence which is only compatible with the initial balanced tree. We then
construct a new balanced tree where, roughly, each sibling pair has a leaf from the left subtree of the
initial tree and a leaf from the right subtree of the initial tree. We then show that this construction will
have the same parsimony score as all of its neighbors, leading to a search space with multiple attraction
basins. The last part of the proof handles the case where the number of leaves n 6= 2m for some m.

Theorem 3 For n � 5, there exists a sequence, S, of binary characters on L that is compatible with

exactly one binary tree, T , and for which there are multiple local optima for NNI search space.
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Fig. 4 Parsimony changes on a rooted subtree with four taxa: Original rooted subtrees are on the left and all possible
rooted subtrees after a single NNI move are on the right. Grey edges are edges across which a single character changes,
and that therefore add to the parsimony score. Note that the number of grey edges (thus the parsimony score) does not
change in any row from the left to the right of the image.

Proof: The cases of n = 5, 6, 7 are straightforward (we include an illustration of n = 7 in Figure 1).
For n > 7, we first show the result explicitly for n = 2m for m � 3 and then show how sequences can be
constructed for all n that are not a power of two.

First, we set up our counterexample. Suppose we have an unrooted balanced binary tree T with 2m

leaves, for some m � 3. We can find the edge e that splits T into two identical topologies, each with 2m�1

leaves; call these subtrees T1 and T2. Note that e is incident with ⇢1, the root of T1, and ⇢2, the root of
T2. We then give T a set of compatible character sequences S as follows: If T has 2m leaves, then it has
2 ·2m�3 edges, thus we let S = {�1, . . . ,�2·2m�3} be 2 ·2m�3 binary sequences. Let �1 be the character
that is 0 on ⇢1 and 1 on ⇢2, let the next 2m � 2 characters in S be those that change across the edges of
T2, and let the final 2m � 2 characters be those that change across the edges of T1. Note that assigning
states to the characters in this manner means that the remaining characters on the leaves will be given
1’s or 0’s corresponding to the subtrees. That is, by construction, if `1 is any leaf of T1, then it must have
�1(`1) = · · · =�2m�1(`1)= 0 and if `2 is any leaf of T2 then it must have �2m(`2)= · · · = �2·2m�3(`2) = 0,
and �1(`2) = 1.

Next, we construct another balanced binary tree T 0, in the same space as T , that has the same
parsimony score as all of its NNI neighbors. To do this, we keep the topology of the original tree T , but
we permute the leaves such that every sibling pair consists of one leaf from T1 and one leaf from T2.
If we root T 0 on its center edge (creating a rooted balanced tree) and perform a first pass, then every
internal vertex will have a labelling consisting entirely of zeros or unresolved character states. Since
any characters that are left unresolved at the root can be chosen to be zero, this means that there is a
minimal extension S, where every internal vertex has a labelling consisting entirely of zeros. This follows
by the construction for this character, and without loss of generality, choosing a from T1 and b from
T2, since then �

i

(a) = 0 and �
i

(b) 2 {0, 1} for 1 < i 2m � 1, and �
i

(a) 2 {0, 1} and �
i

(b) = 0 for
2m< i 2m+1

� 3.
Due to the construction of T 0, any NNI move that swaps subtrees (i.e. does not break any of the

sibling pairs) will yield a new tree with the same minimal extension of S—that is, with all internal
vertices having labellings that consist only of zeros—hence the same parsimony score as T 0. Thus, the
only NNI moves we consider are the ones that break apart a sibling pair. Consider the subtree of T 0 in
Figure 4. We perform the NNI move diagrammed and call this new tree T 00. For any arbitrary character
�
i

, we show that the parsimony score on this character is unchanged; that is, l(�
i

, T 0) = l(�
i

, T 00).
Suppose the leaves of this subtree are {a, b, c, d}, where a, c are leaves of T1 and b, d are leaves of T2.

Let i 2 {1, 2, . . . , 2 · 2m � 3}. Without loss of generality, there are three possible cases:

1. �
i

(a) = �
i

(b) = �
i

(c) = �
i

(d) = 0
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n

n‒1n‒22m+2 . . .

.

.

.

ρ ρ3

ρ1

ρ2

T1

T2

T3

Fig. 5 Proof of Theorem 1: the topology for the case where n > 9 is not a power of 2. Let m be the largest number such
that 2m < n. The tree consists of a balanced tree with 2m leaves connected to a rooted catepillar with n� 2m leaves.

