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Abstract

We show that for random bit strings, Up(n), with probability, p = 1
2 , the first-

order quantifier depth D(Up(n)) needed to distinguish non-isomorphic structures
is Θ(lg lg n), with high probability. Further, we show that, with high probability,
for random ordered graphs, G≤,p(n) with edge probabiltiy p = 1

2 , D(G≤,p(n)) =
Θ(log∗ n), contrasting with the results of random (non-ordered) graphs, Gp(n), by
Kim et al. [5] of D(Gp(n)) = log1/p n + O(lg lg n).
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1 Introduction

Several natural ways exist for measuring the complexity of a structure: the
number of variables used, the length of the sentence, and the “depth” of the
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quantifiers. We will focus on this last measure– the depth or the amount of
nesting of the quantifiers in the sentence. The quantifier depth of the sentence
corresponds to the number of registers needed to implement the sentence as
a program and also to the number of moves in the Ehrenfeucht-Fraisse game
[9].

Following [5], we define D(φ) to be the quantifier depth of the first order
sentence φ and D(G) to be the smallest depth of a sentence that defines
the finite structure G. Kim et al [5] explore D(Gp(n)) for random (non-
ordered) graphs, Gp(n) and shows that for constant p, D(Gp(n)) = O(log n),
with high probability, and for well-chosen values of (non-constant) p, that
D(Gp(n)) can be Θ(log∗ n). The first order complexity of the random graph
has also been studied in terms of convergence laws. Fagin and Glebski’i et al.
[4,11] independently showed that random graphs, Gp(n) with constant edge
probability p, have a “zero-one” law. That is, for every first order sentence φ,

lim
n→∞

Gp(n) |= φ = 0 or 1

Shelah and Spencer [8] showed that for edge probability p = n−α, 0 < α < 1
the convergence depends on the value of α. For rational α, a zero-one law
exists, but for irrational α, there exists first order sentences for which the
above limit does not converge. Many stronger logics over random structures
have been explored (see [2,9] for examples).

Another natural way to increase the expressive power is to add an ordering
to the signature (see Chapter 11 of [9] for examples). In this paper, we focus on
two such classes of structures: ordered random graphs and random bit strings.
Surprisingly, for random graphs, we show that ordering not only gives a much
smaller value for the D(G≤,p) for constant p, with high probability, but gives
the lowest possible bound. That is, the quantifier depth needed to distinguish
the random ordered graph with high probability is D(G≤,p) = Θ(log∗ n).

We also examine the natural class of ordered structures, that of random
bit strings (also known as random ordered unary predicates). Zero-one laws
have also been shown for random bit strings [1,6]. Spencer and St. John [10]
examine the convergence rate for Zero-One laws and define the tenacity of a
class of structures to capture the similarity when viewed via first order logic.
In a general setting (a random structure defined for all n) and fixing positive
ε, the tenacity function, Tε(n), is equal to the maximal k so that if n1, n2 ≥ n,
then Duplicator wins this k-move Ehrenfeucht-Fraisse game (defined in § 2
below) played on independent structures of size n1 and n2 with probability
at least 1 − ε. Spencer and St. John give bounds on the size of the tenacity
function for several non-constant choices of the probability p. The tenacity
is close related to the measure D. We show a tight bound for the quantifier
depth D(Up) needed to distinguish random bit strings with probability p = 1

2
.

Namely, D(Up) = Θ(lg lg n).

In Section 2, we give some background and review past work. Section 3
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contains the results for random bit strings. Section 4 contains the results for
random ordered graphs. We conclude with open problems and future work.

2 Background

This section contains background information on games and probability. The
expert may wish to skip the first two subsections and focus on the definitions
in the last sections. For details about first order logic, see [3] for an excellent
overview. For a more thorough treatment of games, probability, and logic, see
[9].

2.1 The Ehrenfeucht-Fraisse Game

The game and its equivalence are due to Ehrenfeucht and Fraisse, and the
presentation here is from [9].

