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Hamiltonian Walks of Phylogenetic Treespaces
Kevaughn Gordon, Eric Ford, and Katherine St. John

Abstract—We answer Bryant’s Combinatorial Challenge on minimal walks of phylogenetic treespace under the nearest neighbor
interchange (NNI) metric. We show that the shortest path through the NNI-treespace of n-leaf trees is Hamiltonian for all n. That is,
there is a minimal path that visits all binary trees exactly once, under NNI moves.

Index Terms—Phylogenetic Tree Construction, Graph Theory, Analysis of Algorithms.
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1 INTRODUCTION

PHYLOGENETIC trees depict the evolutionary rela-
tionships within a set of taxa, represented as leaf

labels [1]. The trees may be rooted—in which case they
illustrate the ancestry of the taxa—or unrooted. In this
paper, we look at unrooted phylogenies.

Finding the tree that best fits the data, where the data
is a set of taxa and ordered characters, is a central goal of
evolutionary biology. However, the number of possible
trees grows as an exponential function of the number of
taxa, and finding the optimal tree under the criteria most
used by biologists is NP-hard [2], [3]. Due to the size of
the search space, exhaustive search is often not possible,
so heuristic search is often used to discover the best tree.
To systematically traverse the space, it is necessary that it
be arranged in some manner. A common arrangement is
to link trees that are a single move apart under some tree
rearrangement operation; the resulting graph is often
called a treespace.

Focusing on trees that differ by a single nearest neigh-
bor interchange (NNI) move, David Bryant asked for the
length of the shortest walk that visits all trees in NNI
treespace [4]. It is known that using metrics that yield
more neighbors than NNI (namely subtree prune and
regraft (SPR) and tree bisection and reconnection (TBR))
have the shortest walk possible: a Hamiltonian path [5].
Previous to our current work, the best known NNI-walk
of all binary trees visited every tree at most twice [5].

We show that, for all n, a Hamiltonian path exists
on the space of all binary trees on n leaves under the
NNI metric, settling Bryant’s challenge. We follow the
strategy of previous work in expanding Hamiltonian
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paths on n-leaf trees to the space of all binary trees on
(n + 1) leaves [5]. This idea does not work directly for
NNI-walks but can be employed with a subtle twist.
Instead of developing walks on the expansion of a single
n-leaf tree, we look at all trees that can be created from
subsequent triples of n-leaf trees on the Hamiltonian
path for the smaller space. Using the Hamiltonian path
of the smaller space as a “backbone,” we can then
“glue” together the unions of the expansions to form
a Hamiltonian path on the (n+1)-leaf trees. Since every
NNI move can be simulated by an SPR or TBR move,
this paper provides an alternative proof for the existence
of Hamiltonian paths for the SPR and TBR treespaces.

2 BACKGROUND

We briefly define binary phylogenetic trees and the
associated terms used in this paper. For a more detailed
treatment, see Semple and Steel [1].

Phylogenetic trees depict evolutionary relationships
between taxa placed at the leaves. Trees can be rooted,
in which case they illustrate the ancestry of the taxa, or
unrooted. We look at unrooted binary phylogenetic trees
(hereafter referred to as trees). Formally, as defined by
Robinson:

Definition 1: [6]: A (binary) phylogenetic tree is a graph
G on collection of labelled nodes L (the taxa) and
unlabelled interior vertices. The labelled nodes form the
leaves of the tree and, therefore, have valency one, and
each interior vertex has valency three.

We will use a well-known fact about the number of
unrooted binary trees:

Lemma 1: [6]: For n taxa, there are (2n − 5)!! = (2n −
5)(2n− 3) · · · 5 · 3 · 1 possible unrooted trees.

Note that for all n ≥ 4, (2n− 5)!! is divisible by three.
We will use this characteristic of treespace to partition
paths of n-leaf trees into triples. We will also examine
pairs of leaves:

Definition 2: A sibling pair, or cherry, is a pair of leaves
whose incident edges share a common vertex.

