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1 Abstract

We give a complete characterization for the limit probabilities of first order
sentences over sparse random bit strings at the threshold of adjacency. For strings
of length n, we let the probability that a bit is “on” be c√

n
, for a real positive

number c. For every first order sentence φ, we show that the limit probability
function:

fφ(c) = lim
n→∞

Pr[Un, c√
n

has the property φ]

(where Un, c√
n

is the random bit string of length n) is infinitely differentiable. Our
methodology for showing this is in itself interesting. We begin with finite models,
go to the infinite (via the almost sure theories) and then characterize fφ(c) as
an infinite sum of products of polynomials and exponentials. We further show
that if a sentence φ has limiting probability 1 for some c, then φ has limiting
probability identically 1 for every c. This gives the surprising result that the
almost sure theories are identical for every c.

2 Introduction

Expressibility is a central question in computer science. Over classes of ordered
finite structures, membership in a complexity classes is often equivalent to the ex-
pressibility of the desired set in a given logic. For example, Immerman [6] showed
that the expressibility in transitive closure logic is equivalent to NLOGSPACE,
and Fagin [4] proved Σ1

1 captures NPTIME. The characterizations of logics and
the limit probabilities of their sentences over ordered structures could shed light
on issues in complexity theory.

We focus on the class of ordered structures with a single unary predicate–
that is, bit strings. Besides being a natural class to consider, logic, over bit
strings, offers a useful tool to characterize the languages accepted by finite state
automata. If we let the alphabet of our automata be {0, 1}, then the words in the
language are bit strings. First order logic captures exactly the plus free regular
languages, while monadic second order logic expresses the regular languages (see
[7] and chapter 5 of [3]). We discuss the behavior of first order logic over ran-
dom sparse bit strings and raise some interesting open problems about monadic
second order logic in Section 5.



If we allow all bit strings to occur with equal probability, then for every first
order sentence, φ,

lim
n→∞

# of models of size n with property φ

total # of models of size n

converges. We can focus on bit strings where a small number of bits are on
by allowing a bit to be “on” with probability p(n) that depends on n, the
length of the string. The random unary predicate Un,p is a probability space
over predicates U on [n] = {1, . . . , n} with the probabilities determined by
Pr[U(x)] = p(n), for 1 ≤ x ≤ n, and the events U(x) are mutually independent
over 1 ≤ x ≤ n. Un,p is also called the random bit string. To see the correspon-
dence, write each structure as a sequence of 0’s and 1’s, with the ith element in
the sequence a 1 if and only if U(i) holds in the structure. For example, if n = 5
and the unary predicate holds only on the least element, we write: [10000].

In [11], Shelah and Spencer showed that for every such sentence φ and for
p(n) � n−1 or n−1/k � p(n) � n−1/(k+1), there is convergence for the limit
probability. That is, there exists a constant aφ such that

lim
n→∞

Pr[Un,p |= φ] = aφ (1)

Dolan [2] showed that for p(n) � n−1 and n−1 � p(n) � n−1/2 for every φ,
aφ = 0 or 1 in Equation 1. This stronger convergence is called a Zero-One Law
for Un,p. Dolan also showed that the Zero-One Law does not hold for n−1/k �
p(n) � n−1/(k+1), k > 1.

In [14], we examine the random sparse bit strings with probability p(n) = c/n
and give a finer analysis than convergence. For this choice of p, we have the limit
probabilities of φ are either

i=m∑
i=1

e−c cti

ti!
or 1−

i=m∑
i=1

e−c cti

ti!

for some (possibly empty) sequence of positive integers t1, . . . , tm. We achieve a
simpler characterization for p = c/n due to the simpler underlying structures.
Other interesting structures that have also been examined in this fashion are
random graphs (without order) with edge probability p(n) = c/n and p(n) =
lnn/n + c/n (see the work of Lynch, Spencer, and Thoma: [9], [10], and [13]).

For each real constant c, let Sc be the almost sure theory of the linear ordering
with p(n) = c√

n
. That is,

Sc = {φ | lim
n→∞

Pr[Un, c√
n
|= φ] = 1}

Let T1 be the almost sure theory for n−1 � p(n) � n−1/2 and T2 be the almost
sure theory for n−1/2 � p(n) � n−1/3. By [2], we have that T1 is a complete
theory. We characterize the theories at the threshold of adjacency, namely the
Sc’s. These, in some sense, lie between T1 and T2. For each first order formula,
φ, we define the function:

fφ(c) = lim
n→∞

Pr[Un, c√
n
|= φ]



where c ranges over the real, positive numbers. We show that fφ(c) is infinitely
differentiable. Moreover, we show:

Theorem 1 For every first-order sentence φ, fφ(c) is∑
m

e−tc2 cm

m!
g(t,m)

where for every fixed t, g(t, m) is the sum of the product of polynomials and
exponentials in m.