In the Ehrenfeucht-Fraisse Game, the players alternate placing pebbles on
one of two structures that serve as the game boards. The number of rounds
that are played correspond to the complexity of first order sentences consid-
ered. Given two structures, M1 and M2, M1 and M2 are indistinguishable
by first order sentences with quantifier rank at most k (written M1 ≡k M2)
if and only if the second player has a winning strategy for every k-pebble
Ehrenfeucht-Fraisse game of finite number of moves played on M1 and M2.
We define the game below:

Definition 2.1 The k-pebble Ehrenfeucht-Fraisse game (EF game) on
M1 and M2 is a two-person game of perfect information. For the game, we
have:

• Players: There are two players:
· Player I, often called Spoiler, who tries to ruin any correspondence between

the structures.
· Player II, often called Duplicator, who tries to duplicate Spoiler’s last

move.

• Equipment: We have k pairs of pebbles and the two structures M1 and
M2 as game boards.

• Moves: The players take turns moving. At the ith move, Spoiler chooses
a structure and places his ith pebble on an element in that structure. Du-
plicator then places her corresponding pebble on an element in the other
structure.

• Winning: If after any of Duplicator’s moves, the substructures induced by
the pebbles are not isomorphic, then Spoiler wins. After both players have
played k moves, if Spoiler has not won, then Duplicator wins.
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2.2 Random Ordered Structures

Following [10], we define the random bit string or random unary predicate as
follows. The signature is σ = {U,≤}, where U is an unary predicate and ≤ is
a binary predicate that follows the axioms of linear order. Let n be a positive
integer, and 0 ≤ p(n) ≤ 1. We will write U(i) if the ith bit is “on” in the
string, and ¬U(i) if the ith bit is “off.” U is an unary predicate– there are 2n

possible choices for such a predicate over n elements. The random bit string
Up(n) is a probability space over predicates U on [n] = {1, . . . , n} with the
probabilities determined by Pr[U(x)] = p(n), for 1 ≤ x ≤ n, and the events
U(x) are mutually independent over 1 ≤ x ≤ n.

The random ordered graph is defined similarly (see [9]). The signature
is σ = {∼,≤}, where ∼ is a binary predicate that will represent edges and
≤ is a binary predicate that follows the axioms of linear order. Let n be a
positive integer, and 0 ≤ p(n) ≤ 1. We will write i ∼ j if there is an edge
between i and j. The random ordered graph G≤,p(n) is a probability space
over all ordered graphs on n vertices with the edge probabilities determined
by Pr[i ∼ j] = p(n), for 1 ≤ i, j ≤ n, and the events i ∼ j are mutually
independent and uniformly distributed.

2.3 Complexity of First Order Structures

We measure the complexity of a first order sentence φ by its quantifier depth,
which is the longest sequence of embedded quantifiers in φ. For example, a
complete graph on n vertices can be described by the first order sentence:

A : ∀x∀y(x ∼ y) ∧ ∃x1 · · ·xn(
∧
i<j

xi 6= xj ∧ ∀y(
∨
i

y = xi)

where we write “x ∼ y” when there is an edge between x and y. The first
part of the sentence says that there is an edge between every pair of points.
The second part says there is at least n distinct points. This sentence has
quantifier depth D(φ) = n + 1. Note that any finite graph can be described
by a first order sentence, possibly very large in size, by listing every vertex
and describing the edges that exist, and do not exist, in terms of the specific
vertices. It is often possible to do much better than this as shown above by
the sentence describing the complete graph on n vertices.

With this in mind, we focus on D(G), as defined by Pikhurko et al. [7]:

D(G) = min{D(φ) | G |= φ & if H 6' G then H 6|= φ}

The trivial bounds on this function, for any structure, are:

Ω(log∗ n) ≤ D(G) ≤ O(lg n)

where log∗ n = min{i ∈ N | log
(i)
2 n < 1}.
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3 Random Bit Strings

We focus on the case where the probability is p = 1
2

for the random bit string.
As stated in Section 2.3, we have as a lower bound D(G) = Ω(log∗ n). We
can improve this to lg lg n by a straightforward argument on the occurrence
of words in the random bit string.