Difference measures on trees induce metric spaces on
the set of n-leaf trees. We will focus on metrics that
measure shape differences between trees (and ignore
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Fig. 1. The left side shows NNI transformations. To transform T1 into T2 or vice-versa, interchange the subtree B with
the subtree containing the leaf ln+1. To transform T2 into T3 or vice-versa, either interchange the subtree containing
the leaf ln+1 with the subtree containing C and D or interchange the subtree containing A with the subtree containing
B. T1, T2 and T3 are all neighbors in NNI treespace. The right side illustrates how a path in NNI treespace will be
represented in this paper. Note that the top series of moves is equivalent to moving from T1 to T2 to T3, as in the left
side of the figure. The bottom right represents the same moves with the curved edge representing the path of the
(n + 1)st leaf, ln+1.

differences in the lengths of edges or branches). These
metrics induce a discrete space that can be represented
by a graph:

Definition 3: Given a set of trees T = {T1, T2, . . . , Tk}
with n leaves labelled by S, G = (T , E), or treespace, is
the graph G with vertices labelled by T and the edges
E connecting vertices that are “neighbors”—distance one
apart under a given metric.

Bryant’s challenge focuses on nearest neighbor inter-
change (NNI). Other popular metrics include subtree
prune regraft (SPR) and tree bisection and reconnection
(TBR) [7].

Definition 4: [7]: A nearest neighbor interchange (NNI)
swaps any two subtrees connected to opposite ends of an
edge (see Figure 1). The NNI distance (dNNI ) between
two trees is the minimum number of NNI operations
that transforms one of the trees into the other.

We note that the NNI operation is symmetric in that
any NNI tree rearrangement operation can be reversed.
These moves define neighborhoods on the space:

Definition 5: Let d be a discrete tree metric. The set of
all trees Tm where d(T, Tm) ≤ 1 is the 1-neighborhood (or
simply neighborhood) of T .

An n-leaf tree has n− 3 internal edges. Using an NNI
move, a new tree can be formed by swapping one of the
four subtrees on opposite sides of the internal edge (see
Figure 1). Only two of these swaps will produce new
trees, and thus every n-leaf tree has 2(n − 3) neighbors
in NNI treespace.

The challenge on which we focus is phrased in terms
of “walks,” we will use this term interchangably with
the common term from graph theory: “paths.”

Definition 6: [4]: An NNI-walk is a sequence
T1, T2, . . . , Tk of unrooted binary phylogenetic trees
where each consecutive pair of trees differ by a single
NNI move.

Definition 7: [8]: A Hamiltonian path in a graph is a
simple path that visits every node exactly once. This
path can be represented as an ordered set of nodes,
v1, v2, . . . , vn, where vi is connected to vi+1 by an edge.

Determining whether an arbitrary graph has a Hamil-
tonian path is NP-hard [8]. However, for many classes
of graphs (for example, complete graphs), Hamiltonicity
can be determined easily in polynomial time.

3 MAIN RESULTS

We prove that a Hamiltonian path exists through the
set of n-leaf trees under the NNI metric, for all n. The
proof constructs a Hamiltonian path of the (n + 1)-leaf
treespace from a Hamiltonian path of the n-leaf treespace
(see Figure 2). This is done by taking subsequent triples
from the path of the n-leaf treespace and contructing a
path through all (n + 1)-leaf trees that be created from
those three trees (formally defined as the “expansion”
of trees, below). Since every (n + 1)-leaf tree belongs to
exactly one such expansion of a triple, linking the paths
of the expansions yields a path that visits every (n + 1)-
leaf tree exactly once.

Definition 8: Let T be an n-leaf tree and e an edge of
T . The expansion of an edge, e, is the (n+1)-leaf tree, T (e),
generated when a new leaf is added to that edge. Let the
expansion of an n-leaf tree, T , be the set of (n + 1)-leaf
trees that can be generated from expanding all edges of
T (see Figure 3).