2. �
i

(a) = 1, �
i

(b) = �
i

(c) = �
i

(d) = 0
3. �

i

(a) = �
i

(c) = 1, �
i

(b) = �
i

(d) = 0

If we only look at the ith character, then in the first two cases, the NNI move does not change the
labellings of the internal vertices in the minimal extension, so l(�

i

, T 0) = l(�
i

, T 00) trivially. In the third
case, it is easy to score both the original subtree and its neighbor; one finds that both have the same
parsimony score (see Figure 4).

Thus, since l(�
i

, T 0) = l(�
i

, T 00) for any arbitrary character �
i

, we find that l(S, T 0) = l(S, T 00) for
any NNI neighbor T 00 of T 0, meaning that T 0 is in a non-trivial attraction basin with score l(T 0). We
note, that, by construction, this is the worst case for a greedy local search strategy (see the conclusion
section for a more detailed discussion).

The extension to the case n 6= 2m follows from the above argument. Suppose n � 9, and n 6= 2m

for any integer m. We choose a specific topology for T , as follows: Let m instead denote the maximal
integer such that 2m < n. We construct the unrooted balanced tree of 2m leaves as before, with congruent
subtrees T1, T2 connected by a center edge e = {⇢1, ⇢2}. The remaining n� 2m leaves of T are arranged
in a rooted caterpillar T3, whose root ⇢3 is attached to e, between ⇢1 and ⇢2. Label this new vertex (the
one adjacent to ⇢1, ⇢2, ⇢3) as ⇢0 (see Figure 5).

Now, we choose the sequence S of compatible sequences on L in a similar manner as before, with the
end result that the sequences of characters S1,S2,S3 that change across T1, T2, and T3 respectively, are
pairwise disjoint.

Finally, we construct a new tree T 000 in the same space as T , whose neighbors have parsimony scores
greater or equal to that of T 0. The construction is the same as before; we rearrange the leaves of T1 and
T2 such that the resulting tree T 000 has the same topology as T , with the exception that each sibling pair
in the two balanced subtrees (which we call T 000

1 , T 000
2 ) consists of one leaf from T1 and one leaf from T2.

We leave the leaves of T3 untouched. T 000 is formed by joining the roots of T 000
1 , T 000

2 , and T3. Note that
completing a first and second pass, taking any unresolved characters at the root to be zero, results in
an internal labelling of T 000

1 , T 000
2 in which all of the characters are zero, and an internal labelling of T3 in

which each edge witnesses one character change.
By the earlier argument, any NNI move that swaps leaves or subtrees within T 000

1 and T 000
2 will result in

a new tree with equal parsimony score, and as T3 is left in its optimal arrangement, any NNI moves that
swaps leaves or subtrees within T3 can only result in a tree with a higher parsimony score. We choose to
root T 000 between ⇢0 and ⇢2, and thus it remains to show that any NNI move that swaps subtrees or leaves
between T 000

1 and T3 will either raise the parsimony score or leave it fixed. But this follows easily from the
construction of the sequence of compatible characters S, when one considers the three NNI moves that
are possible: swapping a subtree of T 000

1 with T3, swapping a leaf of T3 with T 000
1 , and swapping a subtree

of T3 with T 000
1 . (Note that there is no option to swap a leaf of T 000

1 with T3, as n � 9 and T 0
1 must have

at least 4 leaves, arranged in the balanced topology.) However, the last two NNI moves are equivalent,
because T3 is a caterpillar, so the leaf and the subtree of T3 that could be swapped with T1 will have
the same labelling. It is easy to see that swapping a subtree of T 000

1 with T3 will result in a tree with the
same parsimony score as T 000, since any minimal internal labelling will have any internal vertices of T 000

1

with a labelling of all zeros, and ⇢3 with a single character equal to 1 (the character that changed from
⇢0 to ⇢3)—see Figure 4, row 2). By similar arguments to the balanced case, the remaining case, that of
swapping the available leaf of T3 with the subtree T 000

1 , increases the parsimony score by 1.
Thus, we find that l(S, T 0)  l(S, T 000) for any NNI neighbor T 000 of T 0, meaning that T 0 is an

attraction basin, as desired. ⇤
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3.1 Local Optima for Simulated Sequences