In fact, the above theorem holds for any t > 2r where r is the quantifier rank
of the sentence φ. The function g(t, m) counts the number of equivalence classes
of models (with respect to the maximum number, m, of pairs of 1’s of distance
at most t from one another) that satisfy φ.

We further show that if a sentence φ has limiting probability 1 for some c,
then φ has limiting probability identically 1 for every c. This gives the surprising
result that the almost sure theories are identical for every c.

Theorem 2 Let S =
⋂

c Sc be the intersection of all the almost sure theories.
Then, for every real, positive c, Sc = S.

To prove these theorems, we look first at the countable models of the almost
sure theories (for more on this, see [12]). Let U |= Sc be such a model. Each
of these models satisfy a set of basic axioms ∆ (defined in Section 3). Let a =
(a0, . . . , am−1) be a finite sequence of non-negative integers, representing the
distance pairs of 1’s occur apart. We show, using Ehrenfeucht-Fraisse games,
that for every first order sentence, φ, ∆∪{σa,t} |= φ and ∆∪{σa,t} |= ¬φ where
t > 2r for r the quantifier rank of φ, and σa,t is the first-order sentence that
states the 1’s that occur within t of one another are exactly those specified in
the finite sequence a in exactly the order in a. For example, if a = (2, 0), then
σa,3 would say that the first pair of 1’s, that occur within three of one another,
occur with exactly 2 0’s in between, and the next (and only other) pair of 1’s
that occurs within three are adjacent. We show that

qa,t = Pr[Un, c√
n
|= σa,t] = e−tc2 c2m

m!

To show our results, we “transfer” to another language. Let L be the language
of random bit strings, and for each positive integer t, let L′t be the language with
equality, linear ordering, and a t-valued function, d. We will define a function Ft

that takes the countable models of the almost sure theories, in the language L,
to structures in the language, L′t. Roughly, Ft takes each model U to an ordered
set of positive integers that characterize the pairs of 1’s that occur within t of one
another. If this set is finite, then it is the (unique) sequence of positive integers a
such that U |= σa,t. For example, if U |= σ(2,0),3, then Ft(U) is the two element
structure [0, 1] such that d(0) = 2 and d(1) = 0. Just as we wrote the unary
structures as bit strings, we can write the models of L′t as ordered sequences of
{0, . . . , t− 1}. So, for our example, we would write [2, 0]. We show:



Theorem 3 Fix a real, positive constant, c. Let U1,U2 be models of an almost
sure theory Sc. If Ft(U1) and Ft(U2) agree on L′t-sentences of quantifier rank at
most t (that is, Ft(U1) ≡t Ft(U2)), then U1 and U2 agree on all L-sentences of
quantifer rank at most t (that is, U1 ≡t U2).

These facts give the desired form for fφ(c) in Theorem 1 and are used to
show Theorem 2.

3 Examples

To give some intuition about what these models and theories look like, we begin
with an informal discussion of the almost sure theories T1 and T2. For T1, we
have 1

n � p(n) � 1√
n
, and almost surely isolated 1’s occur. To see this, let Ai be

the event that U(i) holds, Xi be the random indicator variable, and X =
∑

i Xi,
the total number of 1’s that occur (i.e. the total number of elements for which
the unary predicate holds). Then, E(Xi) = p(n), and by linearity of expectation,

E(X) =
∑

i

E(Xi) = np(n).

We have E(X) →∞ as n →∞. Since all the events are independent, Var[X] ≤
E[X]. By the Second Moment Method (see [1], chapter 4 for details),

Pr[X = 0] ≤ Var[X]

E[X]2
≤ E[X]

E[X]2
= 1

E[X] → 0

Thus, Pr[X > 0] → 1. So, almost surely, arbitrarily many 1’s occur. We can
write this in first order logic as a schema of sentences αr, each of which states
“there is at least r 1’s”:

αr : (∃x1 . . . xr)(x1 < x2 < · · · < xr ∧ U(x1) ∧ · · · ∧ U(xr))

Each of these 1’s occurs arbitrarily far apart. To see this, let Bi be the event
that i and i + 1 are 1’s, let Yi be its random indicator variable, and Y =

∑
i Yi.