If two trees differ by only a single NNI move, then the
edges of the trees are identical, except for a single edge,
that we call the “edge of difference”. Formally:

Definition 9: Consider two trees, T1 and T2, that differ
by one NNI move. Let ed, the edge of difference, be the
single edge in the symmetric difference between the set
of edges of T1 and the set of edges of T2.
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Fig. 2. The proof of the main result constructs Hamiltonian paths of the (n+1)-leaf treespace from Hamiltonian paths
of the n-leaf treespace. This is done by using a Hamiltonian path of the smaller space (bold path) as a “backbone”
for a path of the larger space. For every triple of trees in the path of the smaller space, a path is created through its
expansion. An example of a path through a triple is boxed. The various trees in the expansions of the triple are visited
in labeled order. These paths are linked to form the Hamiltonian path of the (n + 1)-leaf treespace.

We note that the size of the expansion of an n-leaf tree
is independent of the given tree topology and depends
only on the number of internal edges. Likewise, in a
binary tree, the number of internal edges is a function of
the number of leaves. For a given tree T with n leaves,
there are 2n− 3 trees with n + 1 leaves contained in the
expansion of T. We first prove several useful lemmas
about expansions of edges:

Lemma 2: Let T be an unrooted binary tree, and let e1

and e2 be adjacent edges on T . T (e1) and T (e2) differ by
one NNI move.

Proof: Let e1 and e2 be adjacent edges in an n-leaf
tree. Let S be the subtree whose root edge is incident
with e1 and e2. The addition of a new leaf, ln+1, creates
two new edges: e3, which connects the new leaf node to
the tree and e4, which separates S and ln+1. In T (e1),
ln+1 is between e1 and e4 and S is between e4 and
e2. The opposite occurs in the T (e2). In that case, S
is between e1 and e4 and ln+1 is between e4 and e2.
That is, T (e1) and T (e2) have the same tree topology
save for the arrangement around e4. Since the new taxon
and the rooted subtree are on opposite sides of e4, an
internal branch, swapping them costs only one NNI
move. Therefore, T (e1) and T (e2) differ by one NNI
move.

Lemma 3: Let T1 and T2 be two unrooted binary trees
where T1 and T2 differ by one NNI move. Let e be an
edge that is not the edge of difference, ed. T1(e) and T2(e)
differ by one NNI move.

Proof: Let A, B, C, and D be the four subtrees whose
root edges are incident to ed, between T1 and T2. By
definition, the arrangement of the four subtrees in T1

differ from their arrangement in T2. Assume, without
loss of generality, that e is an edge of A, and denote by
A′ the subtree created by the addition of the new leaf to
e in A. Note that A′ is identical in T1(e) and T2(e). The
arrangement of A′, B, C, and D around ed is the only
difference between the two trees. Therefore, T1(e) and

T2(e) differ by one NNI move.
When focusing on a triple of consecutive trees on a

Hamiltonian path of n-space, there are many subtrees
which are identical across all three trees. The next lemma
shows how the expansions of these subtrees can be
traversed such that each node in the expansions is visited
only once (see Figure 4):

Lemma 4: Let T1, T2, and T3 be three unrooted binary
n-leaf trees where T1 and T2 are NNI neighbors and
where T2 and T3 are NNI neighbors. Let Si be some
rooted subtree on Ti where i = 1, 2, or 3. If S1 = S2 = S3,
the union of the expansions of the edges in S1, S2, and
S3 has a Hamiltonian path such that the walk starts on
Ti(pi), where pi is the root edge of Si, and ends on Tj(pj),
where pj is the root edge of Sj and i 6= j.

Proof: We proceed by induction on the size of the
subtree.

Base Case: The subtree has two leaves and three edges:
pi, which connects the root node to the internal node;
li, which connects the internal node to a leaf node; and
ri, which connects the internal node to the other leaf
node. All three edges are adjacent. By Lemma 2, the
expansions of these edges are NNI neighbors. Since T1

and T2 are one NNI move apart, T1(p1) and T2(p2) are
NNI neighbors by Lemma 3. The rest of the edges follow
suit. That is, Tz(yz) and Tz+1(yz+1) are NNI neighbors
where y ∈ {p, l, r} and z ∈ {1, 2}.