While NNI-treespaces can have multiple local optima even for sequences that are compatible with exactly
one tree, SPR-treespaces have a single local optimum. Following the work of Atteson on the Neighbor
Joining method [2,34], we give bounds on how far sequences can be from compatible and still yield a
search space with a single optimum under the SPR metric. We then use this bound to determine, with
high probability, when simulated sequences yield an SPR-search space with a single local optimum. To
simplify the statement of the theorem, we use the “nearly additive” concept [2] that captures when a set
of sequences is extremely close to a set that is compatible with exactly one tree: A distance matrix D is
nearly additive within a factor of c with respect to a weighted binary tree (T,w) if

||D �D
T

||1 <
1

c
min

e2E(T )
w(e)

We can extend this notion to a set of sequences of characters, S, by defining the distance matrix, D
T,S

to have entries, d
i,j

, that are the sum of the changing numbers on the path from i to j with respect to
an optimal extension of S to the vertices of T . We say that S is nearly additive for T if there exists a
weighting w on T such that D

T,S is nearly additive with respect to (T,w).
We can extend Theorem 1 to give similar results for nearly additive sequences of characters with

factor of 3. Roughly, the factor of 3 results from the three edges that surround the subtree moved by the
SPR move. Each one could contribute less than x

3 to the overall bound yielding the desired decrease of
x.

Theorem 4 Let T be a binary tree with leaf set L. Let S be a sequence of characters on L that is nearly

additive with a factor of 3 for T . Suppose T
L

, T
R

, (T
L

, T
R

) are subtrees of T . If T 0
is any other binary

tree which contains T
L

and T
R

as subtrees but does not contain the subtree (T
L

, T
R

), then either of the

two SPR moves that re-form the subtree (T
L

, T
R

) will lower the parsimony score of T 0
.

Proof: Let T be a binary tree on n taxa and let S be a set of sequences that is nearly additive for T .
Then there exists a weighting, w on T such that

||D
T,S �D

T

|| < min
e2E(T )

w(e)

3

Suppose T
L

, T
R

, (T
L

, T
R

) are subtrees of T . Assume that binary tree T 0 contains T
L

and T
R

as subtrees
but does not contain the subtree (T

L

, T
R

). Let ⇢
L

be the root of the subtree T
L

in T , ⇢
R

be the root of
the subtree T

R

in T , p be the vertex connected to ⇢
L

and ⇢
R

in T , and q be the remaining neighboring
vertex of p in T . Set x = min

e2E(T ) w(e). By hypothesis, the di↵erence between any entries in D
T,S

and D
T

is less than x

3 . Thus, |w({⇢L, p}) � ch(S, {⇢
L

, p})| < x

3 and |w({p, q}) � ch(S, {p, q})| < x

3 . By
similar argument to Theorem 1, the removal of the subtree, T

L

from T 0 lowers the score by more than
ch(S, {⇢

L

, p}) + ch(S, {p, q}) which is larger than w({⇢
L

, p})� x

3 +w({p, q})� x

3 . Joining T
L

next to T
R

will raise the score of the resulting tree by less than w({⇢
L

, p}) + x

3 . Thus, the score of the resulting tree
is lower by more than: w({⇢

L

, p})� 2x
3 + w({p, q})� (w({⇢

L

, p}) + x

3 ) = w({p, q})� x � 0 ⇤
As a corollary, Atteson’s analysis [2] for Neighbor joining applies, yielding a lower theoretical, though

quite large bound on su�cient sequence length to guarantee convergence:

Corollary 3 [2] There is a single local optimum for SPR-treespace with probability at least 1 � � if

the sequences generated under the Cavender-Farris-Neyman model for weighted n-leaf tree (T,w) have

sequence length at least:

8 ln(n2/�)

(1� e�x/3)2
e4M

where x is the shortest branch and M is longest distance between leaves of (T,w).

4 Experimental Results

We examine the local search paradigm with both empirical and simulated sequence data. For empirical
data, we analyzed the number of attraction basins for the 106 genes of the yeast dataset of Rokas et al.
[33]. To examine the e↵ects of the mutation rate on the smoothness of the search space, we simulated
data sequences, varying the parameters. The results are detailed in the subsections below.
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Fig. 6 Graph of average number of optima (vertical axis) versus edge weight, w, (horizontal axis) for 8-taxon SPR space.
20 simulated genes created on two topologies were tested for local optima. Left: attraction basins with constant value were
counted as local optima and genes with multiple globally optimal trees were given a score of 0 (see discussion in text). Right:
global optima and nonglobal local optima were summed equally, but the leftmost point was removed, as it dominated the
graph. All genes with w = 0.001 had multiple globally optimal trees, and no trees with w < 0.55 had multiple nonglobal
local optima: all optima were global.