Lemma 3.1 If y is a substring of x, then D(y) ≤ D(x).

Proof: If y is a substring of x, then it can be written as x = pys where p (prefix)
and s (suffix) are some binary strings. If D(y) = k, then there is another y′

so that Duplicator wins the k − 1 move game on y, y′. But then Duplicator
wins the k−1 move game on pys, py′s by playing identically whenever Spoiler
plays in the prefix or suffix. Hence D(x) ≥ k. 2

We use this lemma to show our first theorem– a lower bound on the quan-
tifier depth for bit strings. The idea of the proof is that if a bit string U of
length n contains a particular substring, for example 0L, and another bit string
U ′ contains the slightly different substring, say 0L+1, then it will take Spoiler
at least Ω(lg L) moves to distinguish the two structures. When L = lg n,
words of length L occur with high probability, so, it will take Spoiler at least
Ω(lg L) = Ω(lg lg n) to distinguish the structures. This corresponds to the
lower bound D(Up(n)) = Ω(lg lg n) in the theorem below.

Theorem 3.2 For the random bit string, Up(n), with p = 1
2
, D(Up(n)) =

Ω(lg lg n) with high probability.

Proof: With the above lemma, the lower bound follows from showing that

(i) With high probability, the random n-length bit string contains 0L for
L = b0.9 lg nc.

(ii) D(0L) ≥ lg L.

For the first part, we split the n-length bit string into bn/Lc disjoint strings
of length L (plus some excess). Each such string is OL with probability 2−L

so the probability that none of them is 0L is (1− 2−L)bn/Lc → 0.

For the second part, we need to show D(0L) ≥ lg L. To show this, we
play the Ehrenfeucht-Fraisse game on 0L and 0L+1. By Theorem 2.6.3 (p. 41
of [9]), Duplicator has a winning strategy for k move game on two totally
ordered sets on n, m elements if and only if n = m or m,n ≥ 2k − 1. So, for
k = lg L, Duplicator wins the k move game and D(U) ≥ lg L. By the lemma,
D(U) ≥ D(0L), thus, D(U) ≥ lg lg n. 2

The upper bound is more complicated, and relies on the fact that for
a suitable choice of L, each string of length L occurs at most once. The
uniqueness of the strings of length L allows us to describe the structure in
small quantifier depth.

Theorem 3.3 For the random bit string, Up(n) with p = 1
2
, D(Up(n)) =

O(lg lg n) with high probability.
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Proof: The proof relies on three parts:

(i) For any L, each string s of length L can be described in lg L quantifier
depth.

(ii) With L = b2.1 lg nc, with high probability, no string of length L occurs
more than once.

(iii) With parts (1) and (2), we can describe the structure with appropriately
small quantifier depth.

Note that the first part is straightforward since any bit string of length n
can be described completely by a sentence of quantifier depth lg n. The idea
is to follow a “divide-and-conquer” approach to specify each element and to
say if the element is a 0 or 1 (see [2,9] for details).

For the second part, we let L = b2.1 lg nc and show that no string of length
L occurs more than once. For a fixed L, the expected number of strings s
of length L that occur twice is ≤ (n−L)(n−L−1)

2
(1/2)L. If L = b2.1 lg nc, the

expected number of strings occurring twice goes to zero, with high probability.

For the last part, we need to completely describe Up(n) in O(lg lg n) with
high probability. Since each string of length L occurs at most once, with high
probability, we can reduce the description of the structure to describing the
order in which the strings of length L occur. As noted above, to describe an
individual string of length L takes O(lg L) quantifier depth. To describe two
subsequent occurrences of strings, s and t of length L takes O(lg L). This can
be done by defining a predicate NEXT such that:

NEXT[S, T ] : ∃x(“[x, x + L) is S” ∧ “[x + 1, x + L) is T”)

and the predicate INIT:

INIT[S] : (“[0, L) is S”)