We can enumerate the possible walks that start on
Ti(pi) and end at Tj(pj) where i 6= j (see Figure 4). We
identify the path through the (n + 1)-leaf trees by the
edge that is expanded:
• p1 → l1 → r1 → r2 → r3 → l3 → l2 → p2 → p3,
• p1 → l1 → r1 → r2 → r3 → p3 → l3 → l2 → p2,
• p2 → r2 → r1 → p1 → l1 → l2 → l3 → r3 → p3.

We note that since the edges are not directed, each of the
above three paths could be traversed in reverse. Thus,
we have a Hamiltonian path of the expansions of the
edges of the subtrees that begins on Ti(pi) and ends on
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Fig. 3. Expansion of an unrooted tree on n leaves to (n + 1)-leaf trees. When n = 4, there are five possible edges to
which to attach a new leaf, resulting in five 5-leaf trees in the expansion of the initial tree.

Tj(pj) where i 6= j.
Inductive Step: Assume that the subtree, Si, has three

or more leaves and at least five edges: pi, which connects
the root node to an internal node; and edges li and ri

which are incident with pi. By Lemma 2, the expansions
of these edges are NNI neighbors. Further, since T1 and
T2 are one NNI move apart, T1(p1) and T2(p2) are NNI
neighbors by Lemma 3. The rest of the edges follow suit.
That is, Tz(yz) and Tz+1(yz+1) are NNI neighbors where
y ∈ {p, l, r} and z ∈ {1, 2}.

We show that a Hamiltonian path can start on Ti(pi)
and end on Tj(pj) where i 6= j.

Without loss of generality, assume that li is the root
edge of the inner subtree, Ci. Let T (C1, C2, C3) be the
union of the expansions of all the edges in C1, C2, and
C3 except for the expansions of two of the root edges, li
and lj , whose visit we explicitly show. By the inductive
hypothesis, a Hamiltonian path can start on Ti(li), and
end on Tj(lj) where i 6= j.

Case I: Si is a complex rooted subtree with a leaf
attached to the root. ri connects the first internal node
to a leaf (see Figure 4). The following are paths of the
union starting at Ti(pi) and ending at Tj(pj), i 6= j:
• p1 → r1 → l1 → T (C1, C2, C3) → l3 → r3 → r2 →

p2 → p3,
• p1 → r1 → l1 → T (C1, C2, C3) → l2 → r2 → r3 →

p3 → p2,
• p2 → p1 → r1 → r2 → l2 → T (C1, C2, C3) → l3 →

r3 → p3.
Case II: Si is a complex rooted subtree with another

complex rooted subtree attached to its root. ri connects
the first internal node to another complex subtree, Di.
The following are paths of the union starting at Ti(pi)
and ending at Tj(pj), i 6= j:
• p1 → r1 → T (D1, D2, D3) → r3 → l3 →

T (C1, C2, C3)→ l2 → p2 → p3,
• p1 → r1 → T (D1, D2, D3) → r2 → l2 →

T (C1, C2, C3)→ l3 → p3 → p2,
• p2 → r2 → T (D1, D2, D3) → r1 → p1 → l1 →

T (C1, C2, C3)→ l3 → p3.
This completes the proof.

Lemma 4 focuses on the union of the expansions of
edges in rooted subtrees that are identical across a triple
of subsequent trees in a path of the n-leaf treespace,
giving multiple paths that can traverse that union from
different starting and stopping points. The following
lemma shows how these paths can be “glued” together
to form a path for the unions of the expansions of the
complete trees. The difficulty in the proof is the “lining
up” of the endpoints of paths to create a single longer
path. Since Lemma 4 provides paths from any root edge
of identical subtrees, it suffices to show how to traverse
the edges of difference in the expansions.

Lemma 5: Let T1, T2, and T3 be three unrooted binary
trees where T1 and T2 are NNI neighbors and where T2

and T3 are NNI neighbors. For any edge e of T1, there
exists a Hamiltonian path of the union of the expansions
of T1, T2, and T3 starting at T1(e).