4.1 Empirical Results on Yeast Data Set

Rokas et al. [33] systematically studied the full genomes of seven Saccharomyces species (S. cerevisiae, S.
paradoxus, S. mikatae, S. kudriavzevii, S. bayanus, S. castellii and S. kluyveri) as well as an outgroup: the
fungus species, Candida albicans. They focus on 106 genes distributed on all chromosomes of S. cervisiae
and totaling 127,026 nucleotides. Their analyses on the separate genes yielded 20 di↵erent topologies
with varying levels of support, while the concatenated analysis yielded a single tree with maximal boot-
strap values on every branch for the methods of analysis (maximum parsimony and maximum likelihood
searches using PAUP [38]). Money and Whelan [28] examined the search space for the maximum likeli-
hood criteria under both the NNI and SPR neighborhoods. For SPR, they found that 101 of 106 genes
using Jukes Cantor paramters for maximum likelihood and 105 of 106 under the GTR+� parameters
had single SPR attraction basin. We explored the maximum-parsimony optimality criterion on the yeast
data set [33] and found similar empirical results for the maximum parsimony criteria to those for the
maximum likelihood criteria of Money and Whelan [28]: most—75 of 106 of the genes—yield SPR-spaces
with a single optimum. An additional 15 of the genes have a search space where multiple trees achieve
the optimal score and those trees form an attraction basin.We further performed a combined analysis
of the data, scoring all possible 8-taxon trees with a concatenated sequence of all 106 genes. For this
combined analysis, the SPR search space has a single optimum, echoing the results of Rokas et al. [33].

4.2 Empirical Results on Simulated Sequences

We generated simulated data under the more general 4-state model of evolution due to Jukes and Cantor
and evaluated the number of optima found for SPR-space. By generating aligned data on a small space,
we were able to score the neighborhoods of every tree searching for local optima. Using simulated data
allowed us to vary the amount of change in each tree, giving us the ability to examine the relationship
between the sequence-length-to-edge-weight ratio and the topography of the search space.

As the size of n = 8 treespace is fairly small, we were able to evaluate the parsimony score on all
possible trees on n = 8. We therefore simulated sequences on 8-leaf trees, and plotted the edge weight, w
vs. the number of local optima. For w 2 (0.001, 0.05, 0.1, 0.15, . . . , 0.8) we created two trees, a caterpillar
and a balanced tree. We then evolved sequences down those trees using DAWG[6]. DAWG takes a tree
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with specified edge weights, creates an initial sequence, then evolves the sequence down the tree, using
the weights of the edges in the tree to nondeterministically determine the number of character changes at
each step. The character sequences were of length 1000, had no gaps, and used the Jukes-Cantor model
of evolution. The DAWG commands used were:
Treescale = 1.0, Length = 1000, Model="GTR", Freqs = {0.25, 0.25, 0.25, 0.25},

Params = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}, GapParams = {0, 0, 0}. The meanings of these pa-
rameters are: a) Treescale how much to scale the given edge weights; b) Length the length of the initial
sequence; c) Model the model of evolution to use. Here, generalized time reversible is specified; d) Freqs
the frequencies that each base, A, C, T, G appears; e) Params the substitution rates, {A-C, A-G, A-T,
C-G, C-T, G-T}. These rates are even, which is equivalent to the Jukes-Cantor model; and f) GapParams

in this case we did not specify a model of evolution with gaps.
For each tree we ran 10 simulations, giving us a total of 340 simulated genes (see Figure 6). In order

to highlight the “sweet spot,” wherein hill-climbing search will both work and is likely to discover a
significant number of the optimal trees, we distinguished between global optima, which are necessarily
also local optima, and nonglobal local optima, which act as spurious basins of attraction. As no genes
had both multiple global and spurious basins of attraction, we considered a gene with multiple global
optima to have 0 nonglobal local optima, but a gene with a single global optimum to have one local
optimum. Next, we simply summed the number of local optima. As global optima are also local optima,
the counts of the two were summed.