Then, E(Yi) = Pr[Bi] = p2 and E(Y ) ∼ np2 → 0. So, almost surely, 1’s occur,
but no 1’s occur adjacent in the order. If, for each r > 0, we let Ci,r be the event
that i and i+r are 1’s and Cr =

∑
i Ci,r, we can show, by similar argument, that

Cr → 0. This works for any fixed r, so, the 1’s that do occur are isolated from
one another by arbitrarily many 0’s. So, almost surely, the schema of sentences
βr that state that “between every pair of 1’s there is r 0’s” hold:

βr : (∀x1, x2)[(U(x1) ∧ U(x2) ∧ x1 < x2) →
(∃y1, . . . , yr)(¬U(y1) ∧ . . . ∧ ¬U(yr) ∧ x1 < y1 < · · · < yr < x2)]

Thus, for every r, αr, βr ∈ T1, the almost sure theory.



The almost sure theory also contains sentences about the ordering. Since
every Un,p is linearly ordered with a minimal and maximal element, the first-
order sentences that state these properties are in T1, T2, and each Sc. Let Γl be
the order axioms for the linear theory, that is, the sentences:

(∀xyz)[(x ≤ y ∧ y ≤ z) → x ≤ z]
(∀xy)[(x ≤ y ∧ y ≤ x) → x = y]
(∀x)(x ≤ x)
(∀xy)(x ≤ y ∨ y ≤ x)

The following sentences guarantee that there is a minimal element and a maximal
element:

µ1 : (∃x∀y)(x ≤ y)
µ2 : (∃x∀y)(x ≥ y)

There is also a minimal and maximal 1, which can be stated as:

µ′1 : (∃x)(∀y)[(U(x) ∧ U(y)) → (x ≤ y)]
µ′2 : (∃x)(∀y)[(U(x) ∧ U(y)) → (x ≥ y)]

Further, every element, except the maximal element, has a unique successor
under the ordering, and every element, except the minimal element, has a unique
predecessor. This can be expressed in the first-order language as:

η1 : (∀x)[(∀y)(x ≥ y) ∨ (∃y∀z)((x ≤ y ∧ ¬(x = z)) → y ≤ z)
η2 : (∀x)[(∀y)(x ≤ y) ∨ (∃y∀z)((x ≥ y ∧ ¬(x = z)) → y ≥ z)

As n →∞, the number of elements also goes to infinity. To capture this, we
add for each positive r the axiom:

δr : (∃x1 . . . xr)(x1 < x2 < · · · < xr)

For n ≥ r, Un,p |= δr. Thus, for every Un,p,

Un,p |= Γl ∧ µ1 ∧ µ2 ∧ η1 ∧ η2 ∧ δ1 ∧ δ2 ∧ . . . ∧ δn

We also have that for every j, there exists an n such that

Un,p |= αl ∧ . . . ∧ αj ∧ β1 ∧ . . . ∧ βj

Let ∆ = {Γl, µ1, µ2, η1, η2,
∧

r αr,
∧

r δr}. Then ∆ ⊂ T1, T2 and for each c > 0,
∆ ⊂ Sc. The set of sentences, Σ ∪{

∧
r βr}, axiomatizes T1. This follows from an

Ehrenfeucht-Fraisse game argument (see [12] for more details).
For countable models of T1, we cannot have a single infinite chain, since all

the 1’s must be isolated. So, we must have infinitely many chains, ordered like
the integers (called Z-chains) that contain a single 1 with an infinite increasing
chain of 0’s at the beginning and an infinite decreasing chain of 0’s at the end.
Between these can be any number of Z-chains that contain no 1’s. Call any Z-
chain that contains a 1 distinguished. For any distinguished Z-chain, except
the maximal distinguished chain, almost surely, there’s a least distinguished Z-
chains above it (this follows from the discreteness of the finite models). In other



words, every distinguished Z-chain, except the maximal 1, has a distinguished
successor Z-chain. This rules out a “dense” ordering of the distinguished Z-chains
and leads to a “discreteness” of 1’s, similar to the discreteness of elements we
encountered above. It says nothing about Z-chains without 1’s– those could
have any countable order type they desire. So, the simplest model is pictured in
Figure 1.