Proof: Let T1, T2, and T3 be three unrooted binary
trees where T1 and T2 are NNI neighbors and where
T2 and T3 are NNI neighbors. Let ed12 be the edge of
difference between T1 and T2, and let ed23 be the edge
of difference between T2 and T3. Let the expansion of
a subtree, S, in an n-leaf tree, T , be the union of the
expansions of the edges in S.

Let e be an edge in T1. We will construct a walk that
traverses, exactly once, every tree in the union of the
expansions of T1, T2, and T3. The location of e, whose
expansion, T1(e), is the starting point, determines our
strategy for building the Hamiltonian path. Denote by
A and B the subtrees that result from removing e (but
not its endpoints) from T1. If one of the subtrees, say A,
is identical across T1, T2, and T3, then neither ed12 nor
ed23 is in A, and by Lemma 4, there is a Hamiltonian
path across the union of the expansions of A1, A2, and
A3, beginning at e in T1 and ending at e in Ti where i = 2
or 3. So, assume that neither A nor B is identical across
all trees. We proceed by cases on the relative locations
of the edges of difference, ed12 or ed23 , to e:

Case I: Assume that ed12 is on the path between e and
ed23 (that is, ed12 is the “closer” edge of difference to
e). Let e1, . . . , em be the path between e and ed12 in T1,
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Fig. 4. Left: Base Case I for Lemma 4. The labels on the arrows and subtrees indicate the order of the traversal. Sx is
a rooted cherry that is the same across T1, T2, and T3. Note that the path through the expansions of the edges in Sx

can be notated as a series of NNI moves, moving the leaf added in the expansions through the various edges in Sx

Right: The three walks show that a Hamiltonian path can start at Ti(pi) and end on Tj(pj) where i 6= j.

and let S1, S2, . . . , Sm−1 be the subtrees along the path.
By hypothesis, the subtrees, S1, S2, . . . , Sm−1, occur in all
three trees. We apply Lemma 4 to each of the subtrees
and link the resulting paths by visiting the the expansion
of the subtree, Si, followed by the expansion of the path
edge, ei+1, in T1, T2, and T3, for each i, creating a path
that extends to T2(ed12) or T3(ed12).

We may assume that our path thus far ends at T3(ed12).
Let C denote the subtree, identical in T1, T2 and T3,
that we have traversed thus far. The root edge of C is
incident with ed12 . Let D be the subtree whose root edge
is incident with C in T2 and T3 (that is, C and D are on
the “same side” of ed12 in T2 and T3) and let F and G be
the remaining subtrees whose root edges are incident
with ed12 in T2 and T3 (that is, F and G are on the
“opposite side” of ed12 from C and D in T2 and T3). Since
the root edges, rC and rD, of C and D are adjacent in T3,
we can move from T3(rC) to T3(rD) without having to
traverse the expansion of ed12 (that traversal is optional).
If D does not contain ed23 , it is identical across all three
trees and we can apply Lemma 4 to yield an extension
of our path that traverses the union of the expansions of
all three copies of D, ending in T1.

T1 differs from T3 around ed12 , so the root edge of
C in T1 is not incident with D, but with one of the
other two subtrees, say F . To simplify the argument, we
will assume that F does not contain the edge ed23 (if F
does contain ed23 , the proof follows by a slightly more
complicated, but similar, argument). We can similarly
extend our path to the union of the expansions of the
subtree F in T1, T2, and T3, ending in T3. In addition,
because D and F are on “opposite sides” of ed12 in T1,
our path must first visit T1(ed12).

We now have a path that traverses the expansion of
three out of four of the subtrees whose root edges are
incident with ed12 and T1(ed12). To reach the final of the
four subtrees, G, we cross T3(ed12), then T2(ed12). From
there, we visit the expansion of the root edge of G, which
we traverse by an argument similar to the one above. We

note that if D, above, had contained ed23 , then we would
use the argument for traversing T1(ed12), T2(ed12), and
T3(ed12) to traverse T1(ed23), T2(ed23), and T3(ed23). Once
we have traversed the expansion of the three copies of
G, we have a path that visits all the edges of T1, T2, and
T3, and thus all trees in the union of the expansions of
those trees.