Given the starting position x, it takes blg Lc+ 2 quantifier depth to describe
each clause of NEXT. INIT can also be described in blg Lc + 2 quantifier
depth. For each of the 22L pairs (S, T ) we would have either NEXT[S, T ]
or ¬NEXT[S, T ]. This combined with the nonduplication determines the se-
quence. Using the “divide-and-conquer” approach again, we can describe the
entire structure in lg L quantifier depth. Thus, D(Up) = O(lg L) = O(lg lg n),
with high probability. 2

4 Random Ordered Graphs

For random ordered graphs, we have the general lower bound of Ω(log∗ n)
for any structure (see Section 2.3). We show that the upper bound matches
the best possible lower bound. To show the upper bound is complicated and
relies on a recursive argument for the size of the sentence that defines a given
structure G.
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For clarity in the proofs, we separate the logic and the probability results.
First, we give a general bound that if a graph G satisfies some adjacency
conditions (listed below in Theorem 4.1), then D(G) can be bounded nicely
from above. We then show that the random ordered graph on n vertices,
G≤,p(n), satisfies the adjacency properties and can achieve the upper bound
of O(log∗ n) by recursively applying Theorem 4.1.

Theorem 4.1 Let a0 < a1 < . . . < ak = n. Suppose that for each 0 ≤ i < k
the points in (ai, ai+1] have distinct “profiles” in [1, ai] – that is, no distinct
x, y ∈ (ai, ai+1] have precisely the same adjacencies to [1, ai]. Then D(G) ≤
a0 + 2k + 4.

Proof: Let G be a graph on n vertices and let a0 < . . . < ak = n satisfy the
hypotheses of the theorem. Suppose G′ 6' G. We give a strategy for Spoiler
that wins the Ehrenfeucht-Fraisse game in (at most) a0 + 2k + 4 rounds. We
label vertices in both graphs with their ordinals given by their respective
orderings. For x ∈ [ai, ai+1), 0 ≤ i < k, we let PRO[x], the profile of x, denote
the set of y ∈ [1, ai] which are adjacent to x.

Spoiler first plays 1, . . . , a0 − 1 on G. Duplicator must respond with
0, 1, . . . , a0 − 1 on G′ because if her responses were not consecutive, Spoiler
would play in the gap and win in one further move. At this stage, we are
assured that G|[0,a0) ' G′|[0,a′0) (since a′0 = a0). Spoiler then plays ak = n and
Duplicator must play a′k = n′, the last vertex in the ordering, as otherwise
Spoiler would select an x > a′k and would win in one further move. Spoiler
then plays a1, . . . , ak−1 and Duplicator responds with some a′1, . . . , a

′
k−1. For

x′ ∈ G′ with x ∈ [a′i−1, a
′
i), 1 ≤ i ≤ k, we let PRO′[x′], the profile of x′, denote

the set of y < a′i−1 which are adjacent to x′.

Suppose G′ had an i, 0 ≤ i < k and distinct y′, z′ ∈ [a′i, a
′
i+1) with

PRO[y′] = PRO[z′]. Spoiler would then select y′, z′ ∈ G′ and Duplicator
would need select distinct y, z ∈ [ai, ai+1) in G. Our hypothesis on G insures
that PRO[y] 6= PRO[z]. Then Spoiler would select x ∈ G with x ∈ [0, ai)
such that precisely one of y, z are adjacent to x and Duplicator would have
no response.

We call the above the initial phase. It lasts at most a0 + k + 3 moves. Let
us suppose that Duplicator has not already lost and call the remaining moves
the final phase. We first have an auxilliary result for 0 ≤ i ≤ k.

COPY[i]: Suppose G|[0,ai) ' G′|[0,a′i)
and x ∈ G, x′ ∈ G′ with x 6= x′ and

further suppose the first round of the final phase consist of the moves x, x′.
Then Spoiler can win with a total (including the first round) of (at most) i+1
moves in the final phase.

For i = 0 there is nothing to show. Assume COPY[i − 1], and let x, x′

satisfy the assumptions of COPY[i]. If x, x′ < ai then i − 1 moves suffice
by COPY[i − 1]. As ai, a

′
i were played in the initial phase we must therefore

have x, x′ > ai. But then PRO[x] 6= PRO[x′]. Spoiler selects y < ai−1 in the
symmetric difference of the sets. Duplicator cannot select the same y and so
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must pick y′ < a′i−1 and now Spoiler wins in i−1 further rounds by induction.