[00 · · ·)(· · · 00100 · · ·) (· · · 00100 · · ·)︸ ︷︷ ︸
“a Z-chain”

· · · · · · (· · · 00100 · · ·)(· · · 00100 · · ·)(· · · 00]

Fig. 1. A model of T1

When 1√
n
� p(n) � 1

3√n
, almost surely isolated 1’s occur, as well as more

complicated occurrences of 1’s. The more complicated occurrences, which we will
refer to as level 2 occurrences, are 11, 101, 1001, . . . , 10r1 . . ., where “10r1” is an
interval [i, i+r+1] with U(i), U(i+r+1), and for each 1 ≤ j ≤ i+r, ¬U(i+j).
Using the notation from above, note E(Y ) = np2 →∞ and Pr[Y > 0] → 1. By
similar argument, we can also show that three 1’s cannot occur “close” together.
Again, the distinguished Z-chains (i.e. those that contain at least 1 1) in a model
of T2 cannot be dense. The argument above can be extended to give that for
every r, s > 0, almost surely for any occurrence of 10r1, except the maximal
1, there exists a least occurrence of 10s1 above it. In between any two level
2 occurrences, we have arbitrarily many isolated 1’s. These cannot be densely
ordered since almost surely every 1 has a successor. So, these sequences cannot
be densely ordered either. That leaves only the Z-chains without 1’s. Since we
have no way to say things about them, they can have any countable order type
they wish. Further, every finite sequence of level 2 occurrences must occur. Since
T2 |= ∆, any model of T2 begins with an ascending chain of 0’s. In fact, each
model will begin with a model of T1, followed by a level 2 occurrence. Which level
2 occurrence occurs first is not fixed. [12] gives more details about the countable
models of the almost sure theories T1 and T2.

When p = c√
n

and using the notation from above, the expected number of
1’s in Un, c√

n
is E(X) = n · c√

n
= c

√
n → ∞. The expected number of pairs

of 1’s in Un, c√
n

is E(Y ) = n · p2 = n · c2

n = c2. In any countable model of the
almost sure theory, Sc, we have infinitely many isolated 1’s, and we also have
a non-zero probability of pairs of 1’s occurring close together. Figure 2 shows a
possible model of Sc. Note that the model in Figure 2 has two level 2 occurrences,
namely, of length 2 and of length 0.

Let a = (a0, . . . , am−1) be a finite sequence of non-negative integers. Let
m = |a| be the length of the sequence and M = max{a0, . . . , am−1} be the
maximum value of the sequence a. Then, for each t > M , we can define a first
order sentence σa,t that says the only pairs of 1’s that occur within t of one
another are exactly the distance prescribed by a and in that order.



[00 · · ·)(· · · 010 · · ·) · · ·

...
(· · · 00100 · · ·)
(· · · 00100 · · ·)

(· · · 00100100 · · ·)
(· · · 00100 · · ·)
(· · · 00100 · · ·)

...

...
(· · · 00100 · · ·)
(· · · 00100 · · ·)
(· · · 001100 · · ·)
(· · · 00100 · · ·)
(· · · 00100 · · ·)

...

· · · (· · · 010 · · ·)(· · · 00]

Fig. 2. A model of Sc

For example, if a = (2, 0), then a represents the level 2 occurrences “1001”
and “11”, occurring in that order. σa,3 is the sentence:

(∃x1x2x3x4)[U(x1) ∧ U(x2) ∧ U(x3) ∧ U(x4) ∧ x1 < x2 < x3 < x4

∧(∃y1y2)(x1 < y1 < y2 < x2 ∧ (∀z)(x1 < z < x2 → (y1 = z ∨ y2 = z)))
∧(∀z)(x3 < z → (x4 = z ∨ x4 < z))
∧(∀w1w2)(U(w1) ∧ U(w2) ∧ w1 < w2

∧(¬(w1 = x1) ∧ ¬(w1 = x3)) → (∃y1y2y3y4)(x1 < y1 < y2 < y3 < y4 < x2))]

which states that the only 1’s occuring within three of one another are “1001”
and “11,” in that order.