Case II: We must also consider the case where e lies
on the path between the edges of differences, ed12 and
ed23 . While the argument for this case is similar to that
above, there is the additional difficulty of “starting in
the middle.” It is necessary to traverse the path from
e to ed12 and still have unvisited edges upon which to
return so that the “other side” of e can also be visited.
This can be accomplished by traversing only the path
edges (and none of the attached subtrees) in the tree
T1 until the edge of difference is reached. The path is
then built, as above, but on the return, the subtrees
on the path are linked by visits to the path edges in
only T2 and T3. Once that section of the expansions of
the trees has been visited, the remaining trees in the
union of the expansions are visited (namely the union
of the expansion of B where B is the subtree resulting
from removing e and that contains ed23 ). The result is a
Hamiltonian path of the union of the expansions of T1,
T2, and T3.

Case III: Note the special case where ed12 = ed23 . In
this case, T1 and T2 are NNI neighbors, T2 and T3 are
NNI neighbors, and T1 and T3 are NNI neighbors. Such
a case is a simplified version of the previous cases, and
thus is covered above.

Theorem 1: For all n, there exists a Hamiltonian path
through the n-leaf NNI treespace.

Proof: By induction on n, the number of leaves.
Base Case: When n = 4, (2n − 5)!! = 3. Let the four

leaves be a, b, c, and d. Then, without loss of generality,
ed in T1 separates a, b from c, d; in T2 ed separates a, c
from b, d; and in T3 ed separates a, d from b, c. T1 and T2

are NNI neighbors, and T2 and T3 are NNI neighbors. By
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the previous lemma, there is a Hamiltonian path through
the 4-leaf NNI treespace (see Figure 1).

Inductive Step: Assume there is a Hamiltonian path
through the n-leaf NNI treespace. The walk visits the or-
dered set of trees, T1, T2, T3, . . . T(2n−5)!!. By the definition
of a Hamiltonian path, Tx and Tx+1 are NNI neighbors
where 1 ≤ x < (2n− 5)!!.

By the previous lemma, the union of the expansions
of the triplet Ty , Ty+1, and Ty+2 has a Hamiltonian path
where y = 3z − 2 and 1 ≤ z ≤ 1

3 (2n− 5)!!.
Because (2n−5)!! is divisible by 3 when n ≥ 4, there is

an ordered set of successive triplets, R1, R2, . . . , R (2n−5)!!
3

,
where R1 is the triplet of trees T1, T2, T3, and R (2n−5)!!

3
is

the triplet T(2n−5)!!−2, T(2n−5)!!−1, T(2n−5)!!. The unions of
expansions on each of these triplets has a Hamiltonian
path.

Consider Ty , the third tree in triplet Rv , and Ty+1,
the first tree in Rv+1. Ty and Ty+1 are NNI neighbors.
Then, by Lemma 3, Ty(e), where e is not ed, is an NNI
neighbor of TY +1(e). The end of the Hamiltonian path
through an expansion of a triplet can thus be connected
to the beginning of the Hamiltonian path through the
expansion of the succeeding triplet. As shown above,
there is an ordered set of triplets which covers n-leaf
treespace with a Hamiltonian path. The expansions of
each of these triplets has a Hamiltonian path, and each of
the walks can be linked by a single NNI move. Therefore,
a Hamiltonian path exists through the (n + 1)-leaf NNI
treespace.

4 CONCLUSION

We have shown that the shortest walk on the space of
binary phylogenetic trees with n leaves under the NNI
metric is a Hamiltonian path. Since visiting each node
exactly once is the minimal path length possible, this
answers Bryant’s First Combinatorial Challenge on the
length of the shortest walk of trees under the NNI metric.
In addition, since every NNI move can be simulated by
an SPR or TBR move, this also gives an alternative proof
to the Hamiltonian paths of SPR and TBR treespace [5].
Our iterative approach to building a Hamiltonian path
for the space of trees with n + 1 leaves from a path of
the smaller space of trees with n leaves does not yield
an algorithm for producing a Hamiltonian path directly
nor do we see an obvious way to do this.
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