Now we make our main result for 0 ≤ i ≤ k.

IND[i]: If G|[0,ai) 6' G′|[0,a′i)
, then Spoiler can win with (at most) i + 1

additional moves.

Our initial phase has disposed of the i = 0 case. Assume IND[i − 1] and
suppose G|[0,ai) 6' G′|[0,a′i)

. We may assume G|[0,ai−1) ' G′|[0,a′i−1) as otherwise,

by induction, Spoiler wins in only i moves. Suppose PRO[ai] 6= PRO′[a′i].
Recall ai, a

′
i were already selected in the initial phase. Spoiler would select

y < ai in their symmetric difference, Duplicator would necessarily select y′ <
a′i with y′ 6= y and, by COPY[i], Spoiler would win in only i + 1 total extra
moves. Now suppose the pairs (PRO[x], PRO[x + 1]), ai−1 ≤ x < ai − 1, and
the pairs (PRO′[x′], PRO′[x′ + 1]), a′i−1 ≤ x′ < a′i − 1 were not the same. Lets
suppose, the other case being identical, that some (PRO[x], PRO[x + 1]) was
not a (PRO′[x′], PRO′[x′ + 1]). Spoiler selects x, x + 1. Duplicator selects
some x′, x′+1. (If these are not consecutive Spoiler plays in the gap and wins
immediately.) Now suppose, the other case being identical, that PRO[x] 6=
PRO′[x′]. Spoiler plays y in the symmetric difference (in either graph) and
Duplicator must play y′ 6= y. From COPY[i], Spoiler wins in i − 1 further
moves for a total of i+1 extra moves. Thus G′ has the same initial profile and
the same pairs of profiles as G and neither has duplicate profiles. They are
isomorphic when restricted to ai−1 = a′i−1, and hence they would be isomorphic
up to ai = a′i.

Theorem 3 follows from IND[k]. 2

We end this section by showing the probability argument for the upper
bound.

Theorem 4.2 For the random ordered graph, G≤,p(n), with edge probability
p = 1

2
, D(G≤,p(n)) = Θ(log∗ n).

Proof: The lower bound comes from the general lower bound on all struc-
tures (see Section 2.3).

For the upper bound, we use Theorem 3. Note if the conditions hold for a
graph G, then D(G) ≤ 2k + 4 + lg a0.

Let a0 = log∗ n and ai+1 = b2ai/4c for i > 0. We first claim that k =
O(log∗ n) where ak = n. This gives D(G) = 2O(log∗ n)+4+log∗ n = O(log∗ n).
To show the claim, we introduce some notation: let b0 = log∗ n, and bi+1 = 2bi

for i > 0. Note that for l = log∗ n that bl = Tower(log∗ n) = n. By induction
(and some tedious technical details), a4i ≥ bi for i > 0. This gives a4l ≥ bl = n.
So, k = Θ(l) = Θ(log∗ n).

Next, we need to show that the intervals (ai, ai+1) have unique profiles in
[1, ai]. Assume not. The probability for failure for a particular i is less then
(ai+1−ai)

2

2
2−ai , which is bounded above by a2

i+1 · 2−ai . Since ai+1 = b2ai/4c,
this is less than 2−ai/2. The total failure probability is less than

∑
i 2

−ai/2 ≤∑
j≥a0

2−j/2 = O(2−ai/2) = o(1) as a0 goes to infinity. Since the hypothesis of
the Theorem 3 are satisfied, we have the desired result. 2
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5 Conclusion and Future Work

We show tight bounds for the quantifier depth needed to distinguish structures
for two natural classes of random ordered structures: bit strings and graphs.
Our work focused on random structures with constant probability p = 1

2
.

Related open questions include the complexity of other random ordered struc-
tures and the complexity of bit strings and graphs with non-constant proba-
bilities.
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