For trees with w = 0.001, every tree had multiple global optima. For other values of w less than 0.55,
there were either single or multiple global optima. The average number of nonglobal local optima did
not exceed 1 until w > 0.7. Note that in the case of multiple global optima, hill-climbing search will still
work, but will find only one of multiple optimal trees.

5 Conclusions

We rigorously show what has been hinted at by empirical studies [8,25,28]: NNI searches can have many
more local optima than SPR even for “well-behaved” data. Further, for perfect data and data simulated
under a range of parameters of the Jukes-Cantor model of evolution, the SPR search space has a single
local optimum, and simple hill-climbing searches are guaranteed to find the optimal tree. Computing
SPR neighborhoods is costly, so many approaches use heuristics to capture the neighborhood e�ciently
[19,36,39]. Our results show that tree rearrangements based solely on NNI moves do not approximate
SPR moves well, due to the multiple optima of NNI. Caceres et al. [5] showed that enumerating an SPR
neighborhood via e�cient-to-compute NNI operations is computationally expensive. While searching
with neighborhoods based on NNI rearrangements (such as the “lazy SPR” operation [36]) are attractive
due to their linear size, our results show that the resulting search space becomes much more complex for
even the simplest case of perfect data. Instead of a “smooth” basin, the space becomes quite “rugged”
with many plateaus of non-global optima (explored empirically by Bastert et al. [3] for NNI search
spaces). This suggests that the trade-o↵ between e�ciently computed search neighborhoods should be
weighed against the increase in non-global optima of the resulting search spaces.

We examine the e�ciency of hill climbing on data simulated under the Jukes-Cantor model of evolu-
tion, echoing the work of Atteson on the e�ciency of Neighbor Joining [2]. Both his and our work show
that sequences that are close to the model tree (the di↵erence in leaf distances is less than a third of
the shortest branch in the model tree) will perform e�ciently, and follow work of Moulton and Steel [29]
and Farach and Kannan [12] of identifying how much the distance matrix can be perturbed and still
yield the correct tree [35, §7.7]. Further interesting questions about the e�ciency of searching treespace
include the behavior of hill-climbing search on data simulated by more general models of evolution (such
as General Time Reversible (GTR) Markov models), as well as what happens to the search space when
parsimony is replaced by the maximum-likelihood criterion [16]. The latter poses interesting challenges to
proving results rigorously, given that branch weights must be chosen for each tree topology to calculate
the score, and it is possible to have several di↵erent branch weight yield local optima for a single tree
topology [37].

We evaluated the e↵ectiveness of hill-climbing search with SPR neighborhoods on data simulated
under the Jukes-Cantor model of evolution. Hill-climbing search did surprisingly well, as almost all search
spaces yielded single local optima. The exceptions occurred when the rate of change was exceedingly small
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(w  0.05) and the resulting sequences yielded taxa with identical character sequences, making those
taxa indistinguishable. Similarly, when the change along branches was exceedingly high (w � 0.55), the
sequences had so many mutations as to appear random. For the majority of the values (0.05 < w < 0.55),
a larger range than what we showed will perform well with high probability), there was a single local
optimum, thus hill-climbing succeeded. While our sample space is small (n = 8) to allow for exhaustive
evaluation, it is likely that we will see a similar phenomenon of ease of search for simulated data on
larger size data sets, exceeding what is predicted by the theoretical bounds.

We show that even for the simplest case of character sequences displayed by a single tree, the choice
of which tree-rearrangement operation employed to explore the space of trees can have profound e↵ect on
the complexity and success of the search algorithm. While our theoretical results focus on the worst case
for a neighborhood-based search that greedily progresses, this behavior is also seen for empirical data
both for the maximum parsimony criteria (as shown here) and for the maximum likelihood criteria [28].
The NNI search space can have multiple non-global optima and multiple attraction basins that leads to
failed searches. While for the SPR search space, perfect data and simulated data that is nearly-additive
have hill climbing searches that always find the optimal phylogenetic tree. While the simplicity of the
computing NNI neighbors makes it tempting to use, the resulting search space is quite “rugged” leading
to many searches that are “trapped” at non-global optima. On a positive note, our work on SPR search
spaces suggest that the space is “smoother” but at the expense of greater computation to computing
SPR neighbors. The proof of the SPR result suggests that search heuristics that allow moves that can
join arbitrary subtrees (like SPR or TBR) or allow a random search (to escape non-global optima of
NNI) yield search spaces with fewer non-global optima to derail searches.
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