Definition 1 Fix t and c and let U be a model of Sc (that is, U |= Sc. Let

D = {(xi, ai) | U |= U(xi)∧U(xi+ai+1)∧¬U(xi+1)∧. . .¬U(xi+ai) for ai < t }

and let A = {x | There exists a,(x, a) ∈ D}. We define the function Ft from
models of Sc to models of L′t as follows: Define Ft(U) as the structure < A,≤′
, d > where ≤′ is the order induced from U (that is, x ≤′ y in Ft(U) iff x ≤ y in
U) and d is the t-valued function with the set D as its graph (that is, d(x) = a
iff (d, a) ∈ D).

For example, if U |= σ(2,0),3, then F3(U) can be written as [2, 0].

4 The Results

We use several facts and theorems from [12]. First, we can view U as a sequence
of models of T1, separated by pairs of 1’s occurring within t of one another. That
is:

Theorem 4 ([12]) Fix a positive integer t and a real positive constant c. Let
U |= Sc. Let xi be the element at which the pair of length ai < t begins in U , xm

be element at which the last pair of length < t occurs, and max be the maximal
element in U . Then,

< [0, x0 − 1],≤, U >,< [x0 + a0, x1 − 1],≤, U >, . . . , < [xm + am,max],≤, U >

are models of the almost sure theory T1.



We also have that the almost sure theory T1 is complete, which gives:

Theorem 5 ([12]) Fix a positive integer t. Let U1 and U2 be models of T1. Then,
U1 ≡t U2.

We can now prove the transfer theorem, Theorem 3. Recall Theorem 3 states
that if U1,U2 |= Sc and Ft(U1) ≡t Ft(U2), then U1 ≡t U2. That is, we can “trans-
fer” the winning strategy from the finite structures of L′t to the corresponding
infinite models of L.

Proof of Theorem 3: Assume U1,U2 |= Sc. By assumption, Ft(U1) ≡t Ft(U2).
Thus, we have a winning strategy for the t-move EF game played on Ft(U1) and
Ft(U2).

We need to show that this winning strategy can be used to give Duplicator a
winning strategy for the t-move game on U1 and U2. We show this by induction
on q, the number of moves remaining in the EF game on U1 and U2. We will play
with two sets of pebbles, one for the actual game on U1 and U2, and a “shadow”
set for the game on Ft(U1) and Ft(U2).

Without loss of generality, assume Spoiler plays on the element x in U1. Let
i be the index of the closest pair of 1’s within distance t of one another to x
(if x is infinitely far from the pair above and below it, let i be the index of the
one below it). Place the Spoiler’s shadow pebble on i in Ft(U1). By hypothesis,
we have a winning strategy for Duplicator for any game on Ft(U1) and Ft(U2).
Let j be the move corresponding to i and place Duplicator’s shadow pebble on
j. Returning to the actual game, roughly Duplicator plays on the same relative
distance from the pair bj as Spoiler did from ai.

In more detail, we need to take in account distance (up to 2q, where q is
the number of moves remaining) from the endpoints, the other placed pebbles,
and the pairs of 1’s of distance less than t. Here, we appeal to Theorem 4.
From it, we have that every interval M1 =< [xi + ai, xi+1 − 1],≤, U1 > and
M2 =< [yj + bj , yj+1 − 1],≤, U2 > are models of T1, where xi is the element
that begins the pair ai, yj is the element that begins the pair bj , U1 is the
restriction of the unary predicate of U1, and U2 is the restriction of the unary
predicate of U2. By Theorem 5, Duplicator has a winning strategy for any q-move
EF game played on M1 and M2. So, for any move of Spoiler in such a interval,
Duplicator has a winning move. This gives U1 ≡t U2. a

Using the Janson Inequalities

The Janson Inequalities (see [1], chapter 8 for more details) says that events
that are “mostly” independent sometimes have probability “nearly equal” to
the truly independent case. We will use these inequalities to give the limiting
probability that a sequence of pairs a are the only occuring of length up to t.

Lemma 1 Let c be a real positive constant, a = (a0, . . . , am−1), a finite sequence
of positive integers and t a positive integer such that t > 2max{a1,...,am,m}. Then,

qa,t = lim
n→∞

Pr[Un, c√
n
|= σa,t] = e−tc2 c2|a|

|a|!



The above lemma gives that the likelihood of a sequence occurring depends
solely on its length and becomes less likely as the sequence length increases. As
a corollary, we have:

Lemma 2 Let A be an ordered, countable set of positive integers from {0, . . . , t−
1}. Then the probability, as n →∞, that Un,c/

√
n contains the pairs listed in A

is zero.

With this in mind, we can focus on the limit probabilities of finite sequences,
since those are the only sequences that make positive contributions to the limit
probability.

Definition 2 For each first-order sentence φ and t > qr(φ), let

M(φ, t) = {a | S ∪ {σa,t} |= φ} and fφ,t(c) =
∑

a∈M(φ,t)

qa,t.

Recall that fφ(c) = limn→∞ Pr[Un, c√
n
|= φ]. We show that for every s, t >

qr(φ), fφ,t = fφ,s. That is, the value of fφ,t is fixed for sufficiently large t.

Lemma 3 For a finite sequence a = (a0, . . . , am−1) with maximum value M
and for every s > t > M , let θ = σa,M , then fθ,s(c) = qa,t.

Thus, excluding pairs up to M , the limit probability of a has the same limit
probability for any t > M . It follows immediately:

Corollary 1 For every first order sentence φ, and for every s > t > qr(φ), we
have: fφ,s(c) = fφ,t(c).

Proofs of the Theorems

Proof of Theorem 1 :
Let φ be a first-order sentence. By Lemma 1, for each a, t:

qa,t = lim
n→∞

Pr[Un, c√
n
|= σa,t] = e−tc2 c2m

m!

where m = |a|. Then, for fixed t,

limm0→∞
∑m0

m=0

∑
|a|=m,ai<t qa,t =

∑∞
m=0

∑
|a|=m,ai<t qa,t

= e−tc2 ∑∞
m=0

(tc2)m

m! = 1

So, for any positive ε > 0, there exists m0 > t such that∣∣∣∣∣∣1−
m0∑

m=0

∑
|a|=m,ai<t

qa,t

∣∣∣∣∣∣ < ε



Let βs0 = ¬
∨

m≤m0

∨
σa,t||a|=m,ai<t. We have

lim
n→∞

Pr[Un, c√
n
|= βs0 ] =

∣∣∣∣∣∣1−
m0∑

m=0

∑
|a|=m,ai<t

qa,t

∣∣∣∣∣∣ < ε

Claim 1 φ has limiting probability
∑

a∈M(φ,t)

qa,t where t > qr(φ).

Using the claim, fφ(c) = limn→∞ Pr[Un, c√
n
|= φ] =

∑
a∈M(φ) e−c c2m

m!

where m = |a|. a
Proof of Theorem 2: By definition, S ⊆

⋂
c Sc. To show

⋂
c Sc ⊆ S, assume

φ ∈ Sc for some c. Then, fφ(c) = 1. So, for t > 2qr(φ):

1 = fφ(c) = = e−tc2 ∑∞
m=0(

∑
|a|=m,a∈M(φ,t)

c2m

m! )

This happens if and only if

∞∑
m=0

 ∑
|a|=m,a∈M(φ,t)

c2m

m!

 = etc2

This occurs, if and only if, for each m, the number of a ∈ M(φ) of length m is
tm. But, for each m, this is the total number possible in M(φ, t), so, we must have
that every a ∈ M(φ). Thus, for every possible finite sequence a, S ∪ σa,t |= φ.
So, fφ(c) is constantly 1, and φ ∈ Sc for every c. Therefore, S =

⋂
c Sc. a

5 Future Work

The work of [11] and [12] characterize the almost sure theories and their count-
able models for p(n) � n−1 and n−1/k � p(n) � n−1/(k+1) for k ≥ 1. In [14]
and this paper, we fill the “gaps” between these theories by characterizing the
almost sure theories of Un, c

n
and Un, c√

n
and giving the form of the function fφ(c)

for each first order sentence φ. Monadic second order logic is more expressive
than first order logic over bit strings. For example, “evenness” can be expressed
in monadic second order logic but not in first order logic. Is there a characteriza-
tion for the limit probabilities of monadic second order logic over random sparse
bit strings with p = c/n?

Let LP be the language with the basic operations of addition, ordering, and
the unary predicate. What happens to the limit probabilities of sentences over
this extended language? Lynch [8] gave sufficient conditions on the unary pred-
icates to be indistinguishable under sentences of quantifier rank less than k, for
a fixed k over the natural numbers. Grädel [5] linked subclasses of Presburger
arithmetic (the first order theory of the model < N,+,≤>) to the polynomial
time hierarchy, and related the truth value of sentences of quantifier rank k to
the truth on an initial segment of N whose length is dependent on k. These tech-
niques might be useful on this question and related ones in random sequences